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Impact of different earthworm ecotypes on water stable aggregates
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Abstract
We carried out mesocosm experiments using either the anecic earthworm Lumbricus terrestris or the endogeic earthworm
Allolobophora chlorotica and loam, silt loam and sandy loam soils to investigate the differing impact of these earthworm of
different ecotypes on aggregate formation (percentage water stable aggregates, %WSA) and soil water holding capacity (WHC),
two soil properties that underpin many of the ecosystem services provided by soils. Earthworms significantly increased %WSA
(by 16–56% and 19–63% relative to earthworm-free controls for L. terrestris and A. chlorotica, respectively). For L. terrestris,
this increase was significantly greater in the upper 6.5 cm of the soil where their casts were more obviously present. Allobophora
chlorotica treatments significantly increasedWHC by 7–16%. L. terrestris only caused a significant increase inWHC (of 11%) in
the upper 6.5 cm of the sandy loam soil. Linear regression indicated a consistent relationship between increases in %WSA and
WHC for both earthworm species. However, for a given %WSA, WHC was higher for A. chlorotica than L. terrestris likely due
to the known differences in their burrow structure. Overall, earthworms increased soil %WSA and WHC but the significant
species/ecotype differences need to be considered in discussions of the beneficial impacts of earthworms to soil properties.
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Introduction

The development of sustainable agricultural management sys-
tems that deliver a range of ecosystem services would benefit
from a full understanding of the impacts of soil fauna on soil
properties. Soil macrofauna use the soil as a habitat and a
source of food, and consequently, they exert a large influence
on the physical properties of soils through the diversity and

abundance of the structures they produce (Boivin and Kohler-
Milleret 2011). Earthworms change the soil structure by mod-
ifying soil aggregation and porosity (Shipitalo and Le Bayon
2004; Blouin et al. 2013; Hallam et al. 2020). Aggregates and
the space between them allow the retention and exchange of
both air and water (Guber et al. 2004; Saha and Kukal 2015)
and thus affect water flow and retention and soil aeration
(Bastardie et al. 2003; Capowiez et al. 2014, 2015; Hallam
et al. 2020; Lavelle et al. 1992). Additionally, soil aggregates
contain the majority of organic carbon in soil and contribute to
nutrient release for plant growth (Cornforth 1968; Ramachandran
Nair et al. 2010). These changes in turn affect the ecosystem ser-
vices provided by soils such as being a medium for plant growth
and providing storage and filtration of water (Edwards 2004;
Hallam et al. 2020; Li et al. 2013; Zhang et al. 2016). Soil water
holding capacity (WHC) is onemeasure of water retention and is
an important soil parameter for monitoring soil function and pro-
cesses (Honget al. 2013;Roussevaet al. 2017). It is a functionof a
variety of soil properties including texture, organicmatter content
and soil aggregation (Hudson 1994; Saxton et al. 1986); is easily
measurable; and is a key factor in soil ecology as it influences the
distribution and dynamics of animal and plant populations (BIO
Intelligence Service and Communities 2014).
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Earthworms are major ecosystem engineers in the soil and
influence soil structure by creating macropores through their
burrowing activities; they play an important role in aggregate
formation and stabilization through the ingestion and egestion
of soil (Blouin et al. 2013; Bottinelli et al. 2015; Guild 1955;
Lee and Foster 1991; Six et al. 2002; Snyder et al. 2009).
Earthworms can be grouped into three ecological groups
(Bouché 1977): Epigeic earthworms (e.g. Lumbricus rubellus)
are litter dwellers that consume plant residue on the soil sur-
face and rarely ingest mineral soil; endogeic earthworms (e.g.
Allolobophora chlorotica) are geophagous and inhabit the up-
per layers of the soil, construct narrow branching sinuous
burrows and rarely come out to the soil surface; and anecic
earthworms (e.g. Lumbricus terrestris) are deep vertical bur-
rowers that typically inhabit semipermanent deep burrows and
feed on organic litter which they collect from the soil surface.

Early studies established the role of earthworms in aggre-
gate formation. Hopp and Hopkins (1946) found that
L. terrestris increased the amount of water stable aggregates
in sieved soil relative to earthworm-free controls. Swaby
(1950) proposed that such increases were related to increased
microbial activity in the earthworm gut, in turn related to
levels of organic matter in the ingested soil, leading to an
increased level of “bacterial gum” binding aggregates togeth-
er. Guild (1955) suggested that the impact of earthworms on
soil aggregation was related to the way different earthworm
species process the soil and the proportions of different spe-
cies and their numbers within the soil. In experiments, he
found that, relative to unworked soil that was practically struc-
tureless, all earthworm species increased aggregation; epigeic
species had the least effect and anecic species the greatest.
Since then, investigations have continued to refine our under-
standing of the interaction of earthworms and other factors
such as soil type, land management practices, fungal myceli-
um and organic matter content as it relates to aggregate pro-
duction. Studies with epigeic earthworms typically find little
effect on soil aggregation compared with other earthworm
ecotypes because the earthworms rarely burrowwithin the soil
(Bossuyt et al. 2006; Guild 1955; Shipitalo and Le Bayon
2004). However, contrasting results are found for anecic and
endogeic earthworms with most studies recording increases in
percentage water stable aggregates (%WSA) (e.g. Buck et al.
(2000), Flegel et al. (1998), Hamilton et al. (1988), Ketterings
et al. (1997) and Shipitalo and Protz (1989) for the anecic
L. terrestris and Blanchart (1992), Bossuyt et al. (2005),
Buck et al. (2000) and Haynes and Fraser (1998) for the
endogeic A. caliginosa, Millsonia anomala, and Octolasion
cyaneum) due to the increased processing of organic matter,
increases in microbial activity and increased abundance of
fungal hyphae in the presence of earthworms together with
age-hardening and age-drying processes of earthworm casts
forming new bonds between soil particles. A few studies re-
port either no effect or a decrease in %WSA following

earthworm-processing of soil (e.g. the anecic L. terrestris,
Aporrectodea longa and Aporrectodea giardi and the
endogeic A. caliginosa) (Jégou et al. 2001; Schrader and
Zhang 1997; Shuster et al. 2000; Zhang and Schrader 1993).
Whilst not discussed in the original studies, possible explana-
tions for this include earthworm ingestion leading to the dis-
persion of clay particles, there being insufficient organic C to
increase the C content of aggregates despite earthworm-
processing or simply experiment duration being insufficient
for casts to harden and stabilize. Further studies record
differences in effect depending on other properties. For
example, Blanchart et al. (1997) recorded decreases in
%WSA at a soil depth of 0–5 cm, but increases in %WSA at
10–15 cm for the endogeic earthworms M. anomala,
Chuniodrilus zielae, and Stuhlmannia porifera though legacy
effects of old earthworm casts in the soil caused them to ques-
tion their results.

Whilst there are many studies that find that earthworms
increase the amounts of water stable aggregates in soil, there
are relatively few studies on the impacts of earthworms on soil
WHC (Edwards 2004). The majority of studies consider the
impact of soil water content and soil WHC on earthworm
distributions rather than the other way around (Palm et al.
2013; Schneider and Schroder 2012;). The few studies that
exist are superficially contradictory, but this is most likely
because they measure different things. Guild (1955) and
Stockdill and Cossens (1969) reported an increase in WHC
after A. caliginosa, L. terrestris and A. longa processing of soil
but Ernst et al. (2009) observed a decrease in soil water stor-
age in laboratory experiments using L. terrestris or
A. caliginosa species due to increased evaporation because
of the pores created by the earthworms increasing soil aera-
tion. Guild (1955) did not detect an increase in WHC in the
presence of the epigeics L. rubellus and D. subrubicunda,
attributing this to them not producing significant amounts of
water holding aggregates but both Smagin and Prusak (2008)
and Ernst et al. (2009) reported an increase in WHC in the
casts of epigeic earthworms from laboratory experiments. In
field experiments with kaolinitic soils and tropical
earthworms, Blanchart et al. (1999) found that compacting
endogeic species (Pontoscolex corethrurus or M. anomala)
increased WHC whereas decompacting endogeic species
(eudrilid earthworms) decreased WHC. However, Blouin
et al. (2007) observed a decrease inWHC in laboratory exper-
iments using a sandy soil in the presence of M. anomala,
demonstrating the complex interaction between earthworm
type, soil properties and the influence that earthworms have
on those properties.

Although many studies have investigated the impacts of
earthworms on soil aggregation, and some have investigated
the impacts of earthworms onWHC, relatively few investigate
the relationship between these two properties (Blanchart et al.
1999; Guild 1955); such studies are vital to fully understand
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earthworm drivers of soil properties and the ecosystem ser-
vices they provide. To address this gap, we investigated the
impact of two common globally distributed earthworm spe-
cies on %WSA and soil WHC. Our experiments contrast the
influence of the anecic earthworm L. terrestris and the
endogeic earthworm A. chlorotica on both aggregate forma-
tion and soil water holding capacity. Our use of two different
ecotypes in a consistent experimental design allows the eval-
uation of the potentially differing impacts these ecotypes have
on the delivery of ecosystem services. We measured the
%WSA and WHC in the upper and lower portions of the soil
in order to investigate the spatial variation of changes in these
properties due to earthworm activity. Like many earthworm
experiments, in order to detect effects in the course of a rela-
tively short time period experiment (40 days), we used higher
earthworm abundances than would be encountered under field
conditions and constrained earthworms to a fixed volume of
soil. Further, we did not add a food source to the soil to en-
courage the earthworms to process the soil. The earthworms
were added to loam, silt loam and sandy loam soils. We
hypothesised that (i) the horizontally burrowing, soil-feeding
A. chlorotica will have more of an effect on the measured soil
properties than surface-feeding, vertical-burrowing
L. terrestris; (ii) both earthworms species will increase water
holding capacity because of changed soil structure, (iii) the
least effects will occur in soils with higher organic matter
contents due to the significant role that organic matter plays
in controlling soil properties regardless of earthworm activity;
and (iv) effects will bemoremarked in soils with finer textures
due to the role that clay particles play in aggregation.

Materials and methods

Soils and earthworm selection and mesocosm
establishment

Soil was collected from the top 20 cm from three fields (Big
Substation East, Valley and Copse) at the University of Leeds
commercial farm (53° 51′ 44″ N, 1° 20′ 35″W). The soils are
Cambisols (WRB 2006) and have different textures. Each soil
was air-dried, sieved at 2 mm and thoroughly homogenized to
remove any legacy effects of previous earthworm activity.

Basic soil properties and land management information are
presented in Table 1. pH was determined on 1:2.5 soil:water
mixtures (Ministry of Agriculture Fisheries and Food 1986)
using an Orion 420Aplus pH meter (Thermo Orion, USA),
soil organic matter content by loss on ignition at 350 °C
(Ayub and Boyd 1994; CEAE 2003), field dry bulk density
using soil density rings of 95 cm3 volume and soil texture
using a MasterSizer2000 laser particle size analyser
(Malvern Instruments, UK). A standard sand (SiO2, CAS
14808-60-7) was used as an in house reference material for
the particle size analyser which reported the mean grain size
distribution at the 10th, 50th and 90th percentile to within 1%
percent.

For each soil, 300 g of air-dried soil was wetted with de-
ionized water up to a gravimetric water content of 30% to
sustain earthworm activity (Berry and Jordan 2001; Butt and
Lowe 2011; Lowe and Butt 2005). The moist soil was put in
sealed laboratory bags punctured with pin holes, to prevent
earthworms from escaping but to allow the exchange of air.
The soil bags were placed in plastic beakers to support the soil
and to give irregularly shaped columns of soil of approximate-
ly 6 cm diameter and 13 cm height and an approximate density
of 0.82–1.00 g cm−3. The irregular shape of the soil columns
prevents a more accurate calculation. The soil was then stored
at 15 °C until the addition of earthworms. Lumbricus terrestris
can produce burrows of several metres depth (Edwards and
Bohlen 1996) which is clearly not possible in our relatively
short soil columns. However, L. terrestris is also found in
shallow soils, and in short soil column experiments such as
these are still observed to process the soil to produce vertical
burrows in which it rests.

Clitellate, adult earthworms of the vertical burrowing,
anecic, Lumbricus terrestris and the green morph of the hor-
izontal burrowing, endogeic, Allolobophora chlorotica spe-
cies were used in this experiment. L. terrestriswere purchased
from Blades Biological Ltd. (Edenbridge, UK), and
A. chlorotica were collected from the same fields as the test
soils and identified using the OPAL earthworm identification
key (Jones and Lowe 2009). The earthworms were rinsed with
deionized water and acclimatized in containers containing the
test soils at 15 °C in darkness. After 3 days, the viable adult
earthworms were rinsed again with deionized water, dried
with tissue paper weighed and added to the mesocosms to give

Table 1 Physical and chemical properties of soils selected for the experiment (mean ± standard deviation, n = 3 apart from for field dry bulk density
measurements where n = 2 and both measurements are given)

Field name Land use pH Organic matter (%) Field dry bulk
density (g cm−3)

Clay (%) Silt (%) Sand (%) Texture
< 2 μm 2–50 μm 50–2000 μm

Copse Arable 7.71 ± 0.10 3.41 ± 0.19 1.56, 1.54 8.44 ± 0.44 43.65 ± 2.02 47.92 ± 2.46 Loam (L)

Big Substation East Arable 7.64 ± 0.11 3.60 ± 0.22 1.38, 1.51 4.32 ± 0.13 52.12 ± 1.49 43.56 ± 1.61 Silt loam (SiL)

Valley Pasture 7.27 ± 0.05 9.59 ± 0.02 1.22, 1.14 3.08 ± 0.54 41.57 ± 6.08 55.35 ± 6.60 Sandy loam (SaL)
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either 2 L. terrestris (9.04 ± 0.52 g) or 8 A. chlorotica (2.16 ±
0.11 g) per mesocosm (n = 12 per species). Considered on a
mass of earthworm per mass of soil basis, these abundances
are far higher than those encountered in the field (Holden et al.
2019). We used these high densities in our experiments to
compensate for the relatively short time scale (40 days) of
our experiments, in order to be able to detect effects. The
mesocosms (4 replicates of control and earthworm-present
treatments for each of the three soil textures for each species)
were maintained in a controlled environment room (15 ± 1 °C
and 60 ± 7% rh) in the dark (Lowe and Butt 2005) for 40 days.
They were weighed initially and then every week with any
mass loss being corrected by addition of deionized water to
maintain a constant soil moisture content. At the end of the
experiment, earthworms were removed, rinsed with deionized
water, dried with tissue paper and weighed. The soil was di-
vided into “upper soil” (0–6.5 cm) and “lower soil” (6.5–
13 cm). Soil from the individual layers was homogenized by
gentle mixing. Multiple subsamples of damp material (<
0.5 g) were taken to give sufficient mass for WHC measure-
ment. The rest of the soil was then air-dried, and multiple
subsamples were again taken to give sufficient mass for
%WSA measurement.

Soil physical properties measurement

The percentage water stable aggregates (%WSA) and water
holding capacity (WHC) of the soils weremeasured at the start
and end of the experiment.

The %WSA was measured using bespoke wet sieving
equipment (Wet Sieving Apparatus; Eijkelkamp soil and wa-
ter Agrisearch Equipment Art no. 08.13) with a 250-μm sieve
size on 4 g of air-dried soil that was previously sieved to 1–
2 mm. Unstable aggregates were broken up and collected by
raising and lowering the soil sample into water at a rate of 34
times per minute for a period of 3 min. Material < 250 μm
passed through the sieve and was collected, oven dried at
105 °C and weighed. A dispersing solution of sodium
hexametaphosphate was then added, and the process repeated
to break up and collect the water stable aggregates, leaving
primary particles > 250 μm behind. The %WSAwas calculat-
ed, after correction for the mass of sand > 250 μm, as the
weight of water stable aggregates divided by the total weight
of aggregates (Kodešová et al. 2009; Milleret et al. 2009a).

WHC was determined following the method of ISO
11274 (2019). In brief, c. 50 g (oven dried equivalent
weight) of damp soil was placed into open tubes of
3.5 cm diameter and 5 cm length with mesh bases. The
filled tubes were placed in a container of water and allowed
to wet up by capillary action. When the soil surfaces had a
glossy appearance, the cores were removed from the water
and allowed to drain until they stopped dripping. The soil
in the cores was then gently removed and weighed. The

water holding capacity of the cores was determined as the
weight of water held in the soil cores compared with the
105 °C oven dry weight of the sample.

Statistical analysis

The change in mass of the earthworms between the start and
end of the experiment was analysed separately for L. terrestris
and A. chlorotica, using one-way analysis of variance
(ANOVA) with change in mass as a proportion of the original
mass as the factor and Bonferroni post hoc pairwise compar-
isons. As it was impossible to identify individual earthworms,
analysis was carried out on total earthwormmass per replicate.
Initial values of %WSA and %WHC were compared between
soils using one-way ANOVA and Bonferroni post hoc
pairwise comparisons. The L. terrestris and A. chlorotica ex-
periments were run at different times, generating two control
groups of data. For ease of interpretation, the post experiment
%WSA and %WHC data sets for each species were therefore
analysed separately using a three-way analysis of variance
(ANOVA) with repeated measures. Factors were soil texture,
earthworm absence/presence and upper/lower soil layer with
the upper/lower soil layer representing the repeated measure.
The relative changes in %WSA andWHC due to the presence
of earthworms were analysed using a two-way ANOVAwith
repeated measures with soil texture and upper/lower soil layer
as factors with the upper/lower soil layer representing the re-
peated measure. All computations were made using SPSS
(IBM Corp. Released 2016, version 24) with differences be-
tween different combinations of factors in the repeated mea-
sures analyses being compared using contrasts (Field 2009).
Summary ANOVA tables are presented in the Supplementary
Information. We assessed relationships between %WSA and
soil WHC for L. terrestris and A. chlorotica using linear re-
gression. Differences in the slopes and intercepts of the regres-
sion lines were tested for their significance between species
using GraphPad Prism (GraphPad, Inc. Released on
November 2017, version 7. 04).

Results

All the earthworms were recovered at the end of the experi-
ments. The mean mass of L. terrestris earthworms decreased
significantly over the course of the experiment in all three soils
whereas themass of the A. chlorotica only decreased in the loam
(L) and silt loam (SiL) soils (p < 0.05) (Table 2). Mass loss was
less than the critical limit of 30% suggested to ensure the validity
of laboratory experimental results (Frund et al. 2010).

Table 3 (L. terrestris) and Table 4 (A. chlorotica) show the
%WSA at the beginning and end of the experiments. Before
the experiment began and at the end of the experiment, the
sandy loam (SaL) showed a significantly greater %WSA than
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the other two soils (p < 0.001). The addition of both earth-
worm species increased significantly the %WSA in the upper
and lower soils compared with the control (p < 0.001). There
was no significant difference between the upper and lower
soils for A. chlorotica but %WSA was greater in the upper
than the lower soils in the L. terrestris experiments
(p < 0.05). For L. terrestris, there was a significant interaction
between the soil texture and the presence/absence of earth-
worms with the increase in %WSA in the presence of earth-
worms being significantly greater in the L than the SiL and
SaL soils. For both L. terrestris and A. chlorotica, there was no
significant difference in the relative increase in %WSA be-
tween the lower and upper layers but the relative increases
were greatest for the L and least for the SaL soils (p < 0.05).

WHC of the soils at the start and end of the experiments is
shown in Table 3 (L. terrestris) and Table 4 (A. chlorotica).
Before the experiment began and at the end of the experiment,
the SaL soil had the highest, and the L soil the lowest, WHC
(p < 0.001). The presence of L. terrestris caused a marginal
increase in WHC (p = 0.06) with the increase in WHC being
almost significantly greater in SaL relative to the SiL soil (p =
0.06). In contrast to L. terrestris, A. chlorotica significantly
increased WHC (p < 0.001) with this increase being greater in

the upper than the lower soil layers (p < 0.05). In contrast to
%WSA, there were no significant differences in the relative
increase of WHC between soils.

For each experiment, there was a statistically significant
strong (i.e. p < 0.0001, r > 0.5, Cohen 1988) positive relation-
ship between the %WSA and soilWHC (Fig. 1). Although the
strength of the correlations is greater for the A. chlorotica than
L. terrestris experiments, the slopes of the linear regressions
are not significantly different between species. However, the
intercepts of the linear regressions are significantly larger
(p < 0.0001) for A. chlorotica.

Discussion

Earthworm biomass

In our experiments, we deliberately did not feed the earth-
worms in order to encourage them to intensely process the
soil (Abbott and Parker 1981). In almost all the treatments,
the earthworms lost weight (Table 2), though weight loss was
within the acceptable range for laboratory experiments (Frund
et al. 2010). The decrease in mass of the anecic L. terrestris is

Table 3 Mean percentage of water stable aggregates (%WSA) and
water holding capacity (WHC) of upper soils and lower soils in the pres-
ence (soil + earthworms) and absence (control) of L. terrestriswithin each
soil texture. Initial soil is the soil at the start of the experiment. Data from

the same row of the same soil texture and soil depth with different super-
scripts are significantly different (p < 0.05). (n = 4 replicates, ± standard
deviations)

Soil texture Measured soil depth %WSA WHC (g g−1)

Initial soil Control Soil + earthworms Initial soil Control Soil + earthworms

Loam Upper soils 51.49 ± 5.84a 45.91 ± 6.73a 71.65 ± 3.47b 0.30 ± 0.009a 0.30 ± 0.004a 0.33 ± 0.056a

Lower soils 51.49 ± 5.84a 42.94 ± 2.80a 64.68 ± 6.01b 0.30 ± 0.009a 0.30 ± 0.014a 0.30 ± 0.007a

Silt loam Upper soils 52.04 ± 3.78a 50.31 ± 5.44a 68.30 ± 2.34b 0.35 ± 0.007a 0.33 ± 0.008a 0.35 ± 0.017a

Lower soils 52.04 ± 3.78ab 48.07 ± 6.40a 61.99 ± 3.49b 0.35 ± 0.007a 0.34 ± 0.021a 0.34 ± 0.013a

Sandy loam Upper soils 75.96 ± 3.78b 63.36 ± 3.45a 82.99 ± 1.12c 0.39 ± 0.010a 0.39 ± 0.010a 0.44 ± 0.020b

Lower soils 75.96 ± 3.78b 65.11 ± 4.32a 75.27 ± 4.93b 0.39 ± 0.010a 0.39 ± 0.029a 0.40 ± 0.017a

Table 2 Mean total L. terrestris
and A. chlorotica mass (g) at the
start and end of the experiment
and percentage mass loss (n = 4
replicates, ± standard deviations)

Earthworm
species

Soil
texture

Initial total earthworm
mass (g)

Final total earthworm
mass (g)

Average percentage
mass loss

L. terrestris Loam* 8.88 ± 0.41 6.60 ± 0.39 25.57 ± 4.43%

Silt loam* 9.18 ± 0.71 7.30 ± 0.81 20.34 ± 7.95%

Sandy
loam*

9.08 ± 0.61 7.76 ± 0.78 14.37 ± 8.25%

A. chlorotica Loam* 2.15 ± 0.05 1.56 ± 0.10 27.16 ± 6.42%

Silt loam* 2.20 ± 0.10 1.74 ± 0.09 21.04 ± 4.01%

Sandy
loam

2.16 ± 0.15 2.11 ± 0.13 1.60 ± 12.48%

*The mean difference between the initial and final mass for the given soil texture is significant at the 0.05 level
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typical and reflects their feeding preference of surface grazing
on decaying organic matter (Lavelle 1997). Although
A. chlorotica is an endogeic earthworm and feeds by consum-
ing soil, the earthworms still lost weight over the duration of
the experiment except in the sandy loam (SaL) soil which has
the highest organic matter content and therefore presumably
more available food (Table 1).

Impact of earthworms on %WSA

The addition of both earthworm species increased significantly
the %WSA of the upper and lower soils compared with the
control. Our results agree with the majority of studies on earth-
worms and aggregation (Bossuyt et al. 2005; Buck et al. 2000;
Edwards and Bohlen 1996; Flegel et al. 1998; Hamilton et al.
1988; Ketterings et al. 1997; Swaby 1950) that report an in-
crease of %WSA in the presence of earthworms, although in

these studies, it is not always clear what depth of the soil was
being inspected. Across the different soil types, L. terrestris
increased %WSA to 74 ± 7% in the upper soil but only 67 ±
7% in the lower soil compared with 53 ± 9% in the controls,
whereas for A. chlorotica there was no difference with depth
with an average value of 74 ± 11 %WSA. Despite the restricted
size of the mesocosms, this is consistent with the anecic earth-
worms’ surface casting behaviour that will result in an accumu-
lation of cast-derived aggregates in the surface layer compared
with endogeics mixing soil and making extensive burrows
filled with casts (Pérès et al. 1998; Whalen et al. 2015).

The SaL soil had the highest organic matter content of the
three soils (Table 1) and the highest values of %WSA
(Table 2). This is consistent with previous studies that show
that increased organic matter content of soils leads to better
soil aggregation (Alagöz and Yilmaz 2009; Haynes 2005).
Although the L soil has a higher content of clay-sized particles

Fig. 1 Relationships between soil water stable aggregates and soil water
holding capacity for all soil textures and for L. terrestris (blue symbols
and correlation trend) and A. chlorotica (orange symbols and correlation
trend). Filled and outline symbols indicate the presence and absence of
earthworms, respectively. Lines of best fit to the data are y = 0.002648

(0.001882–0.003414) x + 0.187 (0.1388–0.2353) and y = 0.002189
(0.001736–0.002643) x + 0.2381 (0.2085–0.2678) for L. terrestris and
A. chlorotica respectively with values in brackets indicating the 95%
confidence intervals)

Table 4 Mean percentage of water stable aggregates (%WSA) and
water holding capacity (WHC) of upper soils and lower soils in the pres-
ence (soil + earthworms) and absence (control) of A. chlorotica within
each soil texture. Initial soil is the soil at the start of the experiment. Data

from the same row of the same soil texture and soil depth with different
superscripts are significantly different (p < 0.05). (n = 4 replicates, ± stan-
dard deviations)

Soil texture Measured soil depth %WSA WHC (g g−1)

Initial soil Control Soil + earthworms Initial soil Control Soil + earthworms

Loam Upper soils 51.49 ± 5.84a 41.30 ± 8.25a 67.52 ± 3.90b 0.30 ± 0.009a 0.31 ± 0.004a 0.34 ± 0.020b

Lower soils 51.49 ± 5.84a 43.07 ± 6.57a 68.76 ± 2.39b 0.30 ± 0.009a 0.32 ± 0.011a 0.36 ± 0.015b

Silt loam Upper soils 52.04 ± 3.78a 46.65 ± 4.12a 64.93 ± 5.64b 0.35 ± 0.007a 0.36 ± 0.005a 0.41 ± 0.015b

Lower soils 52.04 ± 3.78a 47.13 ± 8.04a 67.58 ± 8.47b 0.35 ± 0.007a 0.37 ± 0.010a 0.39 ± 0.002b

Sandy loam Upper soils 75.96 ± 3.78a 73.54 ± 3.17a 87.70 ± 1.26b 0.39 ± 0.010a 0.39 ± 0.010a 0.45 ± 0.019b

Lower soils 75.96 ± 3.78a 65.25 ± 8.42a 87.66 ± 1.62b 0.39 ± 0.010a 0.40 ± 0.010a 0.43 ± 0.014b
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than the other two soils and clay particles also play an impor-
tant role in soil aggregation, these effects are less significant
than those related to organic matter for clay contents of < 10%
such as in the soils used in these experiments (Allison 1973).
Although the SaL soil had the highest values of %WSA, the
largest relative increase in %WSAwas seen for the L soil, and
the smallest increase in the SaL soil. This suggests that the
contribution of earthworms to aggregation is more important
in either or both lower %OM or higher %clay particle soils
(Fig. 2). This could be because the contribution of earthworm
mucus to organic binding agents (Knowles et al. 2016;
Schomburg et al. 2018) or the stimulation of fungal activity
via the increased supply of soluble organic compounds
(Montecchio et al. 2015; Parle 1963; Rashid et al. 2016) is
more significant in low–organic matter soils. Alternatively, or
additionally, the earthworm activity may have a bigger impact
on aggregate formation where there are more clay-sized par-
ticles available for aggregation. Interestingly, increased
burrowing activity and cast production by endogeic earth-
worms as they process the soil for food has been observed in
soils of lower organic C content which would lead to in-
creased aggregate production (Bottinelli et al. 2017).

Although our results agree with the majority in the litera-
ture, several studies report what appear to be contrasting re-
sults, though differences in experimental design and
measurement make comparisons and explanations of
differences challenging. For example, Swaby (1950) found a
bigger earthworm impact on %WSA in organic-rich, pasture
soil but considered earthworm casts of unknown age and
produced by a different species, Allolobophora nocturna,
rather than bulk soil. Milleret et al. (2009a) found a reduction
in the %WSA in the presence of A. chlorotica but conducted
their experiment at a higher than optimum temperature for the
earthworms (Butt 1991) which could have reduced the inten-
sity of soil processing relative to our experiment and also have
impacted on microbial activities involved in the formation and
destruction of aggregates (e.g. Rashid et al. 2016; Shao et al.

2019). In addition, Milleret et al. (2009a) sterilized their soil
with gamma irradiation, resulting in the removal of microbiota
whichmay play an important synergistic role with earthworms
in soil stabilization and aggregation (Forster 1990). In another
experiment with similar conditions, Milleret et al. (2009b)
found that the presence of plants partly compensate the de-
crease in soil aggregation that A. chlorotica caused and
hypothesised that this was due to the aggregating effects of
microorganisms that fed on the C-rich exudates released by
plant roots. Zhang and Schrader (1993) and Schrader and
Zhang (1997) reported a lower or the same %WSA in earth-
worm casts obtained from the soil surface compared with the
sieved soil that was initially used to make the substrate for
their experiment. Our experimental measures are different
from this as we compared the %WSA in bulk soil that was
either worked or not worked by earthworms. The experimen-
tal designs are very different making comparison difficult. It is
possible that the pressure exerted by earthworms on the sur-
rounding soil as they move contributes to the stability of the
aggregates in the bulk soil regardless of the %WSA of the
casts and that the experimental design of Zhang and
Schrader (1993) and Schrader and Zhang (1997) prevented
this effect from being measured. In some studies (e.g.
Blanchart et al. 1997) earthworms are added to intact soils
which will have been in steady state with the previously
existing earthworm population. As aggregate formation is a
dynamic process with a constant production and destruction of
aggregates, earthworms may be seen to reduce %WSA if the
%WSA in a soil is moving to a new steady state in response to
the new earthworm community composition and abundance.
Our experiments deliberately destroyed existing soil structure
prior to the start of the experiment, which likely led to rapid
soil aggregation. In a final example of apparently contrasting
results, Shuster et al. (2000) observed a decrease in the mean
size of WSA (of 5–8-, 2–5-, 1–2-, 0.5–1-, 0.25–0.5-, < 0.25-
mm size classes) in soils following the addition of a mixture of
immature and mature L. terrestris. However, we measured

Fig. 2 A conceptual model of the
relationship between water stable
aggregate formation and soil
organic matter content in the
presence and absence of
earthworms. The dotted line is the
difference between the
earthworms absent and
earthworms present lines and
represents the enhanced
formation of aggregates due to the
presence of earthworms
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%WSA > 250 μm by mass and not whether the size of these
water stable aggregates was decreased. Although the mean
aggregate size may decrease, the total mass of aggregates
greater than > 250 μm, such as measured in our experiment,
could still increase. These contrasted results are therefore most
likely a function of experimental design and the actual mea-
surements made.

Impact of earthworms on WHC

Various studies indicate that a higher %WSA results in a higher
WHC (Basche et al. 2016; Blanchart et al. 1999; Jackson 2014;
Franzluebbers 2002; Suzuki et al. 2007; Zibilske and Bradford
2007). Similarly, in our work, linear regression of our %WSA
and WHC data (Fig. 1) showed a significant increase in the
WHC as the %WSA increases. The comparable slopes from
the regressions of the A. chlorotica and L. terrestris data reflect
a consistent relationship between increases in %WSA and
WHC regardless of earthworm species.

In contrast to the regression slopes, the significantly differ-
ent intercepts of the regression lines for the A. chlorotica and
L. terrestris data indicate a greater underlying impact onWHC
by A. chlorotica than by L. terrestris separate from any
%WSA effect. This could be due to the different burrowing
behaviour of the earthworm species. A. chlorotica produces
many tortuous small diameter burrows through the soil (Pérès
et al. 1998) which help to hold more water whereas
L. terrestris produces a smaller number of continuous and
wider diameter pores (Capowiez et al. 2015). A simple ap-
proach for verifying this would be to perform infiltration mea-
surements at different tensions and produce water release
curves for different soils that both species have processed.

Conclusion

In these experiments, we have demonstrated that the increase
in %WSA due to earthworm-processing of soil results in in-
creases in the important hydrological property WHC. Further,
although the slope for the relationship between %WSA and
WHC is the same between the two different ecotypes of earth-
worms, the intercept is not; there was an underlying difference
in the impact of the earthworms on WHC most likely due to
the differing burrowing behaviours. In this experiment, we
have used a high abundance of earthworms in a constrained
volume of soil and not provided the earthworms with an ad-
ditional food source to encourage soil processing in order to
compensate for the 40-day period of the experiment compared
with the far longer time that earthworms process soils in the
field. Nonetheless, given the importance of %WSA andWHC
in ecosystem services such as water storage by soils and water
availability to plants to support crop growth, our results are
consistent with earthworms making an important contribution

to these services. Despite the artificial nature of our experi-
ments that constrain the extent to which the different earth-
worm species can behave, our experiments demonstrate that
different ecotypes have different effects, due to their differing
lifestyles and nature of the burrows, and that effects can differ
with depth. This highlights that caution should be exercised
when generalizing about the impacts that earthworms have on
soil properties and processes. We also showed that the effects
are a function of soil organic matter which also plays an im-
portant role in aggregation and water retention and which can
have a more dominant effect than the earthworms.

To better understand the impact of earthworms on soil hy-
drology, further experiments are required that use a more re-
alistic earthworm abundance and diversity. In addition, plant
roots are known to have significant impacts on soil hydrology
(Beven and Germann 1982; Whalley and Dexter 1994), and
therefore, experiments that consider the relative impacts of
plant roots and earthworms on soil hydrology are warranted.
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