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Abstract
The current opinion and position paper highlights (1) correct assignation of indicator phospholipid fatty acids (PLFA), (2) 
specificity and recycling of PLFA in microorganisms, and (3) complete extraction and detection of PLFA. The straight-
chain PLFA 14:0, 15:0, 16:0, and 17:0 occur in all microorganisms, i.e., also in fungi and not only in bacteria. If the phylum 
Actinobacteria is excluded from the group of Gram-positive bacteria, all remaining bacteria belong to the bacterial phylum 
Firmicutes, which should be considered. The PLFA 16:1ω5 should be used as an indicator for the biomass of arbuscular 
mycorrhizal fungi (AMF) as there is no experimental evidence that they occur in marked amounts in Gram-negative bacteria. 
Fungal PLFA should embrace the AMF-specific 16:1ω5. In the presence of plants, ergosterol should be used instead of the 
PLFA 18:2ω6,9 and 18:1ω9 as fungal indicators for Mucoromycotina, Ascomycota, and Basidiomycota. The majority of 
indicator PLFA are not fully specific for a certain microbial group. This problem might be intensified by recycling processes 
during decomposition to an unknown extent. Soil handling and extraction conditions should be further optimized. The reli-
ability and accuracy of gas chromatographic separation need to be regularly checked against unintentional variations. PLFA 
analysis will still be of interest over the next decades as an important independent control of DNA-based methods.
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Introduction

Phospholipid fatty acids (PLFA) are the main components 
of cell membranes in all organisms other than archaea and 
do not occur in storage components (Zelles 1999). PLFA 
are rapidly synthesized during microbial growth and do not 
accumulate in soil organic matter (Zelles 1999; Zhang et al. 
2019). Consequently, the total PLFA concentration is used as 
an indicator for microbial biomass in soil (Frostegård et al. 
1991; Joergensen and Emmerling 2006), largely consisting 
of viable but non-culturable organisms (Zelles 1999). This 
contrasts neutral lipid fatty acids (NLFA), which are storage 
components, especially in fungi, and give interesting infor-
mation on the nutritional status of fungi (Bååth 2003). Total 
fatty acid methyl ester (FAME) or ester-linked (EL) total 
FAME have been repeatedly determined in soil by in situ 
hydrolysis and methylation reactions of fatty acids, without 
the PLFA extraction step (Acosta-Martínez et al. 2010; Li 

et al. 2020). Total FAME and EL-FAME give similar infor-
mation on the composition of the main microbial groups to 
that provided by PLFA (Acosta-Martínez et al. 2010) but 
create an additional link to the formation of microbial nec-
romass from decaying biomass by different microbial groups 
(Miltner et al. 2012). This link warrants further elaboration 
as microbial necromass has been recognized as an important 
source of soil organic carbon (Liang et al. 2020).

PLFA are not only an indicator for soil microbial bio-
mass, with a variety of indicator PLFA (Table 1) provid-
ing information on the composition of large and important 
main microbial groups (Joergensen and Wichern 2008). 
Soil bacteria consist of Gram-negative (G-) and Gram-
positive (G +) bacteria, the latter formed by the two 
bacterial phyla Firmicutes (with low guanine-cytosine 
content) and Actinobacteria (with high guanine-cytosine 
content). Soil fungi largely consist of biotrophic arbus-
cular mycorrhizal fungi (AMF), and Mucoromycotina, 
Ascomycota, and Basidiomycota, mainly saprotrophic in 
arable and grassland soils. PLFA analysis is an important 
independent control of DNA-based analytical methods 
and may help to reduce the occurrence of alternative facts 
created by different methodological approaches in soil 
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microbiology. In addition, the comparison of membrane 
components such as PLFA and ergosterol with 16S-rRNA 
or 18sRNA gene abundance gives information on the cell 
size of bacteria and fungi in soil and animal feces (Meyer 
et al. 2021), i.e., oligotrophic or copiotrophic conditions. 
PLFA-specific analysis of the 13C/12C ratio makes it pos-
sible to measure the incorporation of fresh plant substrate 
into PLFA (Lønne Enggrob et  al. 2020). The ratio of 
G + to G- bacteria is important for estimating the contri-
bution of bacterial necromass to SOC, using amino sugar 
analysis (Joergensen 2018; Meyer et al. 2021). An addi-
tional advantage is that PLFA analysis does not require 
membrane integrity before extraction, i.e., the soil sam-
ples (Wagner et al. 2007) but also extracts (Allison and 
Miller 2005) can be stored frozen for extended periods. 
No other method provides information on such a variety 
of microbial composition characteristics in a single analy-
sis (Willers et al. 2015), especially in combination with 
stable isotope probing (SIP).

Although Frostegård et al. (2011) gave examples for 
the misuse of the PLFA approach in soil science, many 
problems remained unsolved in many manuscripts, using 
PLFA as a method for investigating the composition of 
the main microbial groups. This is especially true for the 
interpretation of PLFA data in many studies (Willers et al. 
2015). The objective of the current opinion and position 
paper is to highlight several persisting problems: (1) cor-
rect assignation of indicator PLFA, (2) specificity and 
recycling of PLFA in microorganisms, and (3) complete 
extraction and detection of PLFA.

Correct assignation

In soil biology, the assignation of indicator PLFA to 
microbial groups is often not congruent with basic micro-
biological knowledge. This is especially a problem when 
failing to assign Actinobacterial PLFA to the group of 
G + bacterial PLFA and AMF PLFA to the group of fun-
gal PLFA, as well as when assigning unspecific microbial 
PLFA as bacterial PLFA.

The straight-chain PLFA 14:0, 15:0, 16:0, 17:0, 18:0, 
and 20:0 were often assigned as bacterial PLFA (e.g., 
Yang et al. 2017; Wang et al. 2018). However, they occur 
in all microorganisms, i.e., also in fungi and not only in 
bacteria as clearly demonstrated by Zelles (1997) based 
on PLFA analysis of cultured microorganisms. One reason 
for this perpetual fault might be that PLFA analysis was 
initially introduced from sediment microbiology (Guck-
ert et al. 1985), where the microbiome seems to consist 
nearly exclusively of bacteria. However, also the ratios of 
18:2ω6,9 to bacterial PLFA (e.g., Bardgett et al. 1996), 
fungal to bacterial gene copies (Jan et al. 2020; Meyer 
et al. 2021), and fungal to bacterial CFU (Jan et al. 2020) 
give the wrong impression that fungi also contribute only 
minor percentages to the soil microbiome. This is unlikely 
as most of the plant C input consists of cell-wall material 
such as hemicellulose, cellulose, and lignin, nearly exclu-
sively decomposed by fungi.

The staining method of bacterial cell-walls, devel-
oped by the Danish scientist Hans Christian Gram in the 

Table 1   Assignment of PLFA to 
different main microbial groups

Bold: > 1 mol% contribution to total PLFA in soil (Murugan et al. 2021)
a Also some cultured G- bacteria contained higher concentrations of PLFA i15:0 and i16:0 (Zelles 1997)
b Also some cultured G- bacteria contained minor concentrations of PLFA 16:1ω5 (Nichols et  al. 1986; 
Kieft et al. 1997; Zelles 1997)
c Also some cultured G- bacteria and plants contained higher concentrations of PLFA 18:1ω9 (Zelles 1997)
d Also plants contained higher concentrations of PLFA 18:2ω6,9, 18:3ω6,9,12, and 16:0 (Zelles 1997)

Bacterial PLFA: Gram-positive (G +) + Gram-negative (G-)

G + : Firmicutes + Actinobacteria
Firmicutes: i14:0, i15:0a, i16:0a, i17:0, i18, a15:0, a16:0, a17:0, a18:0, a19:0
Actinobacteria: 10Me16:0, 10Me17:0, 10Me18:0
G-: cy17:0, cy19:0, 16:1ω7, 16:1ω9, 17:1ω8, 18:1ω7
Fungal PLFA: AMF + Zygomycota + Ascomycota and Basidiomycota + unspecific fungal
AMF: 16:1ω5cb

Zygomycota: 18:1ω9cc

Ascomycota and Basidiomycota: 18:2ω6cd

Unspecific fungal PLFA: 18:3ω6,9,12d

Unspecific microbial PLFA: 14:0, 15:0, 16:0 d, 17:0, 18:0, 20:0, 20:4ω6,9,12,15
Total microbial PLFA: bacterial + fungal + unspecific microbial
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nineteenth century, remains an important criterion for dif-
ferentiating bacterial phyla. G + bacteria consist of the two 
phyla Firmicutes and Actinobacteria (no longer actinomy-
cetes!). The PLFA 10Me16:0, 10Me17:0, and 10Me18:0 
indicate Actinobacteria, but they were often not assigned 
as G + bacteria (e.g., Wang et al. 2018), although this is 
old text-book knowledge. G + bacteria were often regarded 
as slow growing bacteria (Fanin et al. 2019). However, 
this is mainly true for Actinobacteria, which are capable 
of degrading cell wall components, such as chitin and cel-
lulose (Lacombe-Harvey et al. 2018). In contrast, many 
bacteria of the Firmicutes phylum are the most rapidly 
growing micoorganisms, e.g., lactobacilli, enterococci, 
and streptococci. The extraordinarily rapid growth of 
G + bacteria in soil has recently been shown by Lønne 
Enggrob et al. (2020). Consequently, good reasons exist 
to differentiate Actinobacteria from Firmicutes, but in this 
case, these bacteria should be denoted as Firmicutes and 
not as G + bacteria.

Fungal PLFA embrace AMF (16:1ω5), Mucoromycotina 
(18ω1:9c, 18.3ω6,9,12), Basidiomycota and Ascomycota 
(18:2ω6,9, 18.3ω6,9,12) in soil. However, AMF-PLFA 
are often not considered as fungal PLFA (e.g., Yang et al. 
2017; Wang et al. 2018; Hansen et al. 2019). One reason 
might be that the PLFA 16:1ω5 was for many years not an 
accepted AMF-specific indicator due the false belief that 
there are serious interferences with G- bacteria. However, 
direct experimental evidence is missing as this PLFA has 
been found only in minute amounts in G- bacteria (Nichols 
et al. 1986; Kieft et al. 1997; Zelles 1997). It should be fur-
ther considered that G- bacteria contribute most likely only 
10% to the total microbial biomass (Joergensen and Wichern 
2008; Murugan et al. 2021), i.e., markedly less than AMF 
(Faust et al. 2017). For this reason, the neutral lipid fatty 
acid (NLFA) 16:1ω5 has sometimes been used as an AMF 
indicator (Jiang et al. 2020) although NLFA do not solely 
occur in the biomass of organisms (Zelles 1999). Faust et al. 
(2017) showed that PLFA 16:1ω5 and NLFA 16:1ω5 give 
similar information on the presence of AMF in soil and rec-
ommended solely using the PLFA as an indicator for AMF 
biomass. However, it is better to analyze the NLFA 16:1ω5 
than to simply ignore AMF (e.g., Xu et al. 2021).

Extractability and temporal variation

PLFA are usually extracted from soil with various modifi-
cations of the Bligh and Dyer (1959) procedure, followed 
by purification with silicic acid chromatography (Frost-
egård et al. 1991), separation by capillary gas chroma-
tography (GC), and detection using a mass spectrometer 
(MS) or a flame ionization detector (FID) (Frostegård and 
Bååth 1996). The content of total PLFA often showed 

strong temporal variation between different sampling dates 
(e.g., Hamer et al. 2008; Murugan et al. 2021), which have 
often been explained as seasonal changes in microbial 
biomass. These changes were often accompanied by sig-
nificant changes in the composition of the main microbial 
groups according to PCA (principal component analysis), 
although the shifts in the contribution of single PLFA to 
total PLFA were small (Zelles 1999; Hamer et al. 2008). 
However, PCA overinterprets small shifts in PLFA com-
position (Martínez-Abraín 2008), suggesting that more 
emphasis should be placed on the interrelationships of the 
different main microbial groups.

In the incubation study of Murugan et al. (2021), the 
significant variation in total PLFA contents between the 
sampling days was not accompanied by changes in CO2 
evolution and enzyme activities. One reason for the tem-
poral changes in total PLFA contents might be the varying 
contribution of non-ester-linked PLFA, which may add a 
highly variable contribution to the true total PLFA con-
tent (Zelles 1999). The extent of differences in bonding 
strength between non-ester-linked and ester-linked PLFA 
is virtually unknown and might vary between different 
extraction events of a time series. Also, betaine lipids and 
other polar lipids seem to contribute a variable percent-
age to the fraction, which should be purely PLFA (Warren 
2019).

Changes in soil moisture affect hydrophobicity (Fu et al. 
2021) and, thus, extraction efficiency of PLFA. Zelles 
(1999) extracted 100% more total PLFA from a hydro-
philic moist soil than from a hydrophobic dry soil. This is 
certainly an important reason for temporal changes in total 
PLFA content. However, the available advice to optimize 
PLFA extraction efficiency by sample pre-treatment, such 
as moisture adjustment, sieving, and pre-incubation, is 
still limited. Not only soil properties but also solvent and 
buffer composition significantly affect quantity and profile 
of PLFA extracted from soil (Papadopoulou et al. 2011). 
Other analytical constraints, e.g., aging of the capillary 
GC columns and small shifts in gas flow conditions, might 
cause insufficient separation of different PLFA and co-
chromatographing (Joergensen and Wichern 2008). Such 
unintentional variation in PLFA extraction conditions 
could presumably largely explain the changes observed 
after long-term storage (Wu et al. 2009; Veum et al. 2019). 
For optimizing the extraction conditions and for control-
ling GC separation, photometric measurement of total 
PLFA should be considered (Frostegård et al. 1991). An 
important independent control for the reliability of extrac-
tion and detection procedures might be the comparison of 
total PLFA and microbial biomass C measured by fumiga-
tion extraction or substrate-induced respiration (Willers 
et al. 2015).
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Specificity and recycling of PLFA

One main problem of the PLFA method, which must be 
accepted to certain extent, is the imperfect specificity of 
virtually all PLFA for a certain microbial group in soil, 
in contrast to fungal ergosterol (Joergensen and Wichern 
2008) or bacterial muramic acid (Joergensen 2018). This 
is especially true for the fungal indicator PLFA linoleic 
acid (18:2ω6,9), oleic acid (18:1ω9), and γ-linolenic acid 
(18:3ω6,9,12), which sometimes occur in large concentra-
tions in plants, as indicated by their names. However, the 
removal of plant debris by sieving and tweezers picking 
reduces these interferences to an acceptable level (Kaiser 
et al. 2010). In the presence of plant tissue, ergosterol 
should replace the indicator PLFA 18:2ω6,9, 18:1ω9, 
18:3ω6,9,12 for Mucoromycotina, Ascomycota, and Basid-
iomycota (Joergensen and Wichern 2008). A close correla-
tion of ergosterol and PLFA 18:2ω6,9 has been shown in 
the absence of living plants (Frostegård and Bååth 1996).

Another inherent problem of the PLFA method is that 
these membrane components remain in soil after cell death 
for certain and largely unknown periods (Zelles 1999). 
This means that the PLFA approach is not suitable for 
short-term experiments with a rapid sequence of microbial 
growth and death processes.

Dormant soil microorganisms can recycle their own 
cell-membrane PLFA, but also that taken up during 
decomposition of plant material and decaying neighbors 
(Dippold and Kuzyakov 2016). Such PLFA recycling 
might further lower the specificity of indicator PLFA in 
soil but is certainly a highly interesting feature when ana-
lyzing the survival mechanisms of microorganisms in soil.

Number of PLFA determined

The number of PLFA used as a group specific indicator by 
the simple PLFA extraction procedure proposed by Frost-
egård and Bååth (1996) varies between 13 and 70 (Zelles 
1999). Total PLFA often but not always consisted of the 
29 listed in Table 1, dominated by the 16 PLFA shown in 
bold, which contribute more than 1 mol% to total PLFA. 
The range in detected and evaluated PLFA might affect 
the total PLFA content to an unknown extent. For this 
reason, all PLFA used for the calculation of total PLFA 
should be clearly listed in the Materials and Methods sec-
tions, especially as several unspecific microbial PLFA 
exist (Table 1).

The extended PLFA extraction procedure of Zelles 
(1999), which can detect up to 400 lipids, results in 21 to 
50% higher total PLFA contents. However, this extended 

procedure has gained less popularity in the past two dec-
ades, despite its ability to identify high numbers of signa-
ture fatty acids for defined organisms and to identify the 
organisms causing the shift in microbial community. Not 
only the complexity of the procedure but also the competi-
tion with DNA-based methods might explain why extrac-
tion procedure of Zelles (1999) has been used less often.

Joergensen and Emmerling (2006) presented a weighted 
mean of 5.8 for converting nmol PLFA into µg microbial bio-
mass C. However, this conversion value did not gain much 
popularity, although a term “biomass” would require the con-
version of measured cell components to microbial biomass 
C. One reason for this observed reluctance might be that the 
conversion of PLFA to biomass is biased by the fact that cul-
tured microorganisms contain lower PLFA concentrations than 
starving soil microorganisms (Joergensen and Wichern 2008).

Conclusions

PLFA analysis will still be of interest over the next decades 
for estimating the contribution of the main microbial groups 
to the total soil microbial biomass, especially in combination 
with PLFA-specific δ13C analysis. PLFA give information 
on bacterial groups such as Gram-negative (cy17:0, 17:1ω8, 
and 18:1ω7) and Gram-positive bacteria, i.e., Firmicutes 
(i15:0, i17:0, and a15:0) and Actinobacteria (10Me17:0 and 
10Me18:0) as well as fungal groups such as AMF (16:1ω5), 
Mucoromycotina (18:1ω9), and Ascomycota + Basidiomy-
cota (18:2ω6,9). The straight-chain PLFA 14:0, 15:0, 16:0, 
and 17:0 occur in all microorganisms, i.e., also in fungi 
and not only in bacteria. PLFA analysis can be used as an 
important independent control of DNA-based methods. In 
this case, the comparison of membrane components and 
16S-rRNA or 18S-rRNA gene abundance gives informa-
tion on the cell size of bacteria and fungi under different 
growth conditions. The reliability and accuracy of gas chro-
matographic separation need to be regularly checked against 
unintentional variations. Important will be also to investi-
gate more thoroughly the effects of soil properties, such as 
water content, on the extractability of PLFA to obtain the 
full potential of this approach.
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