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Abstract
Schrijver graphs are vertex-color-critical subgraphs of Kneser graphs having the same
chromatic number. They also share the value of their fractional chromatic number but
Schrijver graphs are not critical for that. Here we present an induced subgraph of every
Schrijver graph that is vertex-critical with respect to the fractional chromatic number.
These subgraphs turn out to be isomorphic with certain circular complete graphs. We
also characterize the critical edges within this subgraph.

Keywords Schrijver graphs · Fractional coloring · Graph homomorphism · Circular
complete graphs

Mathematics Subject Classification 05C15 · 05C60 · 05C72

1 Introduction

Kneser graphs KG(n, k) are defined for every pair of positive integers n, k satisfying
n ≥ 2k. Kneser [11] observed (using different terminology) that their chromatic
number is not more than n−2k+2 and conjectured that this upper bound is tight. This
was proved by Lovász in his celebrated paper [13] using the Borsuk-Ulam theorem.
Soon afterwards Schrijver [16] found that a certain induced subgraph SG(n, k) of
KG(n, k), now called Schrijver graph, still has chromatic number n − 2k + 2 and is
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also vertex-critical for this property, that is, deleting any of its vertices the chromatic
number becomes smaller. It is also well-known that the fractional chromatic number of
KG(n, k) is n

k , a consequence of the vertex-transitivity of these graphs and the Erdős–
Ko–Rado theorem. (For the definition of the fractional chromatic number, see Sect. 2.)
Proving a conjecture of Holroyd and Johnson [6], Talbot [19] gave the exact value of
the independence number of Schrijver graphs that easily implies, as already observed
in [17], that their fractional chromatic number is also n

k . Most Schrijver graphs are not
vertex-critical for this property (the only exceptions are the trivial cases when k = 1,
n = 2k, or n = 2k + 1, cf. Corollary 14 in Sect. 3) and this suggests the problem of
finding critical subgraphs of Schrijver graphs for the fractional chromatic number. In
this paper we present such a subgraph for all values of n and k with n ≥ 2k. These
subgraphs, that turn out to be isomorphic to the circular (also called rational) complete
graphs Kn′/k′ for n′ = n

gcd(n,k) , k
′ = k

gcd(n,k) , are vertex-transitive, so deleting any of
their vertices the value of the fractional chromatic number drops to the same smaller
value. We also locate the edges of these special subgraphs that are critical for the
fractional chromatic number and show that their deletion already results in the same
decrease of the fractional chromatic number as the deletion of a vertex.

The paper is organized as follows. In the next section we give the necessary def-
initions to define the above mentioned vertex-critical subgraph and state our main
theorem. A proposition is also given there claiming the relation to circular complete
graphs. From the latter the theorem will easily follow via known results about circular
cliques. Section3 contains the proof of the mentioned proposition thus completing the
proof of our main result. The last section is devoted to characterizing the critical edges
of circular complete graphs for the fractional chromatic number.

2 Well-Spread Subsets and the SubgraphQ(n, k)

Definition 1 For positive integers n ≥ 2k the Kneser graph KG(n, k) is defined on the
vertex set that consists of the

(n
k

)
k-element subsets of [n] = {1, . . . n} with two such

subsets forming an edge if and only if they are disjoint. A k-subset X of [n] is called
r -separated if for any two of its elements x, y we have r ≤ |x − y| ≤ n − r . The
Schrijver graph SG(n, k) is the subgraph of KG(n, k) induced by vertices representing
2-separated sets.

Notice that arranging the elements of the basic set [n] around a cycle, the r -separated
sets are exactly those any two elements of which have at least r − 1 elements on both
of the two arcs between them on this cycle.
The following theorem is a condensed version of the well-known results in [13, 16].

Theorem 1 (Lovász–Kneser theorem [13]; Schrijver theorem [16]) For every n ≥ 2k
we have

χ(SG(n, k)) = χ(KG(n, k)) = n − 2k + 2.
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Moreover, SG(n, k) is vertex-color-critical, i.e.,

∀X ∈ V (SG(n, k)) : χ(SG(n, k)\{X}) = n − 2k + 1.

The graphs KG(n, k) and SG(n, k) are widely investigated, cf. e.g. [1–4, 8–10, 12,
14, 18] to mention just a few more of the results related to them.
A graph homomorphism from graph F to graph G is an edge-preserving map f :
V (F) → V (G), that is one for which {u, v} ∈ E(F) implies { f (u), f (v)} ∈ E(G).
The existence of a graph homomorphism from F to G is denoted by F → G.

Definition 2 The fractional chromatic number χ f (G) of a graph G is

χ f (G) = min
{n
k

: G → KG(n, k)
}

.

Note that it follows from the definition that F → G implies χ f (F) ≤ χ f (G), in
particular this is always the case if F is a subgraph of G.
It is well-known that, denoting the independence number of graph G by α(G), one
always has

χ f (G) ≥ |V (G)|
α(G)

and equality holds whenever the graph is vertex-transitive, see e.g. [15] for this and
other basic facts about the fractional chromatic number.
The independence number of Kneser graphs is given by the famous Erdős–Ko–Rado
theorem.

Theorem 2 (Erdős–Ko–Rado [7])

α(KG(n, k)) =
(
n − 1

k − 1

)
.

Moreover, for n > 2k the only independent sets of this size are the ones whose vertices
represent k-element subsets that all contain a fixed element i ∈ [n].
Corollary 3 (cf. e.g. [15])

χ f (KG(n, k)) = n

k
.

Holroyd and Johnson [6] conjectured that a similar phenomenon to the one expressed
by the Erdős–Ko–Rado theorem is also true for Schrijver graphs and more generally,
for families of r -separated sets. This conjecture was proved by Talbot [19], below we
state his result only for r = 2.

Theorem 4 (Talbot [19])

α(SG(n, k)) =
(
n − k − 1

k − 1

)
.
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Moreover, for n > 2k, n �= 2k+2 the only independent sets of this size in SG(n, k) are
the ones whose vertices represent k-element subsets that all contain a fixed element
i ∈ [n]. For n = 2k + 2 other independent sets of this size exist, too.

Since |V (SG(n, k))| = n
k

(n−k−1
k−1

)
and obviously χ f (SG(n, k)) ≤ χ f (KG(n, k)) the

above theorem has the following immediate consequence already noted in [17].

Corollary 5

χ f (SG(n, k)) = n

k
.

Let Cn denote the cycle on vertex set [n] where the edges are formed by the pairs
of vertices {i, i + 1} for i ∈ {1, . . . , n − 1} and {1, n}. In particular, the vertices of
SG(n, k) are exactly the independent sets of size k in Cn . (We will refer to this cycle
as the defining cycle for SG(n, k).)

Definition 3 We call a subset U of V (Cn) well-spread if for any two sets A, B ⊆ [n]
with |A| = |B| ≤ n − 1 satisfying that both induce a (connected) path in Cn we have

||A ∩U | − |B ∩U || ≤ 1.

The induced subgraph of SG(n, k) on all well-spread k-subsets will be denoted by
Q(n, k).

Example 1 For n = 11 the set U = {1, 4, 8} is well-spread but the set U ′ = {1, 4, 9}
is not as the size of its intersection with the 4-element sets {1, 2, 3, 4} and {5, 6, 7, 8}
of consecutive vertices of Cn differs by 2.

Now we state a basic property of the graphs Q(n, k).

Proposition 6 Let n ≥ 2k and � ≥ 2 be any positive integer. Then the graphs Q(n, k)
and Q(�n, �k) are isomorphic.

Proof Let U ⊆ V (C�n) = [�n] be a well-spread set of size �k. We will show that
rotating the set U n times along the cycle C�n it will map to itself and that will easily
imply the statement.
Consider the n-element sets Ai ⊆ [�n], i ∈ [�n] defined by

Ai := {i, i + 1, . . . , i + n − 1},

where the addition is intended modulo �n (and 0 is represented by �n), that is the sets
Ai are exactly those subsets of [�n] that induce a path of length n − 1 in C�n . First we
show that the number of pairs in the set

{( j, Ai ) : i ∈ [�n], j ∈ Ai ∩U },

where j ∈ [�n] and Ai is one of the sets just defined is �kn. Indeed, since each j ∈ U
will appear in exactly n distinct Ai ’s and |U | = �k, this claim follows. Since there are
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�n distinct Ai ’s, this means that if any Ai would contain less than k elements of U ,
then some other Ai ′ should contain more than k elements of U . However, this would
imply that these two sets, Ai and Ai ′ are of the same size, both induce a path of C�n

and the size of their intersection with U differs by at least 2. This would contradict
the well-spread property of U , so this is impossible. The situation is similar if any Ai

would contain more than k elements of U , therefore we have

∀i : |Ai ∩U | = k.

This implies that we have j ∈ U if and only if j + n (mod �n) ∈ U for every
j ∈ V (C�n) (otherwise |A j ∩U | = |A j+1 ∩U | would not be satisfied). Hence, if we
have X ∈ V (Q(�n, �k)), that is X is a well-spread (�k)-subset of [�n], and we rotate
the defining cycle C�n exactly n times, then we get a vertex Y ∈ Q(�n, �k), that is
identical to X .
Let g : V (C�n) → V (Cn) be defined by

g : i �→ i − n

⌊
i − 1

n

⌋

and for a subset X = {x1, . . . , x�k} ∈
( [�n]

�k

)
we let ĝ(X) denote the set

{g(x1), . . . , g(x�k)} ⊆ V (Cn). The foregoing implies that if X ∈ V (Q(�n, �k))
then ĝ(X) ∈ V (Q(n, k)). It also follows that for X ,Y ∈ V (Q(�n, �k)) we have
ĝ(X)∩ ĝ(Y ) = ∅ ⇔ X ∩Y = ∅. The latter means that Q(n, k) ∼= Q(�n, �k) and this
proves the statement. ��
Example 2 Let n = 7, k = 3 and � = 2. Then the statement of Proposition 6 is that
Q(14, 6) is isomorphic to Q(7, 3). The vertices of Q(7, 3) are the 3-element sets

{1, 3, 5}, {2, 4, 6}, {3, 5, 7}, {4, 6, 1}, {5, 7, 2}, {6, 1, 3}, {7, 2, 4}.

The vertices of Q(14, 6) are

{1, 3, 5, 8, 10, 12}, {2, 4, 6, 9, 11, 13}, {3, 5, 7, 10, 12, 14},
{4, 6, 8, 11, 13, 1}, {5, 7, 9, 12, 14, 2}, {6, 8, 10, 13, 1, 3}, {7, 9, 11, 14, 2, 4}.

Note that the latter seven sets have the form {i, i + 2, i + 4, i + 7, i + 9, i + 11}.
Thus if we identify i and i + 7 for every i ∈ {1, 2, . . . , 7} (the mapping g defined in
the proof of Proposition 6 does essentially this by mapping both to i), then the seven
vertices of Q(14, 6) become identical to the seven vertices of Q(7, 3).

Note that Proposition 6 implies that Q(n, k) ∼= Q
(

n
gcd(n,k) ,

k
gcd(n,k)

)
, therefore when

discussing the properties of Q(n, k) we may assume that gcd(n, k) = 1.
Nowwecan already state our result on the vertex-criticality ofQ(n, k) for the fractional
chromatic number.
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Theorem 7 Assume n ≥ 2k, gcd(n, k) = 1 and let a and b be the smallest positive
integers for which ak = bn−1. The graph Q(n, k) ⊆ SG(n, k) satisfies the following
properties.

– χ f (Q(n, k)) = n
k = χ f (SG(n, k)).

– ∀U ∈ V (Q(n, k)) χ f (Q(n, k)\{U }) = a
b < n

k , that is Q(n, k) is vertex-critical
for the fractional chromatic number.

– Q(n, k) contains an induced subgraph isomorphic to Q(a, b).

For an example see Example 3 after Proposition 8.
For proving Theorem 7 it will be enough to show that if gcd(n, k) = 1 then the Q(n, k)
subgraph is isomorphic to the circular (also called rational) complete graph Kn/k that
we define next.

Definition 4 The circular complete graph Kn/k is defined as follows:

V (Kn/k) = {0, 1, . . . , n − 1}
E(Kn/k) = {{i, j} : k ≤ |i − j | ≤ n − k.}

The name circular complete graph refers to the central role of Kn/k in the following
definition.

Definition 5 The circular chromatic number χc(G) of a graph G is

χc(G) = min

{
p

q
: p ≤ |V (G)|,G → Kp/q

}
.

For detailed accounts on the circular chromatic number see the survey articles [20,
21] or Section 6.1 of the book [5].
Some important properties of the graphs Kn/k are that they are vertex-transitive, that

Kn/k is homomorphically equivalent to Kn′/k′ whenever n
k = n′

k′ and that χ(Kn/k) =⌈
n
k

⌉
(for these and further properties, see [5]). Note that the just stated homomorph

equivalence cannot be an isomorphism if n �= n′ since then |V (Kn/k)| = n �= n′ =
|V (Kn′/k′)|. This is a crucial difference between the graphs Kn/k and Q(n, k) and
shows that the condition gcd(n, k) = 1 cannot be dropped in the following statement
from which Theorem 7 already easily follows.

Proposition 8 Q(n, k) is isomorphic with the circular complete graph Kn/k whenever
gcd(n, k) = 1.

Proof of Theorem 7 from Proposition 8 It is known that the fractional chromatic number
of Kn/k is n/k since it is vertex transitive and has n vertices, while its independence
number is k (cf. [5]). This already implies the first statement of Theorem 7. It is
also known that removing any vertex x from Kn/k , the remaining graph Kn/k − {x}
is homomorphically equivalent to Ka/b, where a and b are the unique solution for
nb−ka = 1, see Lemma 6.6 in [5], where a retract of Kn/k −{x}which is isomorphic
to Ka/b is shown. This implies the second and third statements of Theorem 7. ��

123



Graphs and Combinatorics            (2024) 40:64 Page 7 of 17    64 

Example 3 Let n = 8, k = 3. Figure4 (see it at the end of Sect. 3) illustrates the
vertices of Q(8, 3) and its isomorphism with K8/3. The values of a and b as defined
in Theorem 7 will be a = 5, b = 2. Deleting, say vertex X0 = {1, 3, 6} (cf. Figure4
for the labeling of the vertices as Xi ’s) the remaining graph admits a homomorphism
to its subgraph induced by the vertices X2 = {3, 5, 8}, X3 = {1, 4, 6}, X4 = {2, 5, 7},
X5 = {3, 6, 8}, X6 = {1, 4, 7} which is isomorphic to Q(5, 2) ∼= K5/2 ∼= C5 having
fractional chromatic number 5/2.

Thus our main task is to prove Proposition 8. This is done in the next section.

3 Q(n, k) and Kn/k

Our argument will need the following alternative characterization of well-spread k-
subsets.

Lemma 9 Let U ⊆ V (Cn) be fixed and let A, B ⊆ V (Cn) be any two sets inducing a
path in the graph Cn both starting and ending with vertices of Cn that belong to U.
The subset U ⊆ V (Cn) is well-spread if and only if for any two such sets A, B that
also satisfy |A ∩U | = |B ∩U | we have

||A| − |B|| ≤ 1.

Proof Assume to the contrary that for two sets A, B as in the statement ||A| − |B|| ≥
2 and w.l.o.g. assume that |A| − 2 ≥ |B|. Then, we can modify the subset A by
removing its two extremal (that is starting and ending) vertices and |A| − |B| − 2
more vertices from one end. This way we obtain a path A′ for which |A′| = |B| but
||A′ ∩U | − |B ∩U || ≥ 2 which means that U is not well-spread by Definition 3.
For the other direction suppose that U is not well-spread. Then there exist A, B ⊆
V (Cn) both inducing a path in Cn for which |A| = |B| but ||A ∩U | − |B ∩U || ≥ 2.
W.l.o.g. assume, that |A∩U | ≥ |B ∩U |+2. We may assume that A induces a path in
Cn that both starts and ends with elements of U because otherwise we can make both
A and B shorter so that |A ∩ U | does not change while |B ∩ U | may only become
smaller, so the relations |A ∩ U | ≥ |B ∩ U | + 2 and |A| = |B| remain valid. Now
extend B at both of its ends until it will contain a new element ofU at both ends, that is
we obtain a B ′ which induces a path ofCn that both starts and ends with elements ofU
and intersectsU in |B ∩U |+ 2 elements. If this number is still less than s := |A∩U |
then extend B ′ further (on one end) to make it a similar path containing exactly s
elements of U . Since in the first step we extended B at both ends we certainly have
|B ′| ≥ |A| + 2, so A and B ′ are two sets satisfying the conditions in the statement for
which ||A| − |B ′|| ≤ 1 does not hold. This completes the proof. ��
Example 4 Let n = 11 and U = {1, 4, 8} which is easy to check to be well-spread
according to Definition 3. Also, if A = {1, 2, 3, 4} and B = {4, 5, 6, 7, 8}, then
they satisfy the conditions in Lemma 9 and also satisfy ||A| − |B|| ≤ 1. On the
other hand, U ′ = {1, 4, 9} is not well-spread as we already have seen in Example 1
as its intersection with the 4-element sets {1, 2, 3, 4} and {5, 6, 7, 8} differs by 2.
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Fig. 1 This figure shows sets U and U ′ along with the sets A, B and B′ described in Example 4

Accordingly, the sets A = {1, 2, 3, 4} and B ′ := {4, 5, 6, 7, 8, 9} satisfy |A ∩ U ′| =
|B ′∩U ′|, they both start and endwith elements ofU , but do not satisfy ||A|−|B ′|| ≤ 1.
(See Fig. 1 for an illustration.)

Note that a set U ⊆ V (Cn) need not be 2-separated for being well-spread. Moreover,
the following observations hold for U and U := V (Cn)\U .

Observation 1 U is well-spread if and only if U is well-spread.

Proof If A, B ⊆ V (Cn), |A| = |B| and both of them induce a path, then

||A ∩U | − |B ∩U || = ||(|A| − |A ∩U |)| − |(|B| − |B ∩U |)|| = ||B ∩U | − |A ∩U ||,

so ||A ∩U | − |B ∩U || ≤ 1 is equivalent to ||A ∩U | − |B ∩U || ≤ 1. ��
Observation 2 If U is well-spread and gcd(n, |U |) = 1 (and n > 2) then exactly one
of U and U is a 2-separated set.

Proof Assume U is well-spread, then so is U as well by Observation 1. If |U | =
|U | = n/2 (in which case both |U | and |U | are 2-separated, alternatingly containing
the vertices of Cn), then gcd(n, |U |) = n/2 �= 1. So w.l.o.g. U has less than n/2
elements. Then U must contain two adjacent vertices of the cycle Cn , say u1 and
u2. If U would also contain two adjacent vertices of Cn , say u1 and u2 then taking
A = {u1, u2} and B = {u1, u2}we would have two sets with |A| = |B| = 2 for which
|A ∩U | = 2 and |B ∩U | = 0, so U cannot be well-spread, a contradiction. ��
In what follows we denote by fi the i-fold clockwise rotation of the defining
cycle. In particular, for j ∈ V (Cn) we let fi ( j) = i + j , where addition is
meant modulo n and 0 is represented by n. For a set X = {x1, . . . , xh} ⊆ V (Cn)

fi (X) = { fi (x1), . . . , fi (xh)}.
Lemma 10 Let U ,W ⊆ V (Cn) be two well-spread sets of the same size k. Then there
is a bijection between the elements of U and W that is given by a rotation of the cycle
Cn. The graph Q(n, k) is vertex-transitive for any n and k and if gcd(n, k) = 1 then
|V (Q(n, k))| = n.

Proof Let U be a well-spread set of size k on the cycle Cn . If gcd(n, k) �= 1 then
we have already seen in the proof of Proposition 6 that every well-spread set maps to
itself when we rotate the defining cycle Cn by n

gcd(n,k) elements. In particular, there
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are only |V (Q( n
gcd(n,k) ,

k
gcd(n,k) ))| distinct well-spread subsets of V (Cn) and they

behave exactly as the well-spread sets we obtain on V (C n
gcd(n,k)

) when identifying

every element of V (Cn) that are n
gcd(n,k) distance apart. This means that we may

assume, that we do from now on, that gcd(n, k) = 1.
A pair x, y ∈ U will be called U -consecutive if one of the arcs between them does
not contain any other z ∈ U . By Lemma 9 if x, y ∈ U are U -consecutive, then x
and y should be q0 := ⌊ n

k

⌋
or

⌊ n
k

⌋ + 1 distance apart on V (Cn), that is, they are
separated by q0 − 1 or q0 other elements of the cycle. If n = q0k + r1 then we have
exactly r1 U -consecutive pairs whose distance is q0 + 1 and k − r1 U -consecutive
pairs that have distance q0. Let U = {x1, x2, . . . , xk}, where the indices are chosen
so that the pair formed by xi and xi+1 is U -consecutive for all i ∈ {1, . . . , k − 1}
(and the indices increase as we go along the cycle Cn in the clockwise direction).
Let (a1, a2, , . . . , ak) be the sequence of numbers that denote the distances of U -
consecutive elements, that is, ai is the distance of xi+1 from xi (in the clockwise
direction) for each i ∈ {1, . . . , k−1} and ak is the (also clockwise) distance of x1 from
xk . We identify two sequences (a1, . . . , ak) and (b1, . . . , bk) if one can be obtained
from the other by cyclically permuting its elements, that is, if (a1, a2, . . . , ak) =
(bi+1, bi+2 . . . , bk, b1, . . . , bi ) for some i and call it the placement pattern of U . In
case U has only 1 element, we consider its placement pattern to be (n). Notice that
if two k-element subsets U and W of V (Cn) have the same placement pattern then
they must be rotations of each other, so to prove the first statement of the Lemma it is
enough to prove that any two well-spread k-subsets of V (Cn) should have the same
placement pattern. This is what we do next.
Remove q0 − 1 vertices of Cn from the arcs between every pair of U -consecutive
elements. This way we obtain a shorter cycle Cn−(q0−1)k on which U is still well-
spread and U = V (Cn−(q0−1)k)\U is also well-spread by Observation 1. On this
shorter cycleU is not 2-separated any more (since there wereU -consecutive elements
in U separated by exactly q0 − 1 other elements that are now removed), so U is a
2-separated set by Observation 2. Using the notation n1 := n − (q0 − 1)k = k + r1
we have |U | = n1 − |U | = r1 and the U -consecutive elements of U are separated

by q1 :=
⌊
k+r1
r1

⌋
or by q1 − 1 elements of U . Now performing the previous removal

process with Cn1 in the place of Cn and its r1-element subset U1 := U in place of
U is essentially performing a second step of the Euclidean algorithm with k + r1 and
r1 (instead of k and r1 but this is not an essential difference since gcd(k + r1, r1) =
gcd(k, r1) = gcd(n, k) = 1). This means that now we remove q1 − 1 elements of
the current cycle between any two U1-consecutive elements of U1. That results in a
cycle Cn2 of length n2 := n1 − |U1|(q1 − 1) = n1 − (q1 − 1)r1 and we have U1 as
its subset that is not 2-separated any more (since it did have U1-consecutive elements
separated by exactly q1−1 other elements). Thus by Observation 2U2 := V (Cn2)\U1
is 2-separated. It has size n2 − |U1| = n1 − q1r1 =: r2, that is, n2 = r1 + r2 and
we clearly have gcd(r1 + r2, r2) = gcd(r1, r2) = 1. We can go on iterating this
process. LetUi be a 2-separated well-spread set on Cni withUi -consecutive elements
having distance qi and qi + 1 on V (Cni ). We remove qi − 1 elements not belonging
to Ui between any two Ui -consecutive elements of Ui . This way we obtain the cycle
Cni+1 with ni+1 = ni − |Ui |(qi − 1), and assuming gcd(ni , |Ui |) = 1 we will have
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gcd(ni+1, |Ui |) = 1. Define Ui+1 := V (Cni+1)\Ui . Then Ui+1 is 2-separated on
Cni+1 and gcd(ni+1, |Ui+1|) = 1 also holds, so we can continue until we will arrive
to a situation where we have a cycle Cm for somem = nh and our current 2-separated
set Uh will have only gcd(n, k) = 1 element. This process is illustrated on Fig. 2 for
n = 14, k = 5.
We can place the remaining 1-element set on our final cycle Cm into m different
points, but the m different sets we can get this way are obviously just rotations of
each other. In other words, their placement pattern is the same for every possible
choice. Now observe that our removal process was completely deterministic, thus so
is also its reversed process. This means that if at every step we make a note of how
many elements were removed between two Ui -consecutive elements of the current
Ui on Cni (these are simply the numbers qi − 1) to obtain the shorter cycle Cni+1

and Ui+1 = [ni+1]\Ui , then getting back Ui on Cni from Ui+1 is also determined. It
simply means that we should put back the appropriate number of removed elements
between any pair of Ui -consecutive elements of Ui on Cni+1 . (This is also illustrated
on Fig. 2 if we follow the three pictures from right to left.)
The foregoing implies that if the placement pattern of Ui+1 is uniquely determined,
then so is the placement pattern of Ui . As we have seen the placement pattern of our
final 1-element set Uh is uniquely determined, thus the placement pattern of U itself
on the original Cn is also uniquely determined. This proves the first statement in the
Lemma and implies |V (Q(n, k))| ≤ n.
We still have to prove the two statements in the last sentence of the Lemma, that is that
gcd(n, k) = 1 also implies |V (Q(n, k))| = n from which vertex-transitivity follows
also for the other cases via Proposition 6.
If U is well-spread, then so is fi (U ), so the latter is also a vertex of Q(n, k). Let t be
the smallest positive integer i for which fi (U ) = U for some vertexU ∈ V (Q(n, k)).
Since we have t ≤ n, it is enough to prove that if gcd(n, k) = 1, then t cannot be
smaller than n. Thus we assume gcd(n, k) = 1 and first we show that t is a divisor of
n. Indeed, let n = �t + r , where r < t . Then for some vertex U we have f�t (U ) = U
and fr (U ) = fr ( f�t (U )) = fn(U ) = U implying r = 0 by the minimality of t . Thus
t divides n.
Now we show that � = n

t also divides k. Assume ft (u1) = us . Then we must
have ft (ui ) = ui+s−1 for every i ∈ {1, . . . , k} (addition in the indices intended
modulo k with k identified to 0) otherwise we could not have ft (U ) = U . Therefore
u1 = fn(u1) = f�t (u1) = u1+�(s−1) showing �(s − 1) = k meaning that � divides
k. (Here we used that fn “winds around” Cn exactly once.) Since � also divides n, it
should be 1, therefore t = n. ��
The following Corollary is essentially implicit already in the proof of the previous
Lemma, yet we state it separately for further reference.

Corollary 11 If gcd(n, k) = 1 then for every X ,Y ∈ V (Q(n, k)) there is a unique
rotation of Cn that maps X to Y .

Proof We have |V (Q(n, k))| = n, where the vertices can only be different by some
rotation and we have exactly n possible rotations for each vertex. ��
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Fig. 2 The process in the proof of Lemma 10 performed for n = 14, k = 5. In the first picture we see the
defining cycle C14 where the elements of a well-spread 5-subset U are illustrated by empty circles. The
second picture shows the situation after removing one of the one or two elements we have between any pair
ofU -consecutive elements ofU . This results in the cycle C9 of the second picture where the empty circles
still denote the elements ofU , while the elements ofU1 = [9]\U are shown by the remaining 4 black dots.
Then we remove one element of the original set U from between any pair of U1-consecutive elements of
U1 to obtain the third picture with Cn2 = C5 and the 1-element set U2

Lemma 12 Let gcd(n, k) = 1 and X ,Y ∈ V (Q(n, k)) be such that XY /∈ E(Q(n, k)),
that is, X ∩Y �= ∅. Let f : V (Cn) → V (Cn) be the unique clockwise rotation moving
X to Y and let i be an element of X ∩ Y . Then the number of elements of Y on the
arc of Cn between i and f (i) (moving from i to f (i) in the clockwise direction) is
independent of the choice of i ∈ X ∩ Y .

Proof Let i, j ∈ X ∩ Y and let A and B be the arcs of Cn between i and f (i) and
between j and f ( j), respectively (i, f (i) and j , f ( j) included). We obviously have
|A| = |B|. Assume to the contrary of the statement that w.l.o.g. |A∩Y |+1 ≤ |B∩Y |.
Add the minimal number of consecutive vertices to A fromCn in the same (clockwise)
direction to get A′, such that |A′ ∩ Y | = |B ∩ Y |. As Y ∈ V (SG(n, k)), we have that
Y is a 2-separated set. So, since A ended with f (i) ∈ Y , |A′| ≥ |A| + 2 = |B| + 2.
Since A′ and B are arcs starting and ending with elements of Y and also containing
the same number of elements of Y , this gives a contradiction by Lemma 9 with the
well-spreadness of Y . ��
Definition 6 Under the conditions of Lemma 12 we call vertex Y ∈ V (Q(n, k)) a
right j-jumper of vertex X ∈ V (Q(n, k)) if the number of elements of Y on the arc
of Cn strictly between i and f (i) for some i ∈ X ∩ Y (moving from i to f (i) in the
clockwise direction) is j − 1.

Note that by Lemma 12 the previous definition is meaningful as it does not depend on
the choice of i ∈ X ∩ Y .

Example 5 Let n = 24, k = 7. Then X = {1, 4, 8, 11, 15, 18, 22} and Y =
{1, 5, 8, 12, 15, 18, 22} are two intersecting well-spread subsets of [24], therefore two
non-adjacent vertices of Q(24, 7). The unique rotation that moves X to Y is f14, the
14-fold clockwise rotation of the defining cycle. In particular, it maps element 1 to 15
and Y has three other elements on the arc between these two, so Y is a right 4-jumper
of X . There is one more right 4-jumper of X , namely Z = {4, 7, 11, 14, 17, 21, 24}.
We have Z = f13(X), in particular, element 4 is moved to 17 and there are three other
elements of Z on the clockwise arc connecting 4 to 17. (See Fig. 3 for an illustration.)

Corollary 13 If gcd(n, k) = 1 then the degree of every vertex in Q(n, k) is n−2k+1.
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Fig. 3 This figure shows the well-spread set X = {1, 4, 8, 11, 15, 18, 22} in the defining cycleC24 together
with its two right 4-jumpers Y and Z as discussed in Example 5. The elements 1 ∈ X and 15 ∈ Y are
darkened on the first pair of pictures to emphasize that 1 will be mapped to 15 by the unique rotation moving
X to Y . Similarly, 4 ∈ X and 17 ∈ Z are darkened in the second pair of pictures, because the unique rotation
moving X to Z maps 4 to 17

Proof We show that each vertex is non-adjacent to exactly 2k − 2 vertices different
from itself from which the statement follows. By vertex-transitivity it is enough to
show this to an arbitrary vertex X ∈ V (Q(n, k)).
If Y is another vertex for which {X ,Y } /∈ E(Q(n, k)), then there is some u ∈ X∩Y , so
Y is a right j-jumper of X for some j . Since any two vertices of Q(n, k) are rotations of
each other, we know that Y = fi (X) for some i . We claim that if gcd(n, k) = 1 and j
is fixed then there are exactly two distinct values i can take in the set {1, 2, . . . , n−1}.
Indeed, by Lemma 9 the length of the clockwise arc from u to fi (u) can take only two
different values (differing by 1) and if gcd(n, k) = 1 then two such distinct values
exist indeed. (Otherwise for some 0 < i < n and U ∈ V (Q(n, k)) we would have
fi (u) ∈ U for every u ∈ U implying fi (U ) = U . But we have already seen in the
proof of Lemma 10 that this is impossible if gcd(n, k) = 1.) Lemma 12 implies that
j will not depend on the choice of u ∈ X ∩ Y which also implies that we cannot get
the same fi for two different j’s. This means that the number of non-neighbors of an
X ∈ V (Q(n, k)), not counting X itself, is exactly twice the number of possible values
of j , that is 2(k − 1) as claimed. ��
Now we show that SG(n, k) itself is critical for the fractional chromatic number only
in the cases already mentioned in the Introduction.

Corollary 14 We have Q(n, k) = SG(n, k) if and only if k = 1, n = 2k, or n = 2k+1.
In particular, SG(n, k) is vertex-critical for the fractional chromatic number in exactly
these cases.

Proof We know from Schrijver’s theorem, that χ(SG(n, k)) = n − 2k + 2. By Corol-
lary 13 this is exactly one more than the (maximum) degree of Q(n, k). Thus, since
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SG(n, k) is connected, Brooks’ theorem implies that in case SG(n, k) = Q(n, k) we
must have that SG(n, k) is a complete graph or an odd cycle. This happens only in the
cases listed in the statement and in those cases we indeed have Q(n, k) = SG(n, k).
��
Now we have all the necessary lemmas to prove that our Q(n, k) graph is isomorphic
to the circular complete graph Kn/k whenever gcd(n, k) = 1.

Proof of Proposition 8 As |V (Q(n, k))| = |V (Kn/k)| = n and in both graphs each
vertex has degree n − 2k + 1 it is enough to show a bijection between the vertex sets
that maps non-adjacent vertices to non-adjacent vertices.
Fix a vertex X0 ∈ V (Q(n, k)) and let for every i ∈ {1, . . . , n − 1} Xi = fi (X0). Let
ϕ : V (Q(n, k)) → V (Kn/k) be defined by

ϕ : Xu �→ uk (mod n)

This is a one-to-one function since gcd(n, k) = 1. Now look at Xu �= Xv arbitrary
non-adjacent vertices in Q(n, k). Let � := |u − v| be their distance measured in
rotations. If they are not adjacent, then one of them must be a right j-jumper of the
other for some j ∈ {1, . . . , k − 1}. Since all right j-jumpers in Q(n, k) have to be
either � or � − 1 rotations apart, or they all have to be � or � + 1 rotations apart one of
the equations (k − x)� + x(� + 1) = jn or (k − x)� + x(� − 1) = jn has an integral
solution with 0 < x < k. (This is because if we consider the clockwise arc from each
z ∈ Xu to the z′ ∈ Xu for which this arc contains j elements of Xu including z′ but
excluding z, then we cover Cn exactly j times.) That means that k�must belong to the
same congruence class modulo n as x or −x , meaning that in the image the vertices
uk (mod n) and vk (mod n), whose distance is |u − v|k = �k, should be either less
than k, or more than n − k apart, i.e., they are indeed non-adjacent in Kn/k . ��
Example 6 Let n = 8, k = 3. The vertices of Q(n, k) are the sets {1, 3, 6}, {2, 4, 7},
{3, 5, 8}, {1, 4, 6}, {2, 5, 7}, {3, 6, 8}, {1, 4, 7}, {2, 5, 8}. Choosing X0 to be {1, 3, 6}
the mapping given in the proof of Proposition 8 above sends the above vertices into
vertices 0, 3, 6, 1, 4, 7, 2, 5 of K8/3, respectively. Vertices belonging to disjoint sets in
V (Q(8, 3)) are mapped to adjacent vertices of K8/3. Since both graphs are 3-uniform,
this shows that they are isomorphic. (For an illustration see Fig. 4.)

With the above we have completed the proof of Theorem 7. The following is an easy
consequence of Proposition 8.

Corollary 15 For all n ≥ 2k we have

χ(Q(n, k)) =
⌈
n

k

⌉
.

Proof From Proposition 8 and the properties of the circular complete graphs it follows
that

χ(Q(n, k)) = χ(Kn′/k′) =
⌈
n′

k′

⌉
=

⌈
n

k

⌉
,
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Fig. 4 This figure shows how the sets Xi are mapped to the vertices of K8/3 as described in Example 6

where n′ = n
gcd(n,k) , k

′ = k
gcd(n,k) . ��

Note that Corollary 15 gives a second proof for Corollary 14 as Q(n, k) = SG(n, k)

implies the equality of their chromatic number and n − 2k + 2 =
⌈
n
k

⌉
also implies

that we must have n = 2k, n = 2k + 1 or k = 1.

4 Critical Edges

Here we are going to prove a strengthening of the second statement of Theorem 7.

Definition 7 An edge {i, j} ∈ E(Kn/k) of the circular complete graph Kn/k is called
a shortest edge if |i − j | = k or |i − j | = n − k.

We remark that in terms of Q(n, k) a shortest edge of Kn/k (when gcd(n, k) = 1)
belongs to one that connects a vertex X ∈ V (Q(n, k)) to a vertex that can be obtained
by one rotation along the defining cycle. This can be read out from the proof of
Proposition 8.

Theorem 16 An edge of Kn/k is critical for the fractional chromatic number if and
only if gcd(n, k) = 1 and e is a shortest-edge. The same statement holds also if we
change the word “fractional” to “circular” in the previous sentence. More precisely,
if gcd(n, k) = 1, e ∈ E(Kn/k) and a, b are defined as in Theorem 7 then

χ f (Kn/k\{e}) = χc(Kn/k\{e}) =
{ a

b if e is a shortest edge
n
k otherwise.

Proof For both parameters χ f (Kn/k) = χc(Kn/k) = n
k is a trivial upper bound and

χ f (Ka/b) = χc(Ka/b) = a
b is a lower bound, because Ka/b is a subgraph of Kn/k
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(see Lemma 6.6 in [5]). It is well-known that χ f (G) ≤ χc(G) holds for any graph
G (cf. [5]), so it is enough to prove that if gcd(n, k) > 1 or e is not a shortest
edge then χ f (Kn/k\{e}) ≥ n

k , while if gcd(n, k) = 1 and e is a shortest edge then
χc(Kn/k\{e}) ≤ a

b .

If gcd(n, k) > 1 then Kn/k is homomorphically equivalent to Kn′/k′ for n′ =
n

gcd(n,k) , k
′ = k

gcd(n,k) and since |V (Kn′/k′)| = n′ < n = |V (Kn/k)| in this case,
Kn/k cannot have any critical edges. Thus from now on we assume gcd(n, k) = 1.
It is well-known that the independence number α(Kn/k) = k (see this as a Claim
within the proof of Theorem 6.3 in [5]). One can also easily show that if n > 2k
(and for n ≥ 2k, gcd(n, k) = 1 this is always the case) the only independent sets
of Kn/k with size exactly k consist of k cyclically consecutive elements. That is, a
largest independent set must have the form {i, i + 1, . . . , i + k − 1}, where addition
is intended modulo n. Indeed, if S is an independent set in Kn/k having size k and
j ∈ S then S ⊆ { j − k + 1, j − k + 2, . . . , j, j + 1, . . . , j + k − 1} and since
∀h ∈ {1, . . . , k − 1} : { j − h, j − h + k} ∈ E(Kn/k), |S| = k implies that exactly one
of the vertices j−h and j−h+kmust belong to S for every h ∈ {1, . . . , k−1}. If Swas
not a set of cyclically consecutive vertices, then we must have a h ∈ {2, . . . , k − 1}
for which j − h ∈ S and j − h + 1 /∈ S. Then |S| = k, j − h + 1 /∈ S implies
j − h + k + 1 ∈ S by the foregoing. However j − h and j − h + k + 1 are adjacent
in Kn/k (whenever n > 2k) contradicting that S is an independent set.
Sinceχ f (G) ≥ |V (G)|

α(G)
and for Kn/k wehave equality because Kn/k is vertex-transitive,

χ f (Kn/k\{e}) < χ f (Kn/k) is possible only if α(Kn/k\{e}) > α(Kn/k) = k. This
requires that e = {x, y} for two vertices x, y for which there exists a setU ⊆ V (Kn/k)

of size |U | = k − 1 for which x, y /∈ U and both U ∪ {x} and U ∪ {y} are k-element
independent sets of Kn/k . Since k-element independent sets are formed by cyclically
consecutive elements, thismeans that w.l.o.g. wemust haveU = {x+1, . . . , x+k−1}
and y = x + k, in which case {x, y} is a shortest edge.
What is left to prove is that if gcd(n, k) = 1 and e = {x, x + k} is a shortest
edge then we have χc(Kn/k\{e}) ≤ a

b . To show this we give a homomorphism from
Kn/k\{e} to Kn/k\{x}. By Lemma 6.6 in [5] we know that a retract of Kn/k\{x} is
isomorphic to Ka/b, so by transitivity of the existence of homomorphisms we get that
Kn/k\{e} → Ka/b. Let f : V (Kn/k\{e}) → V (Kn/k\{x}) be the function f (x) =
x + 1 and f (i) = i ∀i ∈ [n]\{x}. Since the neighborhood of x in V (Kn/k\{e}) is
{x + k + 1, . . . , x + n − k} which is a subset of {x + k + 1, . . . , x + n − k + 1},
the neighborhood of x + 1 in V (Kn/k\{e}) and also in V (Kn/k\{x}), f is indeed a
homomorphism. ��
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