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Abstract
An internal or friendly partition of a graph is a partition of the vertex set into two
nonempty sets so that every vertex has at least as many neighbours in its own class
as in the other one. It has been shown that apart from finitely many counterexamples,
every 3, 4 or 6-regular graph has an internal partition. In this note we focus on the
5-regular case and show that among the subgraphs of minimum degree at least 3
of 5-regular graphs, there are some which have small intersection. We also discuss
the existence of internal partitions in some families of Cayley graphs, notably we
determine all 5-regular Abelian Cayley graphs which do not have an internal partition.

Keywords Internal partitions · Friendly partition · Cohesive set · Satisfactory
partition

1 Introduction

An internal or friendly partition of a graph is a partition of the vertices into two
nonempty sets so that every vertex has at least as many neighbours in its own class as
in the other one. The problem of finding or showing the existence of internal partitions
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in graphs has a long history. The same concept was introduced by Gerber and Kobler
[13] under the name of satisfactory partitions, while Kristiansen et al. [17] considered
a related problem on graph alliances. A survey of Bazgan et al. [4] describes early
results on the area and discusses the complexity of the problem as well as how to find
such partitions. Let us denote by dG(v) the degree of vertex v in graph G. For a set
U ⊂ V (G), dU (v) denotes the number of neighbours of v in U .

Stiebitz [24] proved that for every pair of functions a, b : V → N
+ such that

dG(v) ≥ a(v) + b(v) + 1, ∀v ∈ V , there exists a partition of the vertex set V (G) =
A ∪ B, such that dA(v) ≥ a(v), ∀v ∈ A and dB(v) ≥ b(v), ∀v ∈ B. This confirms
a conjecture of Thomassen [25] in a strong form. Kaneko proved [15] that if G is
triangle-free, then dA(v) ≥ a(v), ∀v ∈ A and dB(v) ≥ b(v), ∀v ∈ B can be
satisfied even with a, b : V → N

+ such that dG(v) ≥ a(v) + b(v), ∀v ∈ V . This
also implies that triangle-free Eulerian graphs have internal partitions, and reveals
that the difficulty of the problem is fairly different for regular graphs having odd or
even valency (which means the common degree of the vertices in a regular graph).
The condition dG(v) ≥ a(v) + b(v), ∀v ∈ V cannot be assumed in general, since
there are graphs, e.g. K2n which has no partition satisfying dA(v) ≥ a(v),∀v ∈ A
and dB(v) ≥ b(v),∀v ∈ B. Likewise, there exist infinitely many graphs having no
internal partitions, e.g. K2n and K2n+1,2n+1. However, several large classes of graphs
have been shown to have internal partitions. Diwan proved [8] that if a graph of girth at
least 5 has minimum degree at least a+b−1, then its vertex set has a suitable partition
A ∪ B with minimum degrees δG|A ≥ a and δG|B ≥ b, on the graph induced by A
and B, respectively. Moreover, Ma and Yang [20] showed that in the last statement of
the theorem, it suffices to assume that G is C4-free. Note however that graphs having
internal partitions do not have a forbidden subgraph characterization [23].

The main goal of this paper is to make a contribution in the case of regular graphs.
DeVos posed the following problem.

Problem 1 [6] Is it true that all but finitely many r -regular graphs have friendly
(internal) partitions?

For certain small values of r , this was confirmed.

Theorem 1 (Shafique–Dutton [23], Ban–Linial [3]) Let r ∈ {3, 4, 6}. Then apart from
finitely many counterexamples, all r-regular graphs have internal partitions. The list
of counterexamples is as follows.

– for r = 3, K4 and K3,3 do not have an internal partition [23].
– for r = 4, K5 does not have an internal partition [23].
– for r = 6, every graph on at least 12 vertices has an internal partition, thus
counterexamples have at most 11 vertices (and this bound is tight) [3].

In fact, Shafique and Dutton conjectured that in the r even case only the complete
bipartite graph does not admit an internal partition, but this was disproved by Ban and
Linial [3] who constructed 2k-regular graphs on 3k + 2 vertices which do not have
such partitions.

There are several directions in which partial results have been achieved recently
concerning Problem 1. A natural weakening of the requirement is to show that a
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randomly chosen r -regular graph admits an internal partition. Onemay also pose some
restrictions to obtain an affirmative answer for a large class of graphs. Another variant
is to allow a small proportion of the vertices to have fewer neighbours than required.
In these directions, impressive breakthrough results have been achieved lately.

Linial and Louis [18] proved that for every positive integer r , asymptotically almost
every 2r -regular graph has an internal partition. Very recently, Ferber et al. [11]
resolved a conjecture of Füredi by proving that with high probability, the random
graph G(n, 1/2) admits a partition of its vertex set into two parts whose sizes differ
by at most one, in which n − o(n) vertices have at least as many neighbours in their
own part as across.

We propose a new direction in the spirit of a lemma of Ban and Linial. For short,
they introduced the term k-cohesive for vertex sets spanning a graph of minimum
degree at least k.

Proposition 2 (Ban and Linial [3]) Every n-vertex d-regular graph has a �d/2	-
cohesive set of size at most �n/2	 for d even and of size at most n/2 + 1 for d
odd.

Problem 1 aims for two disjoint �d/2	-cohesive sets A and B in d-regular graphs,
provided that n is large enough. Indeed, let us add the vertices from the complement of
A ∪ B one by one to A, provided that they have at least �d/2	 neighbours in A. After
the procedure stops, we add the remaining vertices to B, and it is straightforward that
the resulting partition is internal.

Since there are d-regular graphs without two disjoint �d/2	-cohesive sets, it is a
natural goal to obtain a good universal upper bound on the intersection size of well-
chosen pairs of �d/2	-cohesive sets in d-regular graphs. This leads to
Problem 2 Let Gn,d denote the set of d-regular n-vertex graphs. Determine

Φ(n, d) := max
G∈Gn,d

min

{ |V (H1) ∩ V (H2)|
n

: Hi ⊆ G, δ(Hi ) ≥ �d/2	 ∀i ∈ {1, 2}
}

.

If the answer for Problem 1 is affirmative, then clearly Φ(n, d) = 0 holds for fixed
d and n > n0(d). Note also that the lower bound on n is necessary since the choice
G = Kd+1 and G = Kd,d , d odd, shows that the function Φ can admit values equal
to at least 2

d+1 and 1
d for n = d + 1 and 2d, respectively. On the other hand, if n ≥ 12

and d ∈ {3, 4, 6}, then Φ(n, d) = 0 holds due to Theorem 1.
Our main result is

Theorem 3 Φ(n, 5) ≤ 0.2456 + o(1).

We also show a slightly weaker statement, which on the other hand provides an
exact result: in each n-vertex 5-regular graph, the intersection of 3-cohesive sets with
minimum size contains at most n/4 + 1 vertices.

We also prove that there are exactly three Cayley graphs of valency 5 over finite
Abelian groups which do not admit an internal partition.

Our paper is organized as follows. In Sect. 2. we briefly summarize the main defini-
tions and notations that we will use throughout the paper and state some results which
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will serve as a starting point. Then we discuss how results concerning the bisection
width relate to our problem, and point out that random-like or expander-like graphs
are those in which internal partitions are hard to find. Indeed, as Bazgan, Tuza and
Vanderpooten remark [4], one can find an internal partition via a simple local vertex-
switching algorithm if there is a bisection of size at most n/2. On the other hand, the

bisection width of almost all d-regular graphs of order n is at least n( d4 −
√
d ln 2
2 )

according to the bound of Bollobás [5] and in fact this lower bound is not far from the
upper bound n d

4 − Θ(n
√
d) due to Alon [1].

In Sect. 3 we prove the main result in a slightly weaker form first. Then we extend
the theorem of Kostochka and Melnikov on the bisection width of a sparse graph,
making it applicable to non-regular graphs as well. This enables us to prove the main
result of the paper Theorem 3. We also discuss a different approach which relies on
finding dense enough subgraphs with maximum degree constraints, which may be of
independent interest.

Motivated by the expander-like property of graphs not having internal partitions,
we study some families of Cayley graphs in Sect. 4, and characterize those graphs in
these families that do not admit such partitions, including the 5-regular Cayley graphs
over finite Abelian groups. Finally, we discuss further open problems in the area in
the last section.

2 Preliminaries and Connections to BisectionWidth

We begin this section by setting the main notations and definitions. Then we discuss
the connection between the existence of internal partitions and the minimum size of
bisection.

A bisection and a near-bisection of a graph with n vertices is a partition of its
vertices into two sets whose sizes are the same, and whose sizes differ by at most
one, respectively. The bisection size is the number of edges connecting the two sets.
Note that finding the bisection of minimum size, in other words, the bisection width
is NP-hard and only very weak approximations are known in general (see e.g. [10]).

Consider a regular graph G on vertex set V . A set U ⊆ V is k-cohesive if G
restricted to U has minimum degree at least k. G|U denotes the graph induced by
the subset U . N (v) denotes the set of neighbours of vertex v while d(v) denotes the
degree of vertex v, i.e., d(v) = |N (v)|. If we consider the degrees with respect to
a certain induced subgraph or another graph, the respective graph is indicated in the
index. N [v] denotes the closed neighbourhood N [v] := N (v) ∪ {v}.
Notation 4 We use the notion n(k) = (n

k

) · k! for the falling factorial.
Let us introduce two lemmas from the paper of Ban and Linial [3].

Claim [3] An (n − 3)-regular graph G has an internal partition if and only if its
complementary graph G has at most one odd cycle. Furthermore, this partition is a
near-bisection.

Claim [3] For even n, every (n − 2)-regular graph has an internal bisection.
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Fig. 1 A 5-regular graph with a
relatively small bisection
(U ,W ) where the local
switching algorithm fails

As it was mentioned in [4], relatively small cuts give evidence to the existence of
internal partitions. We present the proof for the case of 5-regular graphs as this class
is the focus of our work and opt to extend it to the case of arbitrary regular graphs in
the next step.

Proposition 5 If there exists a bisection of a 5-regular simple graph G of size at most
n/2 + 5, then there exists an internal partition for G.

Proof Let us call a vertex bad if it has fewer neighbours in its own partition class than
in the other one. Let us successively move bad vertices from their class to the other
class. The number of edges is decreasing between the partition classes in each move.
If no bad vertices remain after some moves, we ended up at an internal partition or
one of the partition classes became empty. However, the latter case cannot happen.
Suppose by contradiction that one of the classes could become empty at the end of the
procedure. Then, after at least (n/2− 2) moves, we reached a phase where one of the
partition classes has size 2. The number of edges between the two classes is at most
n/2 + 5 − (n/2 − 2) = 7 at this point, but this contradicts to the valency of G. ��

Proposition 5 is sharp, as the bound n/2 + 5 cannot be improved according to the
result below.

Proposition 6 For every even n ≥ 8, there exists a 5-regular graph admitting a bisec-
tion of size n/2 + 6 in which the algorithm that successively put bad vertices to the
other partition class ends with a trivial partition (consisting of the whole vertex set
and an empty set).

Proof Let V (G) := {u1 . . . un} ∪ {w1, . . . wn}, while E(G) := {uiui+1, wiwi+1 :
i ∈ 1 . . . n − 1} ∪{uiwi : i ∈ 1 . . . n} ∪ {uiui+2, wiwi+2 : i ∈ 1 . . . n − 2}∪
{u1w2, u1wn, u2w1, un−1wn, unw1, unwn−1}, see Fig. 1. The bisection is U ∪ W .

After moving u1 to W as a first step, a chain of moves begins with moving ui to W in
the i-th step. ��

Theorem 7

7.1 If there exists a bisection in a (2k + 1)-regular graph G of size at most n/2 +
k(k + 1) − 1, then there exists an internal partition for G.
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7.2 If there exists a bisection in a 2k-regular graph G of size at most n+ k(k−1)−1,
then there exists an internal partition for G.

Remark 1 For every integer k > 0 and even n ≥ 4k, there exists a 2k + 1-regular
graph admitting a bisection of size n/2+ k(k + 1) and a 2k-regular graph admitting a
bisection of size n+k(k−1) in which the algorithm that successively put bad vertices
to the other partition class ends with a trivial partition (consisting of the whole vertex
set and an empty set).

Proof of Theorem 7, odd (even) valency We follow the spirit of the proof of case k = 2.
After at least n/2−k moves, we reached a phase where one of the partition classes has
size k. Since each move decreases the number of edges between the partition classes
by one (and in the even case: two), the number of edges between the two classes is
at most n/2 + k(k + 1) − 1 − (n/2 − k) = k(k + 2) − 1 (and in the even case:
n + k(k − 1) − 1 − 2(n/2 − k) = k(k + 1) − 1) at this point, but this contradicts to
the valency of G. Indeed, at most

(k
2

)
edges are induced by k points, thus there should

be at least k(2k + 1) − 2
(k
2

)
(and in the even case: k · 2k − 2

(k
2

)
) edges going between

the two sets. ��
Proof of Remark 1, odd (even) valency Let V (G) := {u1 . . . un}∪ {w1, . . . wn}, and let
{uiu j : 1 ≤ i, j ≤ n, 0 < |i − j | ≤ k} ∪ {wiw j : 1 ≤ i, j ≤ n, 0 < |i − j | ≤
k} ∪ {u1wn, unw1} (and in the even case: {uiu j : 1 ≤ i, j ≤ n, 0 < |i − j | ≤
k − 1} ∪ {wiw j : 1 ≤ i, j ≤ n, 0 < |i − j | ≤ k − 1} ∪ {u1wn, unw1}) be part of the
edge set. In order to obtain a regular graph of valency 2k + 1 (and in the even case:
2k) we complete the edge set which is possible due to the Gale–Ryser theorem (see
[21, chapter 6]) on solving the bipartite realization problem. Consider the bisection
U ∪W . After moving u1 to W as a first step, a chain of moves begins with moving ui
to W in the i-th step. ��

A result of Díaz et al. [7] proves that in fact, random 5-regular graphs indeed have
small bisection width. Almost the same bound was obtained by Lyons [19] via a
different method, namely using local algorithms.

Theorem 8 (Díaz et al. [7]) The bisection width of random 5-regular graphs is asymp-
totically almost surely below 0.5028n.

As a consequence, we note that a tiny improvement on the result of Diaz, Serma
and Wormald would imply the existence of internal partitions for almost all 5-regular
graphs, in view of Proposition 6.

3 Finding Cohesive Sets with Small Intersection

Erdős, Faudree, Rousseau and Schelp proved the following.

Theorem 9 (Erdős et al. [9]) Every graph G on n ≥ k − 1 vertices with at least
(k − 1)n − (k

2

) + 1 edges contains a subgraph with minimum degree at least k.
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Corollary 10 Specializing to k = 3, this yields that an n-vertex graphs on 2n−2 edges
have 3-cohesive sets.

This result has been strengthened in the following two directions.

Theorem 11 (Alon et al. [2]) Let p be a prime power and G be a graph having average
degree d̄ > 2p − 2 and maximum degree Δ(G) ≤ 2p − 1. Then G has a p-regular
subgraph.

This celebrated result was obtained by a clever application of the Combinatorial
Nullstellensatz. Observe that for k = p, a dense enough graph G contains not only a
k-cohesive set but also a subgraph which is k-regular.

Sauermann recently proved the following strengthening of the theorem of Erdős et
al.

Theorem 12 (Sauermann [22]) For every k there exists an ε := εk > 0 such that for
every graph G on n vertices with at least (k−1)n−(k

2

)+2 edges contains a subgraph
on at most (1 − ε)n vertices with minimum degree at least k.

Remark 2 Note that these results imply that if one finds a small enough k-cohesive
set U in a 2k − 1-regular graph, then the theorem of Erdős, Faudree, Rousseau and
Schelp is applicable to G\G|U .

In order to prove ourmain result, the strategy is similar. Oncewe obtain a k-cohesive
set U of minimum size in a 2k − 1-regular graph G = G(V , E), we wish to delete a
set E∗ of edges such that

– |E\E∗| ≥ (k − 1)n − (k
2

) + 1 and
– G∗(V , E∗) has as many vertices v ∈ U of degree at least k as possible.

This would in turn provide a pair of k-cohesive sets with small intersection, due to
Theorem 9. We discuss further only the case k = 3, however the methods below can
be generalized.

3.1 Proof of theMain Result

First, we reiterate the lemma of Ban and Linial.

Proposition 13 (Ban and Linial [3]) Every n-vertex d-regular graph has a �d/2	-
cohesive set of size at most �n/2	 for d even and of size at most n/2 + 1 for d odd.

We consider a result which may count on independent interest as well. The problem
is to find a subgraph of fixed order with maximum number of edges which fulfills an
extra constraint on a maximum degree. Some related work can be found in [12, 14].

Proposition 14 If H is a 3-cohesive graph on n vertices with maximum degree 5, then
for each 1 ≤ k ≤ n there exists a subgraph H ′ such that |V (H ′)| = k, |E(H ′)| ≥ k−1
and the maximum degree Δ(H ′) of H ′ is at most 3.
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Proof We will show later that the statement holds in a stronger form if n = k, i.e.,
in this case a subgraph H ′ with |E(H ′)| ≥ k also exists. Thus we may assume that
H is connected. First, we show that the statements holds for k ≤ 0.88n. It clearly
does hold for k = 1. Suppose, by contradiction, that there exists a number k less
than |V (H)| for which the statement fails for a certain graph H and let us choose
the smallest k with that property. Hence, we get that for each subgraph H ′ ⊂ H on
k − 1 vertices with maximum degree 3, |E(H ′)| ≤ k − 2. Indeed, otherwise we could
add an isolated vertex to obtain a subgraph on k vertices with the prescribed property.
Moreover, since k is the smallest such number, there exists a subgraph H ′ on k − 1
vertices with maximum degree 3, |E(H ′)| = k − 2.

Let us consider such a subgraph H ′ on k − 1 vertices and maximum number of
edges, and denote by ti the number of vertices of degree i in H ′. We in turn obtain
that

t0 + t1 + t2 + t3 = |V (H ′)| = k − 1. (1)

t1 + 2t2 + 3t3 = 2|E(H ′)| = 2(k − 2) = 2(t0 + t1 + t2 + t3) − 2. (2)

Consider now the edges in E(H)\E(H ′). Since H ′ was maximal with respect to the
number of edges, if uv ∈ E(H)\E(H ′) and v ∈ V (H ′) is of degree dH ′(v) < 3,
then dH ′(u) = 3. Indeed, dH ′(u) < 3 with u ∈ V (H ′) contradicts to the maximality
of the H ′ with respect to the number of edges, while u ∈ V (H)\V (H ′) would imply
that u together with the edge uv can be added to H ′ to obtain a subgraph with the
prescribed property. Thus by double counting the edges from E(H)\E(H ′) between
vertices v ∈ V (H ′) having degree dH ′(v) < 3 and vertices u ∈ V (H ′) having degree
dH ′(u) = 3, we obtain

3t0 + 2t1 + t2 ≤ 2t3. (3)

Here we also used that 3 ≤ dH (v) ≤ 5 for all v ∈ V (H). However, Inequalities
(2) and (3) together yield

3t0 + 2t1 + t2 ≤ 2t3 ≤ 4t0 + 2t1 − 4, (4)

and this is in turn a contradiction unless t0 ≥ 4. The maximality of H ′ with respect
to the number of edges however implies also that t0 ≥ 2 can only occur if there is
no e ∈ E(H)\E(H ′) joining two vertices from V (H)\V (H ′). In other words, each
of these vertices must be connected to the set of vertices having degree dH ′(v) = 3.
Hence if t0 ≥ 2, then Inequality (4) can be improved as follows.

3(n − k + 1) + 3t0 + 2t1 + t2 ≤ 2t3 ≤ 4t0 + 2t1 − 4. (5)

We have 3t0 ≤ 2t3 from Inequality (3), thus (1) implies t0 ≤ k − 1 − t3 ≤
k − 1 − 1.5t0, so we get t0 ≤ 2

5 (k − 1).

123



Graphs and Combinatorics            (2024) 40:36 Page 9 of 21    36 

Putting all together, we obtain

3(n − k + 1) ≤ t0 − 4 ≤ 2

5
(k − 1) − 4, (6)

which is a contradiction for k < 3n+7.4
3.4 .

In the case k ≥ 0.88n we apply the probabilistic method. Letmi denote the number
of vertices of degree i in our 3-cohesive graph H . We have n = m3 + m4 + m5. Let
us choose uniformly at random a set Z of λn distinct vertices from V (H). Moreover,
let X denote the random variable counting the number of edges in Z . To obtain a
suitable edge set, we must delete an edge from each vertex of degree 4 and delete
a pair of edges from each vertex of degree 5 in Z . (Note that we may suppose that
there are no edges joining vertices of degree larger than 3 in H .) Let Y denote the
random variable which counts the number of edges which we should delete to obtain
a graph on Z of maximum degree 3. We will use the alteration method and determine
the expected value of X − Y , which gives a lower bound on the number of edges in
a suitable subgraph of H on λn vertices with maximum number of edges. This will
be carried out by decomposing the expected value into the sum of indicator variables
corresponding to edges (for X ) and vertices of degree four or five (for Y ). Thus we
have

E(X − Y ) =
∑

e∈E(H)

P({x, y} ⊂ Z : xy = e) −
∑

v∈V (H),d(v)=4

P(N [v] ⊂ Z)

−
∑

v∈V (H),d(v)=5

2P(N [v] ⊂ Z) −
∑

v∈V (H),d(v)=5

P(v ∈ Z , |N (v) ∩ Z | = 4).

(7)

Calculating the expressions above, we obtain

E(X − Y ) = 1

2
(3m3 + 4m4 + 5m5)

(
λn
2

)
(n
2

) − m4

(
λn
5

)
(n
5

) − 2m5

(
λn
6

)
(n
6

)

−5m5
(λn)(5)(1 − λ)n

n(6)

≥ 3

2
λ2 ·

(
n − 1

λ

n − 1

)
· n + m4

(
λ2

2

(
n − 1

λ

n − 1

)
−

(
λn
5

)
(n
5

)
)

+m5

(
λ2

(
n − 1

λ

n − 1

)
− 2

(
λn
6

)
(n
6

) − 5
(λn)(5)(1 − λ)n

n(6)

)

≥ 3

2
λ2 ·

(
n − 1

λ

n − 1

)
· n + m4

(
λ2

2

(
n − 1

λ

n − 1

)
− λ5

)

+m5

(
λ2

(
n − 1

λ

n − 1

)
− 2λ6 − 5λ5(1 − λ)

n

n − 5

)
. (8)
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Indeed, 3m3+4m4+5m5 is the number of edges, and each edge is counted in X with

probability (λn
2 )

(n2)
, while the probability that a vertex of degree i and its neighborhood

is in Z is
( λn
i+1)

( n
i+1)

.

Suppose first that λ = 1. Then E(X − Y ) ≥ n + 1
2 (m3 − m5). Since we have

3m3 ≥ 4m4 + 5m5, E(X − Y ) ≥ n + 1
2 (m3 − m5) > n in turn follows. This proves

that in Proposition 14 we could indeed assume that the graph is connected.
Suppose now that n ≥ 15 and λ ≥ 0.8.

We bound from below the expression (8) above by taking the minimum of
n− 1

λ

n−1 ,

which is at n = 15 and λ = 0.8. This yields

E(X − Y ) = 1

2
(3m3 + 4m4 + 5m5)

(
λn
2

)
(n
2

) − m4

(
λn
5

)
(n
5

) − 2m5

(
λn
6

)
(n
6

)

−5m5
(λn)(5)(1 − λ)n

n(6)

≥ 3

2
λ2 · 13.75

14
· n + m4

(
λ2

2

13.75

14
− λ5

)

+m5

(
λ2

13.75

14
− 2λ6 − 5λ5(1 − λ)

n

n − 5

)
. (9)

Then both m4 and m5 have negative coefficients, moreover, their ratio is smaller
than 7/8.This means that theminimum of the expression with respect to the inequality
3m3 ≥ 4m4 + 5m5 takes its value when m4 = 0 and m5 = 3

8n. However,

41.25

28
λ2 · n + 3

8
n

(
13.75

14
λ2 − 2λ6 − 5λ5(1 − λ)

n

n − 5

)
> λ · n (10)

holds, since the left side can be bounded below by taking 15
10 instead of the term n

n−5 ,

which concludes to the verification of positivity and monotonicity of the polynomial
41.25
28 · x2 + 3/8( 13.7514 x2 − 2x6 − 5x5 · 1.5 · (1 − x)) − x in the interval [0.8, 1].
Thus, there exists a subgraph of size k = λ · n with at least k edges and each vertex

has degree at most 3 in this case. ��
Note that the constraint on the maximum degree of G was essential to obtain a

linear bound on the edge cardinality. Indeed, a biregular complete bipartite graph with
one class consisting of vertices of degree 3 shows that if one omits that constraint,
only a constant number of edges can be guaranteed in the subgraphs for each order.

Now we are ready to prove the weaker form of our main result.

Theorem 15 Suppose that G is a 5-regular graph on n vertices. Then there are two
distinct internal sets V1, V2 ⊂ V (G) such that |V1 ∩ V2| ≤ n/4 + 1.

Proof Due to Proposition 13we have a 3-cohesive subgraph H ⊂ G on atmost n/2+1
vertices. Our goal is to determine an edge set E∗ of size at most n/2+2 such that after
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deleting it we can use Theorem 9 to find another 3-cohesive set with a intersection of
size at most n/4 + 1.

First we use Proposition 14 in order to find a subgraph H ′ ⊂ H such that |V (H ′)| =
n/4, |E(H ′)| ≥ n/4−1 and the maximum degree Δ(H ′) of H ′ is at most 3. Suppose
that |E(H ′)| = n/4 − 1 + t with t ≥ 0. It is easy to see that we can add 3|V (H ′)| −
2|E(H ′)| = n/4 + 2 − 2t edges to E(H ′) from E(H) to increase the degree of
each vertex v ∈ V (H ′) to at least 3. Thus, we obtain an edge set of cardinality
|E∗| ≤ n/2+ 1, for which there are at least n/4 vertices which are incident to at least
3 edges of E∗.

Finally, we apply Theorem 9 to the graph obtained by deleting the edges of E∗ from
G. This graph has n vertices and at least 2n − 1 edges, thus the theorem provides a 3-
cohesive subgraphG ′ that does not containn/4vertices of H ,hence |V (G ′)∩V (H)| ≤
n/4 + 1 holds. ��

3.2 Improvement Via the Result of Kostochka andMelnikov

In order to improve Theorem 15, our aim is to strengthen Proposition 14 by pointing
out the existence of a denser subgraph with the same constraints on the maximum
degree. We proceed by applying a generalized version of a theorem of Kostochka and
Melnikov.

Theorem 16 (Kostochka and Mel’nikov [16]) For any given natural number d ≥ 2
and for any connected d-regular graph G on n vertices, the bisection width bw(G)

fulfils

bw(G) ≤ d − 2

4
n + O(d

√
n log n).

The proof of Theorem 16 consists of two main steps. First the authors cluster the
vertex set of the graph to even number of equal clusters (of size roughly

√
n), apart

from a small set of remainder vertices, in such away that all the clusters contain at least
roughly

√
n edges. Then they randomly distribute the clusters into two large clusters

of equal size, and they do the same with the remainder vertices as well. It is easy to
verify that the generalization below also follows from their proof.

Theorem 17 (A generalization of the Kostochka–Melnikov bound) For any given
rational number d ≥ 2, positive constant c ≥ 1 and for any n-vertex connected
graph G of average degree d and maximum degree at most cd, its bisection width
fulfils

bw(G) ≤ d − 2

4
n + O(d

√
n log n).

To show Theorem 17, one have to observe that in the paper of Kostochka and
Melnikov, Lemma 1 provided a clustering of any n-vertex tree with maximum degree
q to k-vertex forests with at least k − 1 − log q−1

q−2
k edges. Then while proving their

main Theorem 16 on q-regular graphs, the estimation on the number of edges in
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between the random partition of the clusters actually uses only the average degree,
and in addition the fact that q being the maximum degree as well, the missing number
of edges log q−1

q−2
k affects only the error term. However, the latter statement equally

holds if the tree is of bounded degree.
If we are interested in a dense subgraph of given order, the same approach can be

applied. Indeed, by making clusters of size
√
n + O(1) via Lemma 1 which contain

at least
√
n − O(log n) edges each, distribute randomly the clusters to class A and

class B in such a way that the number of clusters in A compared to the number of all
clusters is proportion to α + o(1). Since the edges within clusters will contribute to
edge set with probability roughly α while other edges will contribute with probability
roughly α2, we obtain the following theorem by averaging.

Theorem 18 Let d ≥ 2 be a rational number, andα ∈ (0, 1), c ≥ 1 positive constants.
For any n-vertex connected graph G of average degree d and maximum degree at most
cd, there exists a subgraph G ′ on �αn� vertices, which has at least (α + o(1))n +
d−2
2 α2n edges.

Let μ ∈ (0, 1) be the real root of 36x5 − 45x4 + 8. Note that μ ≈ 0.88. Now we
are ready to make an improvement on Proposition 14.

Proposition 19 Let H be an n vertex 3-cohesive graph with maximum degree 5 where
n > 12. Then for each 0 ≤ k ≤ n, there exists a subgraph H ′ such that |V (H ′)| = k,
|E(H ′)| ≥ f (k) + o(n) and Δ(H ′) ≤ 3, where

f (k) =
{
k + 0.1355k2/n if k ≤ μn

1.875k2/n − 1.875k5/n4 + 1.125k6/n5 if k > μn.

Proof Weapply the probabilisticmethodofProposition14 togetherwith a probabilistic
clustering of the graph in the spirit of the Kostochka-Melnikov bound. Let mi denote
again the number of vertices of degree i in our 3-cohesive graph H , which implies
n = m3 + m4 + m5. We may suppose that each edge is incident to a vertex of
degree 3, otherwise erasing the edge would still result a 3-cohesive graph. Let us
choose uniformly at random a set Z of c1n distinct vertices from V (H). The constant
c1 = c1(k) is chosen later on in order to obtain an optimized bound. Let X denote the
random variable counting the number of edges in H |Z . To obtain a suitable subgraph
with maximum degree at most 3, we must delete an edge from each vertex of degree
4 and delete a pair of edges from each vertex of degree 5 in H |Z . Let Y denote the
random variable which counts the number of edges which we should delete to obtain
a graph on Z of maximum degree 3 as described above. Then we have

E(X − Y ) =
∑

e∈E(H)

P({x, y} ⊂ Z : xy = e) −
∑

v∈V (H), d(v)=4

P(N [v] ⊂ Z)

−
∑

v∈V (H), d(v)=5

2P(N [v] ⊂ Z) −
∑

v∈V (H), d(v)=5

P(v ∈ Z , |N (v) ∩ Z | = 4).

(11)
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Calculating the expressions above we obtain

E(X − Y ) ≥ 3

2
c21 · n + m4

(
c21
2

− c51

)

+m5

(
c21 − 2c1

6 − 5c51(1 − c1)
n

n − 5

)
− O(1). (12)

Here we followed the calculations of (8) and used the fact that (λn
t )

(nt)
= λt − Oλ(1/n),

provided that t is smaller than λn/2. The condition will clearly hold for us as t is small
constant in each term. This implies the existence of a dense enough subgraph on a set
V1 of c1n vertices, which has maximum degree at most 3.

Now,weuseTheorem18 tofind a setV2 ⊆ V1 with |V2| = k = c2n, i.e.,α = c2/c1.
Then e := e(G[V2]) ≥ (c2 + o(1))n + (E(X − Y ) − c1n)

( c2
c1

)2
. Thus we get

e

c2n
≥ (1 + o(1)) + E(X − Y )c2

c21n
− c2

c1

≥ (1 + o(1)) + c2
c21n

(
3

2
c21 · n + m4

(
c21
2

− c51

)
+ m5

(
c21 − 2c1

6 − 5c51(1 − c1)
))

− c2
c1

. (13)

Our aim is to determine c1 = c1(k) which provides the best universal lower bound
for the right hand side of (13). In order to do this, we have to find the extremum with
restrictions n = m3 + m4 + m5, mi ≥ 0. We know that the extremum is admitted at
a point where at least one of the variables m3,m4,m5 equals to zero. Furthermore,
m4 ≤ 3

7n and m5 ≤ 3
8n hold since vertices of degree 5 are joint to vertices of degree

3 according to our assumption.

Case 1. m5 = 0 and m4 = λn, λ ∈ [0, 3/7].

e

c2n
≥ 1 + 3c2

2
− c2

c1
+ m4c2

n

(
1

2
− c31

)
= 1 + 3c2

2
− c2

c1
+ λc2

(
1

2
− c31

)
.

This expression is linear in λ, so the minimum of e
c2n

is taken at λ = 0 or λ = 3
7 .

If λ = 0, then the right hand side is maximal at c1 = 1, which yields the lower bound
1 + c2

2 .

If λ = 3
7 , then the maximum of 1 + 3c2

2 − c2
c1

+ 3c2
7 ( 12 − c31), with respect to c1,

is at c1 = 4
√
7/

√
3 if c2 ≤ 4

√
7/

√
3, otherwise at c1 = c2. This follows from the

monotonity properties of 1/x + 3
7 x

3. Consequently, the universal lower bound can be
bounded from below by taking simply c1 = 1 which means that the minimum of e

c2n

is at least 1 + 2c2
7 once we apply the optimal choice of c1.

Therefore e ≥ (1 + 2c2
7 )c2n.
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Case 2. m4 = 0 and m5 = λn, λ ∈ [0, 3/8].

e

c2n
≥ 1 + 3c2

2
− c2

c1
+ m5c2

n
(1 − 5c31 + 3c41) = 1 + 3c2

2
− c2

c1
+ λc2(1 − 5c31 + 3c41).

Let f (c2, c1, λ) denote the expression on the right hand side. Since it is linear in
λ, the minimum of f (c2, c1, λ) is at λ = 0 or at λ = 3

8 .

For λ = 0 we get back again the bound 1 + c2
2 . For λ = 3

8 , we determine the
maximum value of 1+ 3c2

2 − c2
c1

+ 3c2
8 (1− 5c31 + 3c41) with respect to c1, with partial

differentiation:

d
(
1 + 3c2

2 − c2
c1

+ 3c2
8 (1 − 5c31 + 3c41)

)
dc1

= (36c51 − 45c41 + 8)c2
8c21

.

So themaximumpointμ is the feasible solution of 36c51−45c41+8, that isμ ≈ 0.88.
In this case the minimum of e

c2n
is f (c2, μ, 3/8) for c2 ≤ μ.Otherwise, since c2 ≤ c1

the minimum of e
c2n

is f (c2, c2, 3/8) at c1 = c2.
This concludes to e ≥ (1 + 0.1355c2)c2n for c2 ≤ μ, and

e ≥
(
15c2
8

− 15c42
8

+ 9c52
8

)
c2n = (1.875c2 − 1.875c42 + 1.125c52)c2n

for c2 > μ in Case 2.
Finally, by comparing the results of Case 1 and 2, we have the following

conclusions. If c2 ≤ μ, then the minimum of e
c2n

is f (c2, μ, 3/8), which is approx-
imately 1 + 0.1355c2. Otherwise, it is f (c2, c2, 3/8), which gives the expression
1.875c2 − 1.875c42 + 1.125c52. ��
Theorem 20 Suppose that G is a 5-regular graph on n vertices. Then there are two
distinct internal sets A, B ⊂ V (G) such that |A ∩ B| ≤ (0.2456 + o(1))n.

Proof We follow the proof of Theorem 15. Due to Proposition 2 we have a 3-cohesive
subgraph H ⊂ G on at most n/2 + 1 vertices.

First we use Proposition 19 in order to find a subgraph H ′ ⊂ H such that
|V (H ′)| = k, |E(H ′)| ≥ f (k) and Δ(H ′) ≤ 3. Then we can add t edges to
H ′ from E(H) to increase the degree of each vertex in H ′ to at least 3, such that
t ≤ 3k − 2 f (k). Thus we obtain an edge set of cardinality |E∗| ≤ 3k − f (k).

To apply Theorem 9 to the graph obtained by deleting the edges of E∗ from G, we
need 3k − f (k) ≤ n

2 + 2 to hold. This implies the choice

k = 2n − √
3.729n2 − 1.626n

2 · 0.1355 ≈ 0.2456n + o(n),

which satisfies these conditions. ��
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4 Internal Partitions in Cayley Graphs

As we could see in Sect. 2, the existence of internal partition follows if the bisection
width is not large, or in general, if there is an almost balanced vertex cut of relatively
small size. A celebrated theorem of Bollobás [5] proves that random r -regular graphs
provide good expanders in the sense that the isoperimetric number is large compared
to r , thus these vertex cut sizes are relatively large. Hence to seek graphs without
internal partitions, it is natural to investigate well-structured expander graphs.

The first observation is derived by a computer-aided search.

Definition 21 (Paley graph) Let q be a prime power such that q ≡ 1(mod 4), let

V = Fq and let E = {{a, b} : a − b ∈
(
F

×
q

)2}
. Then G = (V , E) is the Paley graph

of order q.

Claim There exists an internal partition in every Paley graph of order less than 500.

Paley graphs are special Cayley graphs. Next we study the existence of internal
partitions in 5-regular Cayley graphs. Note that all previously known 5-regular graphs
which do not admit an internal partition belong to this graph class. We will show that
there is no further example in this class without internal partition.

Definition 22 Let G be a finite group and let S be a subset of G satisfying 0 /∈ S, and
S = −S, i.e., s ∈ S if and only if −s ∈ S. Then define the Cayley graph on group
G with connection set S, denoted Cay(G; S), to have its vertices labelled with the
elements of G and x adjacent to y if and only if y = x + s for some s ∈ S.

Definition 23 G is called an (additive) cyclic Cayley graph with a generating set
(i1, . . . , it ) if G = Cay(K , S), where K is a cyclic group and S = {±i1, . . . ,±it }.
If K � Zn, then we denote G by 〈i1, . . . , it 〉n .

4.1 Cyclic Cayley Graphs

Theorem 24 Every 5-regular cyclic Cayley-graph has an internal partition except for
K6, K5,5, and 〈1, 2, 5〉10.

Observe first that the order of the group must be even, n = 2k. Furthermore, if
the cyclic Cayley graph has odd valency, then k must be one of the generators, and
we may suppose that other generators are less than k. We begin with some auxiliary
lemmas.

Claim Suppose that (r , 2k) = 1 holds for positive integers r , k. Then 〈r , t, k〉2k is
isomorphic to 〈1, t∗, k〉2k, where r · t∗ ≡ t (mod 2k).

Proof Let v1 be an element of the vertex set of 〈1, t∗, k〉2k, v1 is labeled with g1 ∈
(Zn,+) and v2 an element of the vertex set of 〈r , t, k〉2k, v2 is labeled with g2 ∈
(Zn,+). Let v2 be assigned to v1, if and only if g2 = r · g1. It is a bijection, because
(r , 2k) = 1 and g1 − g2 ∈ {±1,±t∗, k} if and only if r · g1 − r · g2 = r · (g1 −
g2) ∈ {±r ,±t, k} (mod 2k), therefore it is an isomorphism between 〈1, t∗, k〉2k and
〈r , t, k〉2k . ��
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Fig. 2 Types of disjoint internal subset pairs

Claim If (t, k) �= 1 then 〈r , t, k〉2k has an internal partition.

Proof Consider the congruence classes of {1, 2, . . . , 2k} modulo (t, k). It is easy to
check that they are internal subsets of 〈r , t, k〉2k : if the distance of two elements is t
or k, then they will be in the same class, hence every vertex degree is at least 3.

Since 1 < (t, k) < k (according to 0 < t < k), thus 2k
(t,k) > 2. Therefore, we find

two disjoint internal subsets, which completes the proof. ��
Proof of Theorem 24 If (r , k) �= 1 or (t, k) �= 1, then we are done by Claim 4.1. In the
remaining case, r and t are even integers or without loss of generality we can assume
that (r , 2k) = 1. In the first case, the vertices with even index will define an internal
partition set. In the second case, by Claim 4.1 it is enough to examine the graphs
〈1, t∗, k〉2k .

First, we assume that k ≥ 8. It is easy to check that

{1, 2, t∗ + 1, t∗ + 2, k + 1, k + 2, t∗ + k + 1, t∗ + k + 2} and

{3, 4, t∗ + 3, t∗ + 4, k + 3, k + 4, t∗ + k + 3, t∗ + k + 4}

will be a pair of disjoint internal subsets for t∗ ∈ {4, . . . , k − 4} (see Fig. 2a), and
similarly,

{1, 2, 3, 4, k + 1, k + 2, k + 3, k + 4} and {5, 6, 7, 8, k + 5, k + 6, k + 7, k + 8}

will be a pair of disjoint internal subsets for t∗ ∈ {2, 3, k−3, k−2, k−1} (see Fig. 2b).
〈1, 2, 3〉6 is K6, 〈1, 2, 5〉10 is P2,5, 〈1, 3, 5〉10 is K5,5, so the list of Table 1 sum-

marizes the remaining cases. ��
Based on the cyclic Cayley graph P2,5, it is natural to ask whether there exist

cyclic Cayley graphs for each valency r , which are different from Kr+1 and Kr ,r ,

furthermore which do not admit an internal partition.
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Table 1 Table of small 5-reg.
Cayley graphs with internal
partitions

Example Internal sets

〈1, 2, 4〉8 {1, 3, 5, 7}, {2, 4, 6, 8}
〈1, 3, 4〉8 {1, 2, 5, 6}, {3, 4, 7, 8}
〈1, 4, 5〉10 {1, 2, 6, 7}, {3, 4, 8, 9}
〈1, 2, 6〉12 {1, 2, 3, 7, 8, 9}, {4, 5, 6, 10, 11, 12}
〈1, 3, 6〉12 {1, 4, 7, 10}, {2, 5, 8, 11}
〈1, 4, 6〉12 {1, 3, 5, 7, 9, 11}, {2, 4, 6, 8, 10, 12}
〈1, 5, 6〉12 {1, 2, 7, 8}, {3, 4, 9, 10}
〈1, 2, 7〉14 {1, 2, 3, 8, 9, 10}, {4, 5, 6, 11, 12, 13}
〈1, 3, 7〉14 {1, 4, 5, 8, 11, 12}, {3, 6, 7, 10, 13, 14}
〈1, 4, 7〉14 {1, 4, 5, 8, 11, 12}, {3, 6, 7, 10, 13, 14}
〈1, 5, 7〉14 {1, 2, 3, 8, 9, 10}, {4, 5, 6, 11, 12, 13}
〈1, 6, 7〉14 {1, 2, 3, 8, 9, 10}, {4, 5, 6, 11, 12, 13}

Proposition 25 For every even n > 2 there exists a (n − 3)-regular cyclic Cayley
graph on n vertices which does not contain an internal partition if and only if n is not
a power of 2.

Proof If n is not a power of 2, then it can be written of the form n = l · m, where
l > 1 is odd. Consider the graph 〈m〉n . It is the union of m > 1 pieces of cycles of
length l. Hence, by Claim 2, there is no internal partition in complementary of this
graph. Therefore, we found a (n − 3)-regular cyclic Cayley graph on n vertices, such
that it does not contain an internal partition.

Consider a (n − 3)-regular cyclic Cayley graph on n vertices, such that it does not
contain an internal partition. The complementary of this graph (denoted by 〈s〉n) is
the union of cycles with the same length, and n is divisible by this common length.
According to Claim 2, there are at least 2 cycles with odd length in 〈s〉n . Hence, n has
an odd divisor, therefore n is not a power of 2. ��

4.2 Cayley Graphs on the GroupZt
2

Let G = Cay(Zt
2; {g1, . . . , gk}). Now for all 1 ≤ i ≤ k, the edges generated by gi

determine a perfect matching, because all elements of Zt
2 is the negative of himself.

Theorem 26 Let G = Cay(Zt
2; {g1, . . . , g5}). Then G has an internal partition.

Proof If t = 3, then the complementary ofG is the union of two perfect matchings, so
it is a two-regular and bipartite graph (with the vertex sets A and B). A and B induce
a K4 in the graph G, so they determine an internal partition.

If t > 3, then consider three generators g1, g2, g3.Wecan assume that g3 �= g1+g2,
otherwise we change g3 and g4. Then 0, g1, g2, g3, g1 + g2, g1 + g3, g2 + g3 and
g1 + g2 + g3 are distinct element, and they are connected as shown in Fig. 3. G thus
can be tiled by its subgraph G ′ = Cay(Zt

2; {g1, g2, g3}), so we found 2t−3 disjoint
internal sets which implies the existence of an internal partition in G. ��
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Fig. 3 Graph generated by three
elements

4.3 Cayley Graphs of Finite Abelian Groups

We apply the structure theorem of finite Abelian groups and deduce that apart from
someCayley graphs arising from the small cyclic groups, every 5-regular Cayley graph
over a finite Abelian group has an internal partition. First, we prove a special case and
extend Theorem 24.

Proposition 27 Suppose that p > 1 is a positive integer. Then every 5-regular Cayley
graph on the group Z2 × Z2p has an internal partition.

Proof LetG = Cay(Z2×Z2p; S), S = {g1, . . . , gk}.Let T = {(1, 0); (0, p); (1, p)}.
If gi ∈ T , then the edges generated by gi determine a perfect matching, because they
are their own negatives. If gi /∈ T , then the edges generated by gi determine the union
of disjoint cycles. So either |S∩ T | = 3 and |S\T | = 1 or |S∩ T | = 1 and |S\T | = 2
hold.

Suppose that |S∩T | = 3. Then for all 0 ≤ q < p, the set {(∗, q); (∗, q + p) : ∗ ∈
Z2} induces a complete graph K4, i.e., a 3-cohesive set. These are disjoint subgraphs
for all choices of q, so we found two disjoint internal sets.

Now suppose that |S∩ T | = 1 and |S\T | = 2 hold. In the first case, let g1 = (1, 0)
and denote the second coordinate of g2 and g3 by q and r with q ≤ r < p and ∗ ∈ Z2.

If q = r , we obtain again induced K4 graphs in the Cayley graph, thus we are done.
Otherwise, consider the graph G ′ = Cay(Z2p; {q; r}). It is 4-regular and it is not the
complete graph K5 as G ′ has 2p vertices, so it has an internal partition in view of
Theorem 1. We denote this partition by A′ ∪ B ′. Let A = {(∗, a) | ∗ ∈ Z2; a ∈ A′}
and B = {(∗, b) | ∗ ∈ Z2; b ∈ B ′}. Then A ∪ B is an internal partition of G.

This method works similarly in the other case g1 ∈ {(0, p); ((1, p)} after consid-
ering G ′ = Cay(Z2p; {q; r; p}). ��
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Theorem 28 Every 5-regular Cayley graph arising from an Abelian group admits an
internal partition except for three graphs as described in Theorem 24.

Proof Let G be a finite Abelian group. Consider a 5-regular Cayley graph Cay(G, S)

of G and let G(2) denote its subgroup generated by the elements of order at most two.
In the first case, suppose that |S ∩ G(2)| ≥ 3. This implies we have 3 distinct

generators g1, g2, g3 ∈ S of order 2. Then each coset of 〈g1, g2, g3〉 induces a 3-
regular subgraph on at most 8 vertices, thus we are done provided that |G| > 8.
Groups of smaller order are already considered above.

In the second case, we have |S ∩ G(2)| < 3, which in turn implies |S ∩ G(2)| = 1
by the parity of the valency of Cay(G, S). Then there exists g1 ∈ S\G(2).

〈g1〉 = G would imply thatG is cyclic, which case is covered already in Theorem24.
Now suppose that |〈g1〉| = |G|/2. Then G must be either a cyclic group or a direct
product of Z2 and a cyclic group. These subcases are already covered by Theorems 24
and 27. Finally, suppose that |〈g1〉| < |G|/2. The cosets of 〈g1〉 determine cycles in
the Cayley graph. Let us take g2 := S ∩ G(2)-t and consider 〈g1, g2〉. The cosets of
this subgroup induce 3-regular graphs, moreover |〈g1, g2〉| ∈ {|〈g1〉|, 2|〈g1〉|}. As a
consequence, we find at least two disjoint 3-regular subgraphs. ��

5 Concluding Remarks

We presented an approach for how to show the existence of cohesive sets which have
rather small intersection.Although ourmainTheorem3 does not provide a bound close
enough to the desired result o(1), the applied technique pinpoints several subproblems
of independent interest in which any breakthrough would imply an improvement for
the bound of main Theorem 3 as well.

We pose this list of problems below.

Problem 3 Improve the bound of Ban and Linial, Lemma 2 by showing the existence
of �r/2	-cohesive sets in r -regular n-vertex graphs on much less than n/2 vertices,
subject to n � r .

Note for example that if one could show the existence of a 3-regular H subgraph
of the 5-regular graph G on less than n/3 = |V (G)|/3 vertices, that would pro-
vide a straightforward application of the Alon–Friedland–Kalai theorem. It would be
really interesting to find an analogue of the Alon–Friedland–Kalai Theorem 11 with
a restriction on the size of the subgraph as well. That would enable us to easily find
dense subgraphs with the prescribed maximum degree, at least for certain values of
the maximum degree d.

In a more general form, we formalize

Problem 4 Determine the best possible λr ,t constant, depending on r and t, for which
the following holds. Let G be a r -regular graph on n vertices. Then there is a subgraph
H ⊂ G on at most (λr ,t + o(1))n vertices with minimum degree δ(H) ≥ t .

Problem 5 Prove a common generalisation of Theorems 11 and 12 which fixes the
degree sequence of the subgraph and guarantee many 0-degrees.
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It would be interesting to obtain a general lower bound f (k) on the edge cardinality
which can be guaranteed in at least one k-vertex subgraph of n-vertex graphs with
a prescribed maximum degree condition. We showed that under the conditions of
Proposition 14, f (k) ≥ k − 1 holds for every k ≤ n, and Sect. 3.2 presents a possible
way for how to improve that bound at least when k is not small compared to n.

Problem 6 Improve and generalize the result of Proposition 14 by obtaining a lower
bound function on the cardinality of the edges of k-vertex subgraphs having a given
bound on the maximum degree.

Problem 7 Prove that every Paley graph has an internal partition.

Problem 8 Prove that almost all 5-regular graphs have an internal partition via improv-
ing the algorithmic approach of Proposition 5 and applying Theorem 8.
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