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Biological P cycling is influenced by the form of P fertilizer
in an Oxisol
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Abstract Phosphate rock (PR) is an alternative fertilizer to
increase the P content of P-deficient weathered soils. We eval-
uated the effects of fertilizer form on indicators of biological
cycling of P using an on-farm trial on a Rhodic Kandiudox in
western Kenya. Treatment plots were sampled after 13
cropping seasons of P applications as Minjingu phosphate
rock (PR) or as triple super phosphate (TSP) (50 kg P ha−1

season−1), as well as a P-unfertilized control (0 kg P ha−1

season−1). Soils (0–15 and 15–30 cm) were analyzed for mi-
crobial biomass P (Pmic), activities of acid phosphomonoester-
ase, alkaline phosphomonoesterase, and phosphodiesterase,
and sequentially extractable P fractions. P additions as
Minjingu PR yielded 299% greater Pmic than TSP at 0–15-
cm depth despite similar labile P concentrations in the two P
fertilization treatments and stimulated activities of acid phos-
phomonoesterase (+39%). When added in the soluble form of
TSP, a greater percentage of total soil P was present in
mineral-bound forms (+33% Fe- and Al-associated P).
Higher soil pH under Minjingu PR (pH 5.35) versus TSP
(pH 5.02) and the P-unfertilized treatment (pH 4.69) at 0–
15-cm depth reflected a liming effect of Minjingu PR. The

form of P fertilizer can influence biological P cycling in
weathered soils, potentially improving P availability under
Minjingu PR relative to TSP via enhanced microbial biomass
P and enzymatic drivers of P cycling.
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Introduction

Phosphorus (P) deficiency remains a key constraint to agricul-
tural productivity in weathered soils of sub-Saharan Africa
(Nziguheba et al. 2016). Ameliorating P deficiency can be
accomplished by recapitalizing soils with P inputs (Buresh
et al. 1996; Sanchez et al. 1997). Acidulated P fertilizers such
as triple super phosphate (TSP) offer soluble and rapidly avail-
able P, but access and affordability limit their use by small-
holder farmers (Jama and Kiwia 2009; Nziguheba et al. 2016).
In many parts of sub-Saharan Africa, phosphate rock deposits
are an economical alternative to TSP (Jama and Van Straaten
2006; Nandwa and Bekunda 1998). The largest high-quality
deposit of PR (107 t) in East Africa is Minjingu phosphate
rock (PR) (Van Kauwenbergh 1991; van Straaten 2002).
Though less soluble than TSP, Minjingu PR exhibits sufficient
dissolution in acid, P-deficient soils to secure comparable or
greater improvement of yields in the medium-term (>3 years)
(Szilas et al. 2007b). However, it is not known how P fertili-
zation in the form of Minjingu PR versus TSP may affect
biological cycling of soil P, which in weathered soils is con-
sidered key to plant availability and could therefore modulate
long-term response to P recapitalization strategies.

Soil microbial biomass and phosphatases are known to
influence soil P availability in acid, weathered soils (Ayaga
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et al. 2006; Cui et al. 2015; Marschner 2008). Microbial bio-
mass can serve as a reservoir of available P because microbial
immobilization of soil solution P avoids its geochemical cap-
ture (Oehl et al. 2001), and subsequent turnover of microbial
biomass enables scavenged P to become transiently available
to plants (Achat et al. 2010; Oberson and Joner 2005). Soil
phosphatases are a class of enzymes that catalyze the miner-
alization of organic P (Po) into plant-available inorganic P (Pi),
and their activity is generally stimulated under conditions of P
limitation (Nannipieri et al. 2011). Soil Po diester forms are
first hydrolyzed by phosphodiesterases, with subsequent hy-
drolysis of resulting monoester Po forms to Pi by acid and
alkaline phosphomonoesterases (Tabatabai 1994; Turner and
Haygarth 2005).

P inputs to agroecosystems are known to impact soil mi-
crobial biomass P (Pmic) and phosphatase activities, but the
potential response of these biological drivers of P cycling to
the form of P fertilizer type (e.g., phosphate rock versus TSP)
remains unknown. Since microbial biomass can rapidly incor-
porate labile P (Bünemann et al. 2004c), additions of soluble P
fertilizers such as TSP can increase Pmic in weathered soils
(Gichangi et al. 2010; Malik et al. 2012). On the other hand,
a 5-year field experiment in western Kenya found that Pmic

was not influenced by fertilization with TSP (50 kg P
ha−1 year−1) (Bünemann et al. 2004a). Characterization of
phosphatase activities in weathered soils under cultivation in
East Africa is limited to a few studies and mostly acid phos-
phomonoesterase activity (Bossio et al. 2005; Mukuralinda
et al. 2011; Radersma and Grierson 2004; Verchot and
Borelli 2005). Despite the suppression of expression of phos-
phatases by Pi (Nannipieri et al. 2011), TSP fertilization in
weathered soils in this region at low (25 kg P ha−1) and high
(250 kg P ha−1) rates did not decrease acid phosphomonoes-
terase activity (Mukuralinda et al. 2011; Radersma and
Grierson 2004). However, it is not known how activities of
acid phosphomonoesterase and additional phosphatases that
modulate P cycling may be influenced by the form of P fertil-
izer in these agroecosystems.

Limited evidence suggests that the form of P fertilizer as
Minjingu PR or TSP could influence biological P cycling in
weathered soils in the short term. For example, within three
cropping seasons, application of Minjingu PR to a weathered
soil in western Kenya increased the population of P solubiliz-
ing bacteria (PSB) by up to 90%, whereas TSP reduced the P-
solubilizing bacteria population by 46–69% (Ndungu-Magiroi
et al. 2015). Since secretion of extracellular phosphatases is
one of the P acquisition strategies employed by P-solubilizing
bacteria (Jones and Oburger 2011), Minjingu PR fertilization
may have also engendered changes in soil phosphatase activ-
ities. However, the response of Pmic and phosphatase activities
to management strategies was not characterized. Given the
short-term instability of soil P dynamics in response to P fer-
tilization in weathered soils (Beck and Sanchez 1994) and lag

effects of lowly soluble Minjingu PR on soil P (Szilas et al.
2007b), long-term studies are necessary to address how P
fertilization in the form of Minjingu PR versus TSP may
through microbial and enzymatic activities differentially im-
pact soil P cycling.

We investigated the effect of P fertilizer on indicators of
biological P cycling after 13 cropping seasons in an on-farm
trial situated on a weathered soil in western Kenya. We eval-
uated the impact of P fertilization as Minjingu PR on soil Pmic

and phosphatase activities relative to TSP, contextualized by
soil P fractions.We hypothesized that at the same recommend-
ed P fertilization rate, Minjingu PR would increase Pmic and
phosphatase activities relative to TSP.

Methods

Site description and sampling

The on-farm trial was established in 2007 in Sidada, in Siaya
County in western Kenya (34°24′E, 00°08′N) by the African
Network for Soil Biology and Fertility program (AfNet) and
was co-managed by the International Center for Tropical
Agriculture (CIAT). The trial is designed to evaluate
Minjingu PR and TSP added to maize (Zea mays)-based
cropping systems. The region experiences a mean annual tem-
perature of 23 °C and mean annual precipitation of 1800 mm
distributed over two rain seasons composed of a short rain
period (September–November) and a period of long rain
(March–June). The trial is situated on a Rhodic Kandiudox
(USDA taxonomy) or Rhodic Acric Ferralsol (WRB taxono-
my), with clay texture (578 g clay kg−1, 207 g silt kg−1,
215 g sand kg−1) and pH 5.4 at 0–30 cm depth in an adjacent
uncultivated soil profile (Jelinski, unpublished). Further de-
tails are provided by Savini et al. (2016).

Two P fertilization treatments were selected to represent
Minjingu PR and TSP at 50 kg P ha−1 season−1, a rate recom-
mended for western Kenya (KARI 1994; Kihara and Njoroge
2013). Minjingu PR contained 12.8% total P, 23% of which is
considered soluble as per neutral ammonium citrate extraction
(Savini et al. 2016). TSP contained 45% P, 90% of which is
soluble (Havlin et al. 2013). A P-unfertilized (0 kg P ha−1)
treatment was also sampled as a control. Treatment plots
(6 m × 6 m) were cropped to maize in the long rains and
common bean (Phaseolus vulgaris) in the short rains, with
tillage and weeding performed by the farmer using a hand
hoe. To highlight effects of P fertilization, all plots received
background fertilization of 60 kg potassium (K) ha−1 as mu-
riate of potash and 60 kg nitrogen (N) ha−1 as urea per season.
All fertilizers, including P, were added by hand broadcasting
as per local practices. After the 13th cropping season and prior
to soil preparation for maize planting (e.g., tillage and fertili-
zation), soils for individual treatment plots (n = 3 per

900 Biol Fertil Soils (2017) 53:899–909



treatment) were sampled by auger as a plot composite (n = 3)
at 0–15 and 15–30 cm depths.

General soil properties

Soil pH was measured in deionized water (1:5) after 30 min of
equilibration. Soil organic carbon (SOC) was determined with
an ECS 4010 CHN Analyzer (Valencia, CA). Permanganate-
oxidizable C was determined using the method of Weil et al.
(2003) as modified by Culman et al. (2012). Briefly, 2.50 g
soil was oxidized with 0.02 M KMnO4 by 2 min shaking
followed by 10-min incubation. Non-reduced permanganate
was quantified by colorimetry (550 nm).

Soil P fractions

Soil P distribution was assessed by sequential extraction.
Triplicate soil samples (2 g) were sequentially extracted
(Hedley et al. 1982; Tiessen and Moir 1993). A negative
control (no soil) and soil standard were also included.
Anion-exchange membranes (AEM; 1 × 4 cm, VWR
International, West Chester, PA) were loaded with carbon-
ate as the counterion. Soils were extracted with AEM in
deionized water by shaking for 18 h. Inorganic P (Pi) was
desorbed from the membranes by shaking for 3 h in 0.25 M
H2SO4. All other extracts were centrifuged (8000×g, 5 min)
and an aliquot decanted for analysis. For NaOH aliquots,
organic matter was precipitated with 1.2 M H2SO4 and the
precipitate was separated by centrifugation (8000×g,
15 min). Aliquots were neutralized and analyzed for Pi
and total P (Pt). Inorganic P was estimated by molybdate
colorimetry at 880 nm (Murphy and Riley 1962). Total P in
aliquots was determined by the same procedure following
acid–persulfate digestion (80 °C, 16 h) (Rowland and
Haygarth 1997). Organic P (Po) was estimated as the dif-
ference between total and inorganic P (i.e., Po = Pt–Pi). To
simplify interpretation, Hedley fractions were considered
to represent labile P (AEM-Pi + NaHCO3-Pi), Fe- and Al-
associated P (NaOH-Pi), Ca-associated P (HCl-Pi), and or-
ganic P (NaHCO3-Po + NaOH-Po) (Tiessen et al. 1983;
Turrión et al. 2007). Total soil P was estimated indepen-
dently by ashing (550 °C, 1 h) followed by acid extraction
(1 M H2SO4, 1:50 soil/extractant, 16 h) and molybdate
colorimetry (Dieter et al. 2010).

Microbial biomass P (Pmic)

Pmic was measured using sequential fumigation-extraction
according to Brookes et al. (1982). Briefly, soils were pre-
incubated for 2 weeks at 65% of water-filled pore space
(WFPS). For each soil sample (i.e., treatment plot), three types
of subsamples were processed: fumigated, non-fumigated,
and spiked with Pi. Duplicate soil samples (2 g) were treated

with chloroform gas for 18 h followed by extraction with
40-mL 0.5MNaHCO3 (pH 8.5, 1 h). Centrifugation was used
to obtain a clear supernatant (8000×g, 15 min), an aliquot of
which was used to determine Pi by molybdate colorimetry
(Brookes et al. 1982; Murphy and Riley 1962). Non-
fumigated and P-spiked subsamples were processed in the
same way as fumigated subsamples, but without chloroform
fumigation. A P spike (50 μg P g−1 soil) was used to estimate
P recovery in fumigated samples. Pmic was calculated as the
difference between fumigated and non-fumigated extractable
P and corrected for P spike recovery.

In order to evaluate the relative magnitude of soil P stored
in microbial biomass, Pmic was expressed as a percent of total
soil P. As Pmic is considered a potentially plant-available P
pool in weathered soils (Ayaga et al. 2006), the ratio of Pmic

to labile P was calculated to evaluate the relative proportions
of these two measures of potentially available P.

Soil phosphatase activities

Acid phosphomonoesterase (Enzyme Commission 3.1.3.2),
alkaline phosphomonoesterase (EC 3.1.3.1), and phosphodi-
esterase (EC 3.1.4.1) activities were assayed as described by
Tabatabai (1994), using 1 g of air-dried soil incubated for 1 h
at 37 °C in 4-mL modified universal buffer (MUB) at pH 6.5
for acid phosphomonoesterase and at pH 11.0 for alkaline
phosphomonoesterase, or in 4-mL 0.05 M Tris (2-amino-
2-(hydroxymethyl)-1,3-propanediol) buffer at pH 8.0 for
phosphodiesterase. Assays employed a final substrate concen-
tration of 0.01 M para-nitrophenyl phosphate (acid phospho-
monoesterase and alkaline phosphomonoesterase) or bis-
para-nitrophenyl phosphate (phosphodiesterase). A negative
control (no soil) and a positive control (lab soil standard) were
also included. Reactions were halted by the addition of 4-mL
0.5MNaOH to acid phosphomonoesterase and alkaline phos-
phomonoesterase assays or 4-mL 0.1 M Tris (pH 12.0) to
phosphodiesterase assays, and 1-mL 0.5 M CaCl2. Assays
were centrifuged (8000 ×g, 4 min) to remove sediment, and
para-nitrophenol (pNP) in the clear supernatant was quanti-
fied colorimetrically at 410 nm. Absorbance from the negative
controls was subtracted from absorbance of soil assays.

Statistical analyses

The effect of P fertilizer form (Minjingu PR vs TSP) on soil
properties was evaluated with pairwise t tests using Proc
TTEST in SAS v.9.4 (Cary Institute, NC). To evaluate the
effect of P-fertilization, Dunnett’s test was used to compare
response of Minjingu PR and TSP relative to the P-
unfertilized control using Proc GLM. Comparison of
Minjingu PR and TSP (t test) is reported in tables, whereas
comparisons between Minjingu PR, TSP, and P-unfertilized
treatments are reported in the text and/or in a Supplementary
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Table. Relationships among soil properties across treatments
and depths were evaluated by Pearson correlation analysis
using Proc CORR with the correlation coefficient (R) and
significance (p value).

Results

Soil properties

Soil properties showed weak differences between Minjingu PR
and TSP after 13 cropping seasons, though P inputs increased
soil pH and permanganate-oxidizable C compared to no P fer-
tilization (Table 1, Supplementary Table 1). Soil pH was ele-
vated under Minjingu PR relative to TSP at 0–15 cm depth
(p = 0.097). Though permanganate-oxidizable C did not differ
by P fertilizer form,Minjingu PR increased SOC (+10%) at 15–
30 cm depth (p = 0.069) compared to TSP, a trend that was
weaker at 0–15 cm depth (p = 0.132). Concurrent with elevated
SOC, soil C/Po was greater at 15–30 cm depth under Minjingu
PR (C/Po 226) compared to TSP (C/Po 209) (p = 0.093), and
only under Minjingu PR was significantly elevated relative to
the P-unfertilized control (Supplementary Table 1). P fertiliza-
tion usingMinjingu PR but not TSP significantly increased soil
pH relative to no P fertilization at both depths (e.g., pH 4.69 vs
5.35 at 0–15 cm, p = 0.025), and P fertilization increased
permanganate-oxidizable C by a mean of 35% at 0–15 cm
depth (p = 0.0003) (Supplementary Table 1).

Soil P pools

Soil P fractions indicated greater P availability of P added as
Minjingu PR than as TSP (Table 2). Minjingu PR yielded 89%
greater labile P at 15–30 cm depth compared to TSP

(p = 0.040). Concurrent with lower labile P, TSP additions
resulted in 33% greater Fe- and Al-associated P at 0–15 cm
depth. Organic P and Ca-associated P did not differ between P
fertilizers. Though total P was higher under TSP at 0–15 cm
depth (p = 0.045), there was no difference in total P at 0–30 cm
depth by the form of P fertilizer (p = 0.25). P fertilization for
13 cropping seasons produced significant increases in P pools
at both depths relative to no P fertilization except organic P,
which decreased at 0–15 cm depth with P fertilization.

Microbial biomass P (Pmic)

The form of P fertilizer had a significant effect on Pmic at 0–
15 cm depth (Fig. 1).. Mean Pmic was 299% greater under
Minjingu PR (23.1 μg g−1) than TSP (5.3 μg g−1). Pmic was
significantly elevated under Minjingu PR but not TSP relative
to the P-unfertilized control (2.8 μg g−1). Additionally, Pmic

represented a greater percentage of total soil P under Minjingu
PR (3.5%) than under TSP (0.8%) at 0–15 cm depth, which
was similar to no P fertilization (0.6%) (Fig. 2). The percent-
age of Pmic relative to labile P at 0–15 cm depth was greater
under Minjingu PR (Pmic/Plabile = 0.59) relative to TSP (Pmic/
Plabile = 0.13) (Fig. 3).

At 15–30 cm depth, Pmic was similar betweenMinjingu PR
(9.4 μg g−1) and TSP (6.8 μg g−1) (Fig. 1) and represented a
similar percentage of total and labile P between P fertilizer
forms (Fig. 2). At 15–30 cm depth, P fertilization increased
Pmic by 343% from 1.8 μg g−1 (P-unfertilized) to 8.1 μg g−1

(Minjingu PR, TSP) (Fig. 3). Pmic was positively correlated
with total and labile P across treatments and depths (e.g.,
Rlabile P = 0.61, p = 0.0075) (Supplementary Table 2).
Excluding TSP treatment for 0–15 cm depth revealed a stron-
ger correlation of Pmic and labile P (R = 0.91, p < 0.0001). Pmic

was positively correlated with pH (R = 0.46, p = 0.053),

Table 1 Soil properties in a
Rhodic Kandiudox in western
Kenya following 13 cropping
seasons of fertilization with
Minjingu phosphate rock (PR) or
triple super phosphate (TSP)

pH SOC (mg g−1) POXC (μg g−1) C/Po

mean se Mean se mean se mean se

0–15 cm

Minjingu PR 5.35 0.08 19.7 0.6 362 15 222 21

TSP 5.02 0.13 18.0 0.6 331 31 179 12

P-unfertilized 4.69 0.08 18.0 0.5 256 16 154 6

p 0.097 0.132 0.388 0.149

15–30 cm

Minjingu PR 5.39 0.04 19.0 0.6 279 32 226 5

TSP 5.35 0.13 17.3 0.6 263 12 209 4

P-unfertilized 5.04 0.04 17.3 0.3 255 56 183 8

p 0.790 0.069 0.642 0.093

Significance (p value) between Minjingu PR and TSP treatments was determined by pairwise t test. A P-
unfertilized treatment is included as a reference

se standard error, C/Po ratio of total C to organic P, SOC soil organic C, POXC permanganate-oxidizable C
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permanganate-oxidizable C (R = 0.48, p = 0.046) and C/Po
(R = 0.62, p = 0.0062), but not organic P.

Phosphatase activities

Activities of particular soil phosphatases were elevated under
P fertilization with Minjingu PR than with TSP (Fig. 4). At 0–

15 cm depth, acid phosphomonoesterase was 39% greater
under Minjingu PR (4.8 μmol pNP g−1 h−1) than under TSP
(3.4 μmol pNP g−1 h−1). At 15–30 cm depth, phosphodiester-
ase was elevated under Minjingu PR (1.8 μmol pNP g−1 h−1)
compared to TSP (1.4 μmol pNP g−1 h−1) (p = 0.10). Across
depths, activities of acid phosphomonoesterase and alkaline
phosphomonoesterase were positively correlated (R = 0.80,
p = 0.0017), but only alkaline phosphomonoesterase activity

Table 2 Soil P fractions (μg g−1)
in a Rhodic Kandiudox in western
Kenya following fertilization with
Minjingu phosphate rock (PR) or
triple super phosphate (TSP) over
13 cropping seasons

Labile P Organic P Fe-, Al-P Ca-P Total P

mean se mean se mean se mean se mean se

0–15 cm

Minjingu PR 38.3 3.2 89.7 6.7 143.9 8.4 3.2 0.3 663.7 9.3

TSP 46.1 2.9 100.5 1.9 191.4 11.3 2.7 0.3 717.2 16.6

P-unfertilized 2.5 0.2 117.3 2.6 63.3 2.9 1.0 0.1 454.6 6.0

P 0.092 0.16 0.004 0.31 0.045

15–30 cm

Minjingu PR 15.9 3.0 94.9 11.8 71.1 10.0 1.3 0.1 534.2 30.7

TSP 8.4 1.5 83.0 4.1 67.4 8.7 1.1 0.2 460.3 14.0

P-unfertilized 0.9 0.0 94.9 2.7 26.8 0.8 1.1 0.1 390.1 3.1

P 0.040 0.36 0.79 0.255 0.10

Labile P is the sum of anion-exchange membrane extractable Pi and sodium bicarbonate extractable Pi, organic P
is the sum of sodium bicarbonate extractable Po and sodium hydroxide extractable Po, Fe-, and Al-associated P is
sodium hydroxide extractable Pi, and Ca-associated P is hydrochloric acid extractable Pi. Significance (p value)
between Minjingu PR and TSP treatments was determined by pairwise t test. A P-unfertilized treatment is
included as a reference

se standard error, Pi inorganic P, Po organic P
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Fig. 1 Soil microbial biomass P (Pmic) in a Rhodic Kandiudox in western
Kenya following 13 cropping seasons of fertilization with Minjingu
phosphate rock (PR) or triple super phosphate (TSP) at 50 kg P ha−1
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P
m

ic
 (%

 o
f t

o
ta

l 
P

)  

0-15 cm

15-30 cm

p = 0.025

p = 0.785

Fig. 2 Soil microbial biomass P (Pmic) as a percentage of total soil P
following fertilization for 13 cropping seasons with Minjingu phosphate
rock (PR) or triple super phosphate (TSP) at 50 kg P ha−1 season−1, with a
P-unfertilized control as a reference
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was correlated with phosphodiesterase activity (R = 0.64,
p = 0.0046) (Supplementary Table 2). Activity of acid

phosphomonoesterase was higher under P fertilization (mean
+ 80%) relative to no P fertilization at 0–15 cm depth.
Phosphatase activities were positively correlated with SOC,
labile P, and total P, but not organic P. Pmic was correlated with
acid phosphomonoesterase (R = 0.69, p = 0.0015) and alkaline
phosphomonoesterase (p = 0.039), but not phosphodiesterase
(p = 0.29) (Supplementary Table 2). Across the pH range
encompassed by treatments (pH 4.69–5.35, Table 1), the ac-
tivity of alkaline phosphomonoesterase and acid phospho-
monoesterase but not phosphodiesterase increased with soil
pH (e.g., for alkaline phosphomonoesterase R = 0.61,
p = 0.0072), and a similar trend occurred for permanganate-
oxidizable C.

Discussion

Increases in microbial biomass P with phosphate rock
fertilization

The hypothesized effect of P fertilizer type on microbial
biomass P was supported by increases in Pmic under
Minjingu PR. A greater percentage of total P as Pmic under
Minjingu PR relative to TSP suggests greater availability
of P added as PR. This is consistent with higher Fe- and
Al-associated P (NaOH-Pi) under TSP, which indicates
greater geochemical capture and thus lower plant availabil-
ity of P added in the soluble form of TSP compared to less
soluble inputs such as PR (e.g., Loganathan et al. 1982;
Nziguheba et al. 1998; Rivaie et al. 2008; Zoysa et al.
2001). Increases in Fe- and Al-associated P under soluble
additions of P such as TSP have been proposed to result
from the lack of synchrony between its rapid solubilization
following application and crop P uptake (Savini et al.
2006, 2016; Zoysa et al. 2001). In addition to greater ex-
tractable available P (AEM-Pi + NaHCO3-Pi), the ratio of
Pmic to labile P indicates that a greater percentage of P
applied in the form of Minjingu PR is potentially plant-
available as Pmic (Oberson et al. 2006, 2011). Effects of
Minjingu PR on soil microbial biomass may reflect a com-
bination of low solubility P additions and liming effects
because previous studies indicate that increasing pH alone
does not necessarily lead to greater Pmic unless combined
with low solubility P such as PR (He et al. 1997).

Stimulation of phosphatase activity under P fertilization

This study demonstrates that P fertilization with PR can stim-
ulate phosphatase activity relative to more soluble fertilizer
forms such as TSP. Greater acid phosphomonoesterase activ-
ity under Minjingu PR relative to TSP could be explained by
elevated P-solubilizing bacteria populations observed after
only 3 cropping systems at our site (Ndungu-Magiroi et al.
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by para-nitrophenol assay in a Rhodic Kandiudox in western Kenya
following 13 cropping seasons of fertilization with Minjingu phosphate
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(Pmic/labile P), following fertilization for 13 cropping seasons with
Minjingu phosphate rock (PR) or triple super phosphate (TSP) at 50 kg
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2015) because P-solubilizing bacteria secrete phosphatases as
part of their P acquisition portfolio (Jones and Oburger 2011).
On the other hand, alkaline phosphomonoesterase activity did
not respond to P fertilizer form, though it is considered to be
solely of microbial origin (Nannipieri et al. 2011; Spohn and
Kuzyakov 2013a) and in weathered soils can be more sensi-
tive than acid phosphomonoesterase to management (Cui
et al. 2015). Greater activity of acid phosphomonoesterase,
but not alkaline phosphomonoesterase and phosphodiesterase,
under Minjingu PR relative to TSP, and under P fertilization
relative to no P-fertilization, may be mediated by changes in
pH. Fertilization with Minjingu PR shifted soil pH toward the
optimum for acid phosphomonoesterase activity (pH 5.2; Hui
et al. 2013), but still considerably below the pH considered
optimal for alkaline phosphomonoesterase (pH 11) or phos-
phodiesterase (pH 8) (Tabatabai 2003). In order to improve
understanding of P fertilizer impacts on soil phosphatase ac-
tivities, future work should consider the relationship between
soil phosphatase activities and genes encoding phosphatases
because this approach can identify phosphatase origins (e.g.,
microbial vs fungal) (Acuña et al. 2016; Lagos et al. 2016;
Ragot et al. 2017) and how microbial community response to
management may translate to changes in phosphatase activity
(Cui et al. 2015).

Benefits of P fertilization for microbial and enzymatic P
cycling

This study identifies positive impacts of P fertilization on the
microbial and enzyme activity components of soil P cycling in
a weathered soil. Increased Pmic following 13 cropping sea-
sons of P inputs relative to a P-unfertilized control supports
previous findings of Pmic increases following P addition to
weathered soils with low available P (e.g., Gichangi et al.
2010; Mukuralinda et al. 2011). In the P-unfertilized control,
the high ratio of Pmic to labile P demonstrates the greater
relative magnitude of Pmic as a plant-available P pool in P-
deficient soils (Oberson et al. 2006, 2011). However, a greater
percentage of total P as Pmic under Minjingu PR relative to
TSP and P-unfertilized treatments suggests greater accessibil-
ity of P from Minjingu PR to soil microbes. This may reflect
the potential of poorly soluble inputs such as Minjingu PR to
stimulate P-efficient microbial communities (see BStimulation
of phosphatase activity under P fertilization^) and greater fix-
ation of P added as TSP (i.e., Fe- and Al-associated P).

Our study additionally demonstrates that P fertilization
does not necessarily suppress phosphatase activities in weath-
ered soils. Activity of acid phosphomonoesterase is generally
thought to increase in response to P deficiency (Nannipieri
et al. 2011; Vance 2008; Vance et al. 2003), but acid phospho-
monoesterase and phosphodiesterase activities in P-fertilized
soils were higher than in the P-unfertilized (and P-deficient)
soils at our site, and higher than in P-deficient weathered soils

in a separate study also in western Kenya (Verchot and Borelli
2005). P fertilization is considered to decrease phosphatase
activity because Pi can inhibit microbial expression of these
enzymes (Nannipieri et al. 2011). For example, inverse asso-
ciations between phosphatase activity and soil Pi have been
observed in weathered soils in tropical forests (Olander and
Vitousek 2000). In contrast, at our site, Pi fractions were not
negatively correlated with phosphatase activities, consistent
with a lack of acid phosphomonoesterase suppression in
Oxisols following high P additions (250 kg P ha−1) in this
region (Radersma and Grierson 2004). Similarly, acid phos-
phomonoesterase suppression did not occur in Oxisols in
Brazil following 6 years of cumulative P application of up to
549 kg P ha−1 (Conte et al. 2002) and 797 kg P ha−1 (Costa
et al. 2013). In some cases, P fertilization at rates comparable
or greater than in this study elevated acid phosphomonoester-
ase activities, which was attributed to increased SOC (Alvear
et al. 2005), organic P (Redel et al. 2007), and microbial bio-
mass (Costa et al. 2013).

Stimulation of phosphatase activities in weathered soils by
P fertilization could reflect indirect effects of lifting P con-
straints to crop productivity. Relieving nutrient limitation fa-
vors increased crop biomass production and as a result greater
residue additions to soil (Geisseler and Scow 2014; Körschens
et al. 2013; Ladha et al. 2011). This is consistent with greater
labile and total soil C, and acid phosphomonoesterase activity
under P fertilization relative to no P-fertilization at our site.
Soil C increases from increased biomass productionmay stim-
ulate phosphatase activities because mineralization of Po can
be driven by microbial demand for C (Heuck et al. 2015;
Spohn and Kuzyakov 2013b), and C has been found to be
more limiting than P in P-fertilized weathered soils in western
Kenya (Bünemann et al. 2004a, b). P fertilization may have
also increased acid phosphomonoesterase activity via en-
hanced root biomass, because plant roots can be a major
source of this phosphatase (Nannipieri et al. 2011; Renella
et al. 2006). For example, increases in acid phosphomonoes-
terase in grassland soils receiving N and P (10 g N, P
m−2 year−1) compared to unfertilized grassland soils were
partly attributed to the nearly doubling of root biomass as a
result of fertilization (Tian et al. 2016).

Greater permanganate-oxidizable C and a trend toward
greater SOC indicate under P fertilization demonstrates
that alleviating P deficiency can positively impact SOM
cycling. This is in agreement with evidence that SOM
accrual in weathered soils is strongly limited by nutrient
scarcity (Kirkby et al. 2013). Increases in permanganate-
oxidizable C and a trend toward greater SOC with P fer-
tilization are consistent with evidence that permanganate-
oxidizable C can be an early indicator of SOM accrual
(Lucas and Weil 2012; Weil et al. 2003) and is associated
with management practices that promote SOM stabiliza-
tion (Hurisso et al. 2016).
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Liming effects of P fertilizers

Phosphate rock additions can have a moderate liming effect
(CaCO3 equivalency >50%) (Sikora 2002) due to proton con-
sumption by PR dissolution, base cation addition (Ca2+,
Mg2+), and CO3

− addition in sedimentary PRs such as
Minjingu PR (Chien 1977). At 68% CaCO3 equivalency,
Minjingu PR can be considered a low-grade liming agent
(Nekesa et al. 2005), which explains observed pH increases
under Minjingu PR additions in this and other studies across
East Africa (Szilas et al. 2007b). Assuming a CCE of 68% and
given the 12.8% P content of Minjingu PR applied at 50 kg P
ha−1 season−1, an equivalent of 3.5 t lime ha−1 had been ap-
plied at the time of sampling. Such repeated low-dose liming
(0.27 t ha−1 season−1) via Minjingu PR explains its elevation
of soil pH (pH 5.35) relative to no P fertilization (pH 4.69) and
TSP (pH 5.02). Lesser increases in pH under TSP are attrib-
utable to its negligible CaCO3 equivalency and lower Ca con-
tent (12–14%) compared to Minjingu PR (27%) (Havlin et al.
2013; Savini et al. 2016; Szilas et al. 2007b). Liming of weath-
ered soils in western Kenya can improve the availability of
native and added P by reducing exchangeable Al3+ and ele-
vating soil pH (Kisinyo et al. 2014, 2015). Thus, Minjingu PR
offers benefits beyond recapitalization of soil P for weathered
soils in western Kenya.

In addition to indirect effects on soil P cycling by liming,
additions of P in the form of Minjingu PR likely contributed
greater amounts of nutrients than TSP. The addition of these
nutrients, including Ca, Mg, K, Cu, and Zn (Szilas et al.
2007a; Van Kauwenbergh 1991), may explain greater Pmic

under Minjingu PR relative to TSP. Across field studies in
East Africa, an over-yield effect of Minjingu PR relative to
TSP at equivalent P rates is generally observed by year 3
(104%) and has been attributable in part to its greater nutrient
cation content (Szilas et al. 2007a). In addition to promoting
reductions in exchangeable acidity, Ca additions via PR rep-
resent a significant input to weathered soils (Khasawneh and
Doll 1979), which are generally Ca deficient (Njoku et al.
1987; Sale and Mokwunye 1993; Vitousek et al. 2010).
Given that Ca may be an overlooked nutrient limitation in
western Kenya (Kihara and Njoroge 2013), Minjingu PR of-
fers additional non-P benefits to farmers in this region.

Conclusion

P fertilization of an acid, weathered soil in western Kenya for
13 cropping seasons produced changes in indicators of bio-
logical P cycling depending on the form of fertilizer, Minjingu
phosphate rock (PR) or triple super phosphatase (TSP). At
equal, recommended application rates (50 kg P ha−1 sea-
son−1), labile P was greater under Minjingu PR additions,
whereas the less available Fe- and Al-associated pool was

greater with additions of the more soluble P form of TSP.
Minjingu PR yielded 299% greater Pmic compared to TSP,
and elevated acid phosphomonoesterase activity by 39%.
The liming effect and lower P solubility ofMinjingu PR likely
account for its enhancement of microbial and enzymatic com-
ponents of P cycling compared to TSP. Compared to no P
fertilization, P inputs increased Pmic and acid phosphomono-
esterase activity, despite higher labile P and lower organic P.
This study identifies (1) improvements in plant-available P
concurrent with elevated indicators of P cycling under P-
fertilization relative to no P inputs, (2) the potential of P fer-
tilizer form to alter microbial and enzymatic drivers of soil P in
the long-term, with (3) enhancement of biological cycling of P
with P fertilization using Minjingu PR relative to TSP at rec-
ommended rates in weathered soils in western Kenya.
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