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In 2019-2021, Biology and Fertility of Soils published 14 
research articles focusing on BNI and added an additional 
publication in the form of a Special Issue on “Biological 
Nitrification Inhibition”, which included an editorial, two 
reviews, a position/opinion paper and nine research articles 
(see Biology and Fertility of Soils 58 issue 3, 2022), reflect-
ing the broad research interest in this topic. Moreover, a lit-
erature search on Scopus using the term “BNI” returned 103 
documents, 97 of which were research articles and 6 were 
reviews. Published BNI studies fall broadly into two cat-
egories: 1) those that focus on screening and 2) those focus-
ing more on testing BNI in soil systems, with some studies 
including both aspects of BNI research. The main goal of 
screening studies is to identify plants with BNI potential 
by collecting and subsequently chemical characterization of 

compounds capable of inhibiting ammonia oxidation in pure 
culture of nitrifiers. An unquestionable merit of these studies 
is that they have led to the discovery of several compounds 
with BNI potential, clarification of the release mechanisms 
as well as their inhibitory capacity of pure culture of nitri-
fiers. Returning to the testing of BNI in soils, a common 
aspect shared by these studies is that the effects of either 
plants with BNI capacity or BNI compounds are assessed 
using DNA-based approaches coupled with measurements 
of potential nitrification activity and/or net nitrification rate 
(i.e. the balance between production and consumption of 
 NO3

-). Here, decrease in abundances of ammonia oxidis-
ers, i.e. ammonia oxidizing archaea (AOA) and ammonia 
oxidising bacteria (AOB), estimated by quantitative PCR 
(qPCR), along with reduced soil  NO3

- concentrations, net 
nitrification rates or potential nitrification activity, is gener-
ally interpreted as support or evidence for BNI (Kaur-Bham-
bra et al. 2022). However, both DNA-based approaches and 
net rate measurements have important limitations that BNI 
researchers need to recognize before inferring causation 
(Stark and Hart 1997; Nardi et al. 2020). Drawbacks of these 
approaches are reported below.

1) DNA-based approaches, i.e. assessment of the pool 
of amoA genes, do not discriminate between DNA 
released from living cells and DNA released from dead 
cells. In addition, even if sourced from living cells, 
the detection of the gene does not necessarily imply 
its expression. Therefore, changes in gene abundances 
only mirror changes in the functional potential and not 
activity (Nannipieri et al. 2020). Limitations of DNA-
based approaches may partially be circumvented if 
combined with measurements of gene transcripts, i.e., 
amoA mRNA, with the assumption of shorter half-life 
of transcripts compared to that of genes. Undoubtedly, 
BNI studies would benefit from the concurrent analy-
sis of gene abundance, transcripts and the transcripts/
gene abundance ratio, the latter being a proxy of gene 
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expression. However, as the detection of gene tran-
scripts mirrors the potential to produce protein, changes 
in transcripts abundances may not necessarily reflect 
in situ activity changes (Nicol et al. 2008). Using the 
transcript/gene abundance ratios instead of transcript 
abundance alone may better describe transcriptional 
activity and is therefore more related to the metabolic 
activity of the cells (Freitag and Prosser 2009; Nicol and 
Prosser 2011). However, factors influencing the extent to 
which the above mentioned RNA-based analyses reflect 
enzyme activity should be recognized and results inter-
preted with caution (Prosser and Nicol 2008).

2) As mentioned above, DNA-based approaches are cou-
pled with measurements of potential nitrification activity 
(PNA) or net nitrification, also known as potential nitri-
fication rate (PNR), and net nitrification rate. However, 
neither PNA nor net nitrification rates provide informa-
tion about the in situ nitrifying activity, which can be 
reflected by the gross nitrification rate (i.e. production 
of  NO3

-) using 15N isotope techniques (see below). In 
addition, as the PNA is biased toward favoring AOB 
(Hazard et al. 2021), its use is not recommended neither 
to infer BNI nor to study the effects of BNI on ammonia 
oxidizers because of the high risk for drawing mislead-
ing conclusions. Net nitrification quantifies the balance 
between productive and consumptive  NO3

- processes, 
with values ranging from negative to positive, while it 
does not provide information on gross production of 
 NO3

-, for which negative values are impossible. Gross 
 NO3

- production may occur but does not necessarily lead 
to  NO3

- accumulation if  NO3
- consuming processes such 

as immobilization, plant uptake, denitrification, dissimi-
latory nitrate reduction to ammonium (DNRA) and  NO3

- 
leaching are higher (Davidson et al. 1992).

These aspects cannot be ignored by BNI researchers, as 
BNI implies the reduction of gross nitrification rate. It is 
therefore surprising that despite these limitations, and with 
few exceptions (Subbarao et al. 2009; Vázquez et al. 2020; 
Egenolf et al. 2022; Lan et al. 2022; Teutscherová et al. 
2022), measurements of net nitrification rates still dominate 
BNI literature. BNI can be defined as the property of cer-
tain plants that determine a reduction of gross nitrification 
through direct effects on nitrifying microorganisms. There-
fore, it is crucial for BNI to understand 1) whether plants 
inhibit in-situ nitrification activity, i.e. gross nitrification, 
and 2) what the driving mechanisms are, which are not yet 
clear. Answering these questions will provide mechanistic 
insights into BNI and at the same time deepen our knowl-
edge of how the soil N cycling is influenced by the interac-
tions between plants and microorganisms. To address these 
questions, hypotheses about gross nitrification inhibition 
and inhibition mechanisms i.e. direct or indirect (Nardi et al. 

2020), should be clearly stated and tested using appropriate 
measurements of in-situ activity, e.g. via 15N tracing tech-
niques. A first hypothesis in BNI research should relate to 
whether  NO3

- production, i.e. gross nitrification, is inhibited. 
If experimental results support this hypothesis, the driving 
mechanism of inhibition, i.e. direct or indirect inhibition, 
must be clarified. Here, specific hypotheses can be made 
about the competition between nitrifiers and other micro-
organisms or plants. Since all individual gross N fluxes in 
soil-plant systems occur simultaneously, they should also be 
determined simultaneously. This requires advanced 15N trac-
ing tools (Müller et al. 2004, 2007; Kelly and Wood 2006; 
Inselsbacher et al. 2013; He et al. 2020; Jansen-Willems 
et al. 2022), that can unambiguously quantify concurrent 
gross N transformations and determine whether direct (BNI) 
or indirect mechanisms cause nitrification inhibition in the 
rhizosphere.
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