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Abstract
In this paper, we consider the problem of path planning in a weighted polygonal
planar subdivision. Each polygon has an associated positive weight which shows the
cost of path per unit distance of movement in that polygon. The goal is to find a
minimum cost path under the Manhattan metric for two given start and destination
points. First, we propose an O(n2) time and space algorithm to solve this problem,
where n is the total number of vertices in the subdivision. Then, we improve the time
and space complexity of the algorithm to O(n log2 n) and O(n log n), respectively, by
applying a divide and conquer approach. We also study the case of rectilinear regions
in three dimensions and show that the minimum cost path under the Manhattan metric
is obtained in O(n2 log3 n) time and O(n2 log2 n) space.

Keywords Shortest path · Weighted region · Manhattan metric · Rectilinear

1 Introduction

Path planning (PP) problem is one of the fundamental problems in computer science
and robotics. This problem is an interesting and challenging problem, and many vari-
ations of it have been studied (e.g., multi-robot path planning [2, 3], bi-objective path
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planning [4, 5], path planning among transient obstacles [6], etc.). In the classical
version of PP, a workspace contains a set of obstacles, two start and destination points
s and t are given, and the objective is to find an optimal path with minimum length
from s to t which avoids all obstacles [7, 8]. However, in a general formulation of
PP—calledWeightedRegionProblem (WRP)—whichwas first introduced byMitchell
and Papadimitriou [9], each obstacle has an associated weight and a path is allowed
to enter them at extra costs. In fact, these weights represent the cost per unit distance
of movement in the obstacles (or say weighted regions). This generalization of PP
has a lot of applications, e.g., it can be used in self-driving cars navigation, robot
motion planning [10], military purposes [11], crowd simulation and gaming applica-
tions [12]. An important theoretical result on WRP [13] has shown that this problem
cannot be solved in the algebraic computation model over the rational numbers under
the Euclidean metric. This result justifies the search for approximate solutions as
opposed to exact ones. Motivated by this result, we provide a solution for WRP under
the Manhattan metric, which is also an approximate solution for the Euclidean case.

Mitchell and Papadimitriou [9] introduced an ε-optimal algorithm with running
time of O(n8L), where n is the total number of vertices of polygonal regions, and L
is the precision of problem’s instance. Precisely, L = O(log(nNW/εw)), where N
is the maximum integer coordinate of any vertex of the subdivision, W and w are the
maximum non-infinite and minimum non-zero integer weights assigned to the faces
of the subdivision, and ε > 0 is a user-specified error tolerance. The output is the
shortest path from the starting point s to all vertices of the polygons with an error
tolerance ε under the Euclidean metric. Mata and Mitchell [11] have proposed an
algorithm based on constructing a relatively sparse graph—called pathnet—that can
search for paths that are close to optimal. They have proved that a pathnet of size
O(nk) can be constructed in O(kn3) time. As a matter of fact, the pathnet limits the
paths that can extend from vertices with k cones at each vertex. Searching for a path
on the constructed pathnet yields a path whose weighted length is at most (1 + ε) of
the optimal path. Precisely, ε = W/w

k�min
, where W/w is the ratio of the maximum non-

infinite weight to the minimum non-zero weight, and θmin is the minimum internal
face angle of the subdivision. Moreover, Aleksandrov et al. [14] have introduced a
data structure—called All points query (APQ)—which is used for finding ε-optimal
paths (ε ∈ (0, 1)) for all-pairs queries on an instance of the WRP. Since APQ has a
high construction time, it is mostly useful for answering many queries on the same
scene. Also, one of the common techniques for obtaining approximate shortest paths
is to position Steiner points for discretizing the edges of the triangular regions and then
constructing a graph by connecting them. Finally, by using graph search algorithms
such as Dijkstra [15, 16], an approximate minimum cost path is computed [17–19].
Among the approximation algorithms for solving WRP, a few of them compute paths
whose lengths are close to optimal. On the other hand, these algorithms are theoretical
algorithms. A recent work on WRP [20] has proposed a new practical method for
solving this problem. The proposed method exploits Snell’s law of physical refraction
and is able to return a path in a reasonable time that is very close to the optimum
weighted shortest path. Furthermore, Aleksandrov et al. [21] have presented a (1 + ε)-
approximation algorithm (ε ∈ (0, 1)) for computing shortest paths in aweighted three-
dimensional environment. Given n tetrahedra with positive weights in a polyhedral
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domain D, their algorithm constructs (1 + ε)-approximation paths in D from a fixed
source vertex to all vertices of D in O(C(D) n

ε2.5
log n

ε
log3 1

ε
) time, where C(D) is a

geometric parameter related to the aspect ratios of tetrahedra. Also, Tran et al. [22]
have studied WRP in a three-dimensional environment. They present a path close to
the optimal path, based on a user-defined parameter δ, between two points using Snell’s
law of physical refraction. In addition, a recent work on WRP [23] has established an
�(nd) lower bound on themaximumnumber of cell crossings aweighted shortest path
could take in a d-dimensional polyhedral environment consisting of a linear number
of O(n) polyhedral cells and cell faces.

There are several variants of WRP due to the metric and the shape of weighted
regions. Lee et al. [24] have solved the problem in the presence of isothetic (rectilin-
ear) obstacles (the boundary edges of obstacles are either vertical or horizontal line
segments). They have presented two algorithms for finding the shortest path under
the Manhattan metric. The first algorithm runs in O(n log2 n) time and O(n log n)

space, and the second one runs in O(n log3/2 n) time and space. Also, Chen et al. [25]
have presented some techniques for processing single-source and two-point rectilin-
ear shortest path queries among disjoint rectilinear obstacles. If the starting point s is
fixed, and the termination point t is arbitrary, then the query is called a single-source
query, and if both s and t are arbitrary points, then the query is called a two-point
query. For the single-source case, they construct a data structure in O(n log3/2 n) time
and O(n log n) space, where n is the number of vertices of the obstacles. This data
structure is able to report the length of a shortest path between s and any query point in
O(log n) time and the actual shortest path in O(log n+k) time, where k is the number
of edges on the output path. For the two-point case, a data structure is constructed
in O(n2 log2 n) time and space which is able to report the length of a shortest path
between two arbitrary query points in O(log2 n) time and the actual shortest path in
O(log2 n + k) time. Gewali et al. [26] have considered a special case of this problem
in which there are only three types of regions: regions with weight of ∞, regions
with weight of 0 and regions with weight of 1. They have presented an algorithm in
O(m+n log n) time, wherem ∈ O(n2) is the number of visibility edges. Furthermore,
they have presented an algorithm for the case that linear feathers are added. Precisely,
edges of the subdivision are allowed to have arbitrary weights. Their algorithm for this
case takes O(n2) time for constructing a graph of size O(n2) for searching the shortest
path. In fact, it takes O(n2 log n) time for finding the shortest path. Gheibi et al. [27]
have discussed the problem in an arrangement of lines. Due to the fact that this special
case of the problem has unbounded regions, they have presented a minimal region—
called SP-Hull—to bound the regions. Thisminimal region contains theminimum cost
path from s to t . They construct SP-Hull in O(n log n) time, where n is the number of
lines in the arrangement. After constructing SP-Hull, an approximate minimum cost
path is obtained by applying the existing approximation algorithms within bounded
regions. Jaklin et al. [12] have analyzed the problem when the weighted regions are
cells of a grid. They have also presented a new hybrid method—called vertex-based
pruning—which is able to compute paths that are ε-optimal inside a pruned subset of
the scene.

In this paper, we consider a planar subdivision with arbitrary positive weights. First,
we present an algorithm that constructs a planar graph in O(n2) time with O(n2)
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vertices and edges, where n is the total number of vertices of the subdivision. The
constructed graph contains the minimum cost path between two points s and t in the
plane, where the distances are measured under the weighted Manhattan metric—the
length of a path is the weighted sum of Manhattan lengths of the sub-paths within
each region. Then, we propose an improved algorithm based on a divide and conquer
approach which constructs a graph in O(n log2 n) time with O(n log n) vertices and
edges, which also contains the minimum cost path between s and t under the weighted
Manhattan metric. Thus, we present two different algorithms for constructing two
different graphs. In the second algorithm, the time and space complexity have been
improved; however, the first one is a simple, easy to understand, and easy to implement
algorithm. It has been shown that WRP is unsolvable over the rational numbers when
the distances aremeasured under theweighted Euclideanmetric [13]. To the best of our
knowledge, this is the first result that presents exact algorithms for solvingWRP under
the Manhattan metric in a case where the regions are arbitrary simple polygons with
positive weights. For finding the minimum cost path under the weighted Manhattan
metric in the plane, our algorithms take O(n2) and O(n log2 n) time, respectively.
These algorithms are also

√
2−approximation algorithms for the Euclidean metric.

Also, we study WRP in three dimensions under the Manhattan metric. It has been
shown that the problem of finding a shortest path under any LP metric in a three-
dimensional polyhedral environment is NP-hard [28]. Here, we consider a specific
variation where the regions are rectilinear and show that the minimum cost path under
the Manhattan metric is obtained in O(n2 log3 n) time and O(n2 log2 n) space.

This paper is organized in six sections. In Sect. 2,we provide somepreliminaries and
definitions related to WRP. In Sect. 3, we present the first algorithm for constructing
a graph that contains the minimum cost path in a two dimensional work space. In
Sect. 4, we present the improved algorithm based on a divide and conquer approach.
In Sect. 5, we generalize the proposed algorithms for the case of rectilinear regions in
three dimensions, and in Sect. 6, we draw a conclusion.

2 Preliminaries and Definitions

The problem of weighted region path planning, WRP, considered in this paper is
defined as follows. Let S be a subdivision of the plane into polygonal regions with n
vertices and s, t ∈ S be two start and destination points in the plane. Each region of S
has an associated positive weight. The weight of an edge e ∈ S (boundary of regions)
is assumed to be min{wr , wr ′ }, where wr and wr ′ are the weights of regions incident
to e. The goal is to find a minimum cost path between s and t, where the distances are
measured under the weighted Manhattan metric—the length of a path is the weighted
sum of Manhattan lengths of the sub-paths within each region.

Let πst denote a path between s and t which consists of some sub-paths between
consecutive breakpoints. A breakpoint is a point on the path in which the path turns.
We also consider s and t (two endpoints of the path) as breakpoints (see Fig. 1). Let
ρ1, ρ2, . . . , ρk be sub-paths between consecutive breakpoints of a path πst in which
each ρi , for i = 1, 2, . . . , k lies completely within one region. If a part of a path πst

does not lie totally in one of the regions, we decompose it to some sub-paths. We
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Fig. 1 A path from s to t with
seven breakpoints

denote d(ρi ) as the Manhattan distance between two endpoints of ρi . The weighted
length of a path πst under the Manhattan metric, denoted by dw(πst ), is defined as:

dw(πst ) =
k∑

i=1

d(ρi ) × wi ,

where wi is the weight of the region in which ρi lies.
A path πst is called a horizontal (resp., vertical) path if it has a horizontal (resp.,

vertical) sub-path between only two consecutive breakpoints. Also, we say two hori-
zontal (resp., vertical) paths are consecutive if and only if they have the same starting
and termination points. This definition is used in Lemma 1.

The basic idea behind the proposed algorithms is to reduce the problem to a graph
searching problem. Therefore, we first provide an algorithm for constructing a graph
G1 that contains the minimum cost path under the weighted Manhattan metric. The
constructed graph is a planar graph with O(n2) vertices and edges, where n is the total
number of vertices of the subdivision. For planar graphs with positive edge weights,
Henzinger et al. [29] have given a linear-time algorithm to compute single-source
shortest paths. By running this algorithm on G1, the minimum cost path between s
and t under the Manhattan metric is obtained in O(n2) time. Then, we propose an
improved algorithm based on a divide and conquer approach for constructing a graph
G2 that contains the minimum cost path under the weighted Manhattan metric. This
graph has O(n log n) vertices and edges and is not a planar graph (unlike the first
graph). Dijkstra’s algorithm [15, 16] is able to find a shortest path on a graph between
s and t in O(m + n log n), where m and n are the number of edges and vertices of the
graph, respectively. Thus, by running Dijkstra’s algorithm on G2, the minimum cost
path between s and t under the Manhattan metric is obtained in O(n log2 n) time.

For constructing G1, a horizontal line and a vertical line are considered passing
through every vertex of the subdivision (s and t are also included in the set of vertices
of the subdivision). By intersecting these horizontal and vertical lines with each other,
at most two direct rectilinear paths between every two vertices of the subdivision on
G1 are obtained. A rectilinear path is said to be a direct rectilinear path if it consists of at
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most three breakpoints (twoof the breakpoints are two endpoints of the path). Precisely,
If two vertices of the subdivision have the same x-coordinates or y-coordinates, there
exists only one direct rectilinear path between them with two breakpoints; otherwise,
there exist two direct rectilinear paths between them on G1, and each path has three
breakpoints. First, we will prove that G1 contains the minimum cost path between s
and t under the weighted Manhattan metric. Then, we will show that for every direct
rectilinear path π1 among the vertices of the subdivision on G1, there exists a path π2
on G2 such that dw(π2) ≤ dw(π1). We say π2 is an equivalent path of π1.

Since a simple polygon with n vertices can be triangulated in O(n log n) time and
O(n) space [30], w.l.o.g. we assume all the regions to be triangular regions in all parts
of the paper. The set VS indicates the set of vertices of the subdivision throughout the
paper, which includes s, t , and the vertices of the triangular regions.

3 The First Algorithm:O(n2) Time and Space

3.1 The Algorithm

For constructing a graphG1 = (V , E), which contains theminimum cost path between
s and t under theManhattanmetric, a vertical line, denoted by V L(αi ), and a horizontal
line, denoted by HL(αi ), are considered passing through every vertex αi , for i =
1, 2, . . . , n in VS . More precisely, for passing the horizontal lines through the vertices
in VS , we sort the vertices by y-coordinates first, and for passing the vertical lines,
we sort the vertices in VS by x-coordinates. The set V consists of the vertices in VS
and the intersection points among HL(αi ) and V L(α j ), for i, j = 1, 2, . . . , n. Also,
the intersection points among HL(αi ) (resp., V L(αi )), for i = 1, 2, . . . , n and the
edges of the triangular regions are added to V . The set E consists of the line segments
between adjacent vertices in V that lie on the considered horizontal lines, vertical lines,
or the edges of the triangular regions. For an edge (u, v) ∈ E which lies in a region
with weight wi , let d(u, v) denote the Manhattan distance between two endpoints of
the edge. The weight of the edge is equal to the product of d(u, v) and wi . Note that
each edge lies completely within one region. This algorithm is described below.

The basic idea of the proposed algorithm is to extend four rays to the up, down,
right and left directions (horizontal and vertical lines) at every vertex of the subdivision
(VS ). This idea has similarities to the vertical cell decomposition (VCD)method [8]. In
thismethod, the free space is partitioned into a finite collection of one-dimensional and
two-dimensional cells by extending rays upward and downward through free space.
In this method, the rays are not allowed to enter obstacles, however, in our algorithm,
the rays are extended to all parts of the subdivision since the paths are allowed to enter
weighted regions at extra costs. Also, we extend rays to the four directions at every
vertex, however, in theVCDmethod the rays are extended only upward and downward.
In both methods, the motion planning problem is reduced to a graph search problem.
In VCD method, a roadmap is constructed by selecting sample points from the cell
centroids, however, in our algorithm, the graph is constructed by intersecting the rays
with each other and also by the edges of the triangles.
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Algorithm 1 The first algorithm in O(n2) time and space

Input: A set VS which includes the vertices of the triangular regions and two start and destination points
s and t .

Output:AgraphG1 = (V , E)which contains theminimumcost path between s and t under theManhattan
metric.

1: Initialize V = Ø and E = Ø.
2: Add the vertices in VS to V .
3: Let V L(αi ) be the vertical line passing through vertex αi , for i = 1, 2, . . . , n in VS .
4: Let HL(αi ) be the horizontal line passing through vertex αi , for i = 1, 2, . . . , n in VS .
5: Add the intersection points among HL(αi ) and V L(α j ), for i, j = 1, 2, . . . , n to V .
6: Add the intersection points among HL(αi ) and the edges of the triangles, for i = 1, 2, . . . , n to V .
7: Add the intersection points among V L(αi ) and the edges of the triangles, for i = 1, 2, . . . , n to V .
8: Add the line segments between adjacent vertices in V that lie on the considered horizontal lines, vertical

lines, or the edges of the triangular regions to E .
9: return G1 = (V , E).

Fig. 2 The constructed graph of Fig. 1

Some of the edges of G1 which lie on an edge of a triangle are oblique. These edges
are useful when two triangular regions are close to each other and the region among
them has a lower weight than these triangles. A path that passes between these two
triangles cannot be completely horizontal or vertical since it will enter the triangles.
So it will be oblique and lie on one of the edges of the triangles (see the sub-path
between b4 and b5 on Fig. 1).

According to the construction of the graph, some vertices and edges are added to
the graph by vertical and horizontal lines passing through vertices in VS . We call the
part of the workspace which lies between two horizontal lines HL(αi ) and HL(αi+1)

(resp., two vertical lines V L(αi ) and V L(αi+1)), for some i , a horizontal lane (resp.,
vertical lane) denoted by LH (resp., LV ). So each LH (resp., LV ) is bounded by two
consecutive horizontal (resp., vertical) lines. Therefore, when we say the lines of an
LH (resp., an LV ), we mean these two lines.
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For constructing the graph, we can use one of the line segments intersections algo-
rithms [31, 32] which computes all k intersections among n line segments in the plane
in O(n log n + k) time. These intersection points are vertices of G1. After specifying
the set of vertices of G1, the set of edges of G1 can be specified. It takes O(n2) time
to construct G1 since the graph has O(n2) vertices and edges. The constructed graph
of the workspace in Fig. 1 is shown in Fig. 2. For simplicity, we do not triangulate
the white regions with weight 1 in these figures. Precisely, we can apply the proposed
algorithm in a polygonal subdivision in which the regions are not triangular. The tri-
angulation of the regions just helps us for showing that G1 contains the minimum cost
path between s and t.

For computing the minimum cost path under the Manhattan metric between s and
t, we can apply Dijkstra’s algorithm to G1. In this case, the minimum cost path is
obtained in O(n2 log n) time. However, since G1 is a planar graph with positive edge
weights, we can apply the algorithm presented by Henzinger et al. [29], which is a
linear-time algorithm, to G1. Therefore, the minimum cost path is obtained in O(n2)
time.

3.2 Correctness Proof

Now, we show that the constructed graph contains the minimum cost path between
s and t under the Manhattan metric. Since our metric for measuring the distance is
Manhattan, we can convert any arbitrary path between s and t to a path that consists
of vertical and horizontal line segments. In other words, when a sub-path between
two consecutive breakpoints is oblique, we can replace it with two horizontal and
vertical line segments where the cost of movement on these horizontal and vertical
line segments is equal to the cost of movement along the oblique line segment. In a
casewhere a sub-path lies between two close triangular regions and the region between
these two triangular regions has a lower weight than these triangles, by applying this
conversion, some parts of the horizontal and vertical line segments may lie in the
triangular region with higher weight. In this case, we can replace the part which lies
in a triangular region with higher cost with a line segment that lies on an edge of
the triangles (see the sub-path between b4 and b5 on Fig. 1). Since the weight of
each of the edges of the workspace is equal to the minimum weight of the regions
that are incident to that edge, the cost of movement between two breakpoints on the
replaced line segments is equal to the cost ofmovement along the oblique line segment.
Therefore, a path between s and t can only consist of horizontal, vertical, and oblique
line segments, the latter of which are located on the edges of the triangles. As a result,
all the paths that we consider in the following lemmas consist of the above mentioned
line segments. Our first objective is to prove the following lemma.

Lemma 1 Let π1, π2 and π3 be three consecutive horizontal (or vertical) sub-paths
from s′ to t ′ which lie inside an LH (resp., an LV) and pass through k > 0 triangular
regions. If dw(π2) < dw(π1), then dw(π3) < dw(π2).

Proof We consider the case k = 2, the proof is similar for any k > 0. For simple
comparison among the sub-paths, let the points s′ and t ′ lie on the same horizontal
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Fig. 3 Three consecutive
horizontal sub-paths from s′ to
t ′ passing through two triangular
regions

line segment. Assume w.l.o.g. that both triangles have vertical edges (see Fig. 3).
The weighted lengths of π1, π2 and π3 are defined as follows (refer to Fig. 3 for the
notations):

dw(π1) = (w1 × a1) + (w2 × a2) + z2 + x2 + L,

dw(π2) = (2 × h) + x1 + (w1 × b1) + (w2 × b2) + x2 + L,

dw(π3) = (2 × h) + x1 + (2 × h′) + z1 + (w1 × c1) + (w2 × c2) + L.

According to Fig. 3, a1 = b1 + x1 and a2 = b2 − z2. Due to the assumption that
dw(π2) < dw(π1), we have the following inequality:

(2 × h) < x1 × (w1 − 1) + z2 × (1 − w2),

and due to the triangle similarity theorems, we have the following equations:

x1
h

= z1
h′ ,

z2
h

= x2
h′ .

By applying the triangle similarity equations in the mentioned inequality and adding
(w1 × c1) + (w2 × b2) to both sides of the inequality we get:

(2 × h′) + z1 + (w1 × c1) + (w2 × c2) < (w1 × b1)

+(w2 × b2) + x2 �⇒ dw(π3) < dw(π2).

Thus, the weighted length of π3 is less than π2. In fact, the proof is based on the
following equation:

h

h′ = x1
z1

= z2
x2

,

and since h
h′ is constant, we can generalize the proof for any k > 0 triangular regions

between s′ and t ′. Therefore, the lemma holds. 	
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Note that inside an LH (resp., an LV ), we can consider all the triangles to have
vertical (resp., horizontal) edges since vertical (resp., horizontal) lines are considered
passing through vertices in VS . The result of this lemma helps us to show that there
exists a shortest path between s and t under the Manhattan metric such that all the
horizontal (resp., vertical) sub-paths between consecutive breakpoints in LHs (resp.,
LVs) lie on the lines of the LHs (resp., LVs). We call such a path, a perfect shortest path
between s and t, denoted by π

p
st . Note that according to the principle of optimality,

since π
p
st is optimal in length, all of its sub-paths in LHs and LVs are also optimal in

length.

Lemma 2 There exists a shortest path between s and t under the Manhattan metric
such that, for any sub-path of the shortest path in anLH (resp., anLV), all the horizontal
(resp., vertical) sub-paths between consecutive breakpoints lie on the lines of the LH
(resp., LV).

Proof Suppose the lemma for the case of a horizontal lane. Similarly, the lemma holds
for a vertical lane. We consider s′ as the entrance point to the LH and t ′ as the exit
point. W.l.o.g. we consider that s′ is on the left side of t ′. Due to the assumption that
the path between s and t is optimal in length, any sub-path of this path is also optimal
in length. Thus, the path between s′ and t ′ is optimal in length. We consider a path
between s′ and t ′ where a horizontal sub-path between two consecutive breakpoints
does not lie on the lines of theLH.We show that there exists an equivalent path between
s′ and t ′ such that all the horizontal sub-paths between consecutive breakpoints lie on
the lines of the LH. We assume c and d as two consecutive breakpoints such that the
horizontal sub-path between them does not lie on the lines of the LH (see Fig. 4).
There are k triangular regions between c and d and the sub-path between these two
breakpoints must pass through all k triangular regions (w.l.o.g. assume c and d are
located on the edges of the triangles). We also assume that the path between s′ and t ′
contains other two breakpoints—we call them a and b—which are on the lower line
of the LH (these two breakpoints are also located on the edges of the triangles). For
passing these triangles, a path can directly go from a to b. Since the path between s′
and t ′ is optimal in length, the path which contains c and d (π2) has less than or equal
length to the case in which it goes directly from a to b (π1). If dw(π1) = dw(π2), an
equivalent path that does not contain the horizontal sub-path between c and d exists.
If dw(π1) < dw(π2), it contradicts our assumption that the path between s and t is
optimal in length. For the other case where dw(π2) < dw(π1), we consider another
path that goes from a to e (a breakpoint on the upper line of the LH and on the edge of
the left-most triangle) and then from e to f (a breakpoint on the upper line of theLH and
on the edge of the right-most triangle) and then to b (π3). According to Lemma 1, since
dw(π2) < dw(π1), therefore, dw(π3) < dw(π2) and this contradicts our assumption
that the path between s and t is optimal in length. Thus, the lemma holds. 	


According to Lemma 2, a path between the entrance (s′) and exit point (t ′) of an
LH (resp., an LV ) is not optimal in length, unless there exists an optimal path in length
such that all the horizontal (resp., vertical) sub-paths between consecutive breakpoints
lie on the lines of the LH (resp., LV ). Precisely, there is always a path π

p
s′t ′ in an LH

(resp., an LV ). According to the construction of the graph, lines of an LH (resp., an
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Fig. 4 Three horizontal paths
passing through k triangular
regions

LV ) are edges of G1, and a horizontal (resp., vertical) sub-path of a path π
p
s′t ′ between

two consecutive breakpoints in an LH (resp., an LV ) lies on the edges of G1.
Corollary 3 For any path π

p
s′t ′ in an LH (resp., an LV), the sub-paths between consecu-

tive breakpoints cannot be simultaneously horizontal (resp., vertical) and lie between
two lines of the LH (resp., LV).

Lemma 4 A breakpoint of a path π
p
s′t ′ in an LH (resp., an LV) is located on a line of

an LH or an LV or possibly both.

Proof We assume that b is a breakpoint in an LH which is not located on a line of the
LH or a LV. According to Corollary 3, the line segment that is incident to b cannot be
horizontal. Therefore, one of the line segments is vertical and the other one is located
on an edge of a triangle. Since b is also located in an LV and is not located on one
of the lines of the LV, the vertical line segment incident to b lies between the left and
right lines of the LV, which contradicts Corollary 3. Thus, the lemma holds. 	


Lemma 4 shows that the breakpoints of the perfect shortest paths in LHs (resp.,
LVs) must lie on the lines of the LHs and LVs, meaning that they lie on the edges of G1
(since the lines of LHs and LVs are edges of G1). The next step is to show that these
breakpoints are located on the vertices of G1.
Lemma 5 For a path π

p
s′t ′ in an LH (resp., an LV), the breakpoints of the path are

located on the vertices of G1.
Proof According to Lemma 4, a breakpoint of a path π

p
s′t ′ in an LH (resp., an LV ) is

located on a line of an LH or an LV or possibly both. If a breakpoint is located on both
a line of an LV and a line of an LH, it is on the intersection point of these two lines.
Thus, it is on a vertex of G1. If it is only located on a line of an LH or an LV, and one
of the incident line segments lies on a triangle edge, then the breakpoint is located on
a vertex of G1 (since the intersection of an LH or LV line with a triangle edge is a
vertex of G1). Therefore, the breakpoints of a path π

p
s′t ′ are on the vertices of G1. 	


Lemma 5 shows that the breakpoints of a path π
p
s′t ′ in an LH (resp., an LV ) are

located on the vertices of G1. The next step is to show that a path π
p
s′t ′ under the
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Manhattan metric in an LH (resp., an LV ) is on G1. To this end, we need to show that
the edges of the path π

p
s′t ′ are on the edges of G1.

Lemma 6 A path π
p
s′t ′ in an LH (resp., an LV) is on G1.

Proof According to Lemma 5, the breakpoints of a path π
p
s′t ′ in an LH (resp., an LV )

are on the vertices of G1. Let e be an edge between two consecutive breakpoints. If e
is on an edge of a triangle, it is on G1. Now we assume that e is in an LH and is not
on G1. According to Corollary 3, e cannot be horizontal since it must lie on one of
the lines of the LH, and the lines of LHs are edges of G1. Therefore, it is a vertical
edge. Since it is also located in an LV and is not on G1, it is not on a line of the LV.
Therefore, it contradicts Corollary 3. Thus, e is on G1. 	


According to Lemma 6, perfect shortest paths in LHs and LVs which are sub-paths
of a path π

p
st are on the constructed graph. Note that in all the lemmas, a path between s

and t only consists of horizontal, vertical, and oblique line segments, the latter of which
are located on the edges of the triangles. In the continuous workspace, an arbitrary
path between s and t consists of line segments that are not in the form of the mentioned
line segments. Finally, we prove that there exists a shortest path between s and t on
G1.

Theorem 7 For a shortest path π1 under the weighted Manhattan metric in the con-
tinuous work space from s to t, there exists a path π2 from s to t on G1 such that
dw(π2) ≤ dw(π1).

Proof It is obvious that when the metric for measuring the distance is Manhattan, any
arbitrary path in the continuous workspace can be converted to a path that consists of
the three mentioned line segments without increment in the cost of the path. Thus, we
convert π1 to π ′

1 such that the line segments in π ′
1 are in the form of the mentioned

line segments. Obviously, dw(π ′
1) = dw(π1). According to the principle of optimality,

each sub-path of an optimal path in length is also optimal. Therefore, π ′
1 consists of

optimal sub-paths in length in LHs and LVs. According to Lemma 2, for any shortest
path in an LH (resp., an LV ), there exists a path π

p
s′t ′ , and due to the Lemma 6, perfect

shortest paths in LHs and LVs are on G1. Thus, π ′
1 can be converted to a perfect shortest

path π2 without increment in the cost of the path. Therefore, a path from s to t on G1
exists (π2) whose weighted length is not greater than π1. 	


According to Theorem 7, G1 contains a shortest path from s to t under the weighted
Manhattan metric. Since simple polygons can be triangulated in O(n log n) time and
O(n) space [30],workspaceswith simple polygonal regions canbediscretizedbyusing
the mentioned graph construction algorithm. Thus, the proposed algorithm solves
WRP under the Manhattan metric.

Theorem 8 The weighted region problem in a planar polygonal subdivision with pos-
itive weights can be solved in O(n2) time and space under the Manhattan metric,
where n is the total number of vertices of the subdivision.
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4 The Second Algorithm:O(n log2 n) Time andO(n logn) Space

By considering vertical and horizontal lines passing through vertices in VS , we built a
planar graph G1, which has O(n2) vertices and edges. In this section, wewill show that
a graph G2, which contains the minimum cost path between two points s and t under
the Manhattan metric, can be constructed by using a divide and conquer approach.
The graph G2 has O(n log n) vertices and edges.

4.1 The Algorithm

The basic idea for constructing a graph G2 = (V , E), which contains the minimum
cost path between s and t under the Manhattan metric, is using a divide and conquer
approach. To be precise, at each recursive step of the algorithm, a vertical line xmid

is considered passing through the median of the x-coordinates of the vertices in VS .
This vertical line is called a vertical cut line. Let PL and PR denote the set of vertices
in VS which are located on the left side and right side of the xmid , respectively. For
each vertex p ∈ PR ∪ PL , the perpendicular projection p′ on xmid is computed and is
added to V . Also, the edge (p, p′) is added to E . Then, the intersection points among
xmid and the edges of the triangles are added to V . This procedure is done recursively
on the set PR and PL , respectively, until all the vertices in VS are located on a vertical
cut line. (Note that the vertices in VS are included in V .) The above procedure is also
done horizontally. Finally, an edge for every two consecutive vertices on all considered
vertical and horizontal cut lines is created and added to E . Also, we create an edge
for every two adjacent vertices in V where the line segment between them lies on an
edge of a triangle. This algorithm is described below.

Algorithm 2 The second algorithm in O(n log2 n) time and O(n log n) space

Input: A set VS which includes the vertices of the triangular regions and two start and destination points
s and t .

Output:AgraphG2 = (V , E)which contains theminimumcost path between s and t under theManhattan
metric.

1: Initialize V = Ø and E = Ø.
2: Add the vertices in VS to V .
3: Let xmid be the vertical cut line passing through the median of the x-coordinates of the vertices in VS .
4: For each vertex p ∈ PR ∪ PL , compute the perpendicular projection p′ on xmid , add p′ to V , and add

the edge (p, p′) to E .
5: Add the intersection points among xmid and the edges of the triangular regions to V .
6: Repeat steps 3-5 recursively on the set PR and PL , respectively, until all the vertices of the subdivision

are located on a vertical cut line.
7: Do the same thing in steps 3-6 horizontally.
8: Insert an edge in E for every two consecutive vertices on all considered vertical and horizontal cut lines.
9: Insert an edge in E for every two adjacent vertices in V where the line segment between them lies on

an edge of a triangle.
10: return G2 = (V , E).
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Note that for computing the perpendicular projections of the points in PR and PL ,
the vertices in VS which are located on xmid are also considered.

In the above algorithm, some edges which are added to E pass through more than
one region. Precisely, an edge between a vertex in PR or PL and its perpendicular
projection on xmid may pass throughmore than one region. At the end of the algorithm,
these edges are replaced with the edges which lie completely within one region and
lie on these edges. For instance, suppose vertex p and its perpendicular projection p′
on the vertical cut line xmid . The edge (p, p′) passes through more than one region.
In the horizontal procedure of the algorithm, a horizontal cut line passes through p
and lies on the edge (p, p′). According to the above algorithm, the intersection points
among this horizontal cut line and the edges of the triangular regions are added to V .
Also, an edge for every two consecutive vertices on this horizontal cut line is created.
Therefore, we can replace the edge (p, p′) with other edges which lie on (p, p′) and
lie completely within one region. Thus, each edge in E lies completely within one
region. The weights of the edges in E are calculated similar to the first algorithm.

This algorithm is based on a divide and conquer approach which is similar to
the algorithm SRP0 presented by Lee et al. [24]. In both algorithms, vertical and
horizontal cut lines are considered passing through the median of the x-coordinates
and y-coordinates of all the vertices of the subdivision, respectively. Also, in both
algorithms, distances are measured under the weighted Manhattan metric. In SRP0,
the edge (p, p′) is added to E if it lies totally in one of the regions, however, in the
proposed algorithm, the perpendicular projection of all the vertices on the right side
and left side of the vertical cut lines (or above and below the horizontal cut lines)
are computed and the edge between each vertex and its perpendicular projection is
added to E . In SRP0, all the regions are isothetic, however, in the proposed algorithm,
all the regions are triangular. Therefore, the proposed algorithm solves WRP under
the Manhattan metric in a case where regions are arbitrary simple polygons (since a
simple polygon with n vertices can be triangulated in O(n log n) time and O(n) space
[30]).

The set V consist of the set of vertices of the subdivision (VS ), the set of the perpen-
dicular projection points, and the set of the points that are generated by intersecting
vertical cut lines and horizontal cut lines with the edges of the triangles. The set VS is
of size O(n). For constructing the graph, there exist O(log n) recursive steps, each of
which gives rise to O(n) perpendicular projection points and intersection points with
the edges of the triangles. Therefore, G2 has O(n log n) vertices and edges.

By sorting and sweeping sweep lines over the vertices in VS , the set of vertices of
the graph is obtained. For specifying the set of edges of the graph, the set V needs to be
sorted. Therefore, it takes O(n log2 n) time to construct G2. The vertical procedure of
the algorithm of the workspace on Fig. 5a is shown in Fig. 5b–e. Also, the constructed
graph of the workspace in Fig. 5a, based on the second algorithm, is shown in Fig. 5h.
Note that, vertical and horizontal recursions are not done separately in the algorithm.
Precisely, horizontal recursions are done after the termination of vertical recursions.
However, for the sake of clarity, the final horizontal recursion of the workspace on
Fig. 5a, is shown on Fig. 5h separately. In fact, the final horizontal recursion, based
on the algorithm, is shown in Fig. 5g. Finally, by applying Dijkstra’s algorithm to G2,
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Fig. 5 The vertical recursive steps of the workspace in a is shown in b–e. The final horizontal recursion of
the workspace in a is shown in f. The combination of the vertical and horizontal recursions is shown in g.
The final graph is shown in h
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Fig. 6 The translated coordinate
system with the intersection
point of CV and CH as the
origin

the minimum cost path between s and t under the Manhattan metric is obtained in
O(n log2 n) time.

4.2 Correctness Proof

In the first algorithm, by considering horizontal and vertical lines passing through
vertices in VS and then adding their intersection points to the set of vertices of the
graph, we built at most two direct rectilinear paths between every two vertices in VS .
In the second algorithm, there are no direct rectilinear paths between vertices in VS
that are located on the left and right side of the vertical (resp., above and below the
horizontal) cut lines. To be precise, at each recursive step of the second algorithm,
these vertices are connected to each other by some points on the vertical and horizontal
cut lines. Therefore, we will show that for every direct rectilinear path π1 among the
vertices in VS on G1, there exists a path π2 on G2 such that dw(π2) ≤ dw(π1). In
addition to direct rectilinear paths on G1, there exist other oblique sub-paths between
vertices in VS , which are on the edges of the triangles. Since both graphs contain these
sub-paths, we will only consider rectilinear paths in the correctness proof.

Observation 9 The intersection point of a vertical cut line CV and a horizontal cut
line CH is a vertex of G2 if and only if two vertices v1 and v2 in the set VS are on
different sides of these two cut lines.

Proof According to the second algorithm, vertical and horizontal cut lines are consid-
ered passing through vertices in VS . Therefore, there is a vertex in VS above or below
CH which is located onCV . Due to the second algorithm, the perpendicular projection
of this vertex on CH , which is on the intersection point of these two cut lines, is in the
set of vertices of G2. 	


Lemma 10 For two vertices v1 and v2 in the set VS which are located on different
sides of a vertical cut line CV and a horizontal cut line CH , there exists a path between
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Fig. 7 Different cases in Lemma 10

them on G2 such that the weighted length of this path under the Manhattan metric is
not greater than the weighted length of the direct rectilinear path between them.

Proof Let o be the intersection point of CV and CH and C(o) denote the translated
coordinate system with o as the origin. W.l.o.g. assume v1 and v2 are located in the
third and first quadrant of C(o), respectively. The perpendicular projection of v1 on
CV generates v′

1 and the perpendicular projection of v2 on CH generates v′
2. Also, let

x be the intersection point of the horizontal line passing through v1 and the vertical
line passing through v2, which is located in the fourth quadrant of C(o) (see Fig. 6).
We will show that there is a path between v1 and v2 on G2 whose weighted length
under theManhattan metric is not greater than the direct rectilinear path between them
(v1xv2). According to the second algorithm, the edges (v1, v

′
1) and (v2, v

′
2) are in the

set of edges of G2. Therefore, we will only show that there exists a path between v′
1

and v′
2 on G2 whose weighted length under the Manhattan metric is not greater than

v′
1xv

′
2. We consider the following cases.
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Fig. 8 Case 1 in Lemma 10 in
which a part of an equivalent
path between v′

1 and v′
2 lies on

an edge of a triangle

Case 1. There is no vertex of VS in the fourth quadrant of C(o). Therefore, v′
1ov

′
2 is

an equivalent path of v′
1xv

′
2. According to Observation 9, since o is a vertex of G2, the

edges (v′
1, o) and (v′

2, o) are in set of edges of G2.
Case 2. There is only one vertex y of VS in the fourth quadrant of C(o) which is
located above v′

1x and on the left side of v′
2x . The perpendicular projections of y on

CV and CH generate points a and b, respectively, which are in the set of vertices of
G2 (see Fig. 7a). In this case, v′

1aybv
′
2 is an equivalent path of v′

1xv
′
2.

Case 3. There is only one vertex y of VS in the fourth quadrant of C(o) which is
located above the line passing through v′

1x and on the right side of v′
2x . The perpen-

dicular projections of y on CV and CH generate points a and b, respectively. Also, the
perpendicular projection of y on the line passing through v′

1x generates point c (see
Fig. 7b). These three points are in the set of vertices of G2. According to Lemma 1,
v′
2bcx or v′

2ov
′
1x has less than or equal length to v′

2x . Therefore, v
′
1cbv

′
2 or v′

1ov
′
2 is

an equivalent path of v′
1xv

′
2.

Case 4. There is only one vertex y of VS in the fourth quadrant of C(o) which is
located below v′

1x and on the left side of the line passing through v′
2x . The perpendic-

ular projections of y on CV and CH generate points a and b, respectively. Also, the
perpendicular projection of y on the line passing through v′

2x generates point c (see
Fig. 7c). These three points are in the set of vertices of G2. According to Lemma 1,
v′
1acx or v′

1ov
′
2x has less than or equal length to v′

1x . Therefore, v
′
1acv

′
2 or v′

1ov
′
2 is

an equivalent path of v′
1xv

′
2.

Case 5. There is only one vertex y of VS in the fourth quadrant of C(o) which is
located below the line passing through v′

1x and on the right side of the line passing
through v′

2x . The perpendicular projections of y on CV and CH generate points a
and b, respectively, which are in the set of vertices of G2 (see Fig. 7d). According to
Lemma 1 and similar to Case 3 and Case 4, v′

1aybv
′
2 or v′

1ov
′
2 is an equivalent path of

v′
1xv

′
2.

In all the above cases, if the equivalent path between v′
1 and v′

2 enters a triangular
region such that the weighted length of the path increases, we replace the part which
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lies in a triangular region with higher cost with a line segment which lies on an edge
of the triangle. For instance, suppose case 1 in which an edge of a triangle intersects
CV and CH in points a and b in the fourth quadrant of C(o), respectively (see Fig. 8).
In this case, v′

1abv
′
2 is an equivalent path of v

′
1xv

′
2 (since the weighted length of v

′
1ov

′
2

under the Manhattan metric, is more than v′
1xv

′
2). Note that, the weight of each of the

edges of the triangles is equal to the minimum weight of the regions that are incident
to that edge, and the intersection points of the vertical and horizontal cut lines with
the edges of the triangles are vertices of G2.

For the other cases in which there are more than one vertex of VS in the fourth
quadrant of C(o), similar to the above cases, it is easy to show that there exists an
equivalent path on G2. 	


According to the first algorithm, there are at most two direct rectilinear paths
between every two vertices of VS on G1. Precisely, If two vertices in VS have dif-
ferent x-coordinates and y-coordinates, there are two direct rectilinear paths between
them on G1. In Lemma 10, we showed that these paths have an equivalent path on
G2. If two vertices in VS have the same x-coordinates or y-coordinates, there is only
one direct rectilinear path between them on G1. According to the second algorithm,
it is obvious that G2 contains these paths (since both vertices are located on the same
horizontal or vertical cut line).

Theorem 11 For a shortest path π1 under the weighted Manhattan metric in the con-
tinuous work space from s to t, there exists a path π2 from s to t on G2 such that
dw(π2) ≤ dw(π1).

Proof According to Theorem 7, a path π ′
2 from s to t on G1 exists such that dw(π ′

2) ≤
dw(π1). G1 contains three kinds of paths between vertices in VS : oblique paths, which
are located on the edges of the triangles, direct rectilinear paths with two breakpoints,
and direct rectilinear paths with three breakpoints. It is obvious that G2 contains direct
rectilinear paths with two breakpoints. In Lemma 10, we showed that G2 contains
equivalent paths for direct rectilinear paths with three breakpoints. Also, both graphs
G1 and G2 contain oblique paths. Therefore, there exists a path π2 from s to t on
G2 such that dw(π2) ≤ dw(π ′

2). Thus, G2 contains the minimum cost path under the
Manhattan metric from s to t . 	


According to Theorem 11,G2 contains a shortest path from s to t under the weighted
Manhattan metric. Thus, the proposed algorithm solves WRP under the Manhattan
metric.

Theorem 12 The weighted region problem in a planar polygonal subdivision with
positive weights can be solved in O(n log2 n) time and O(n log n) space under the
Manhattan metric, where n is the total number of vertices of the subdivision.

By using the triangular inequality, it is easy to see that the length of a path under the
Manhattanmetric is atmost

√
2 times of the length of the path under the Euclideanmet-

ric. Thus, the proposed algorithms are also
√
2-approximation algorithms for solving

WRP under the Euclidean metric.
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Corollary 13 The first algorithm in O(n2) time and space and the second algorithm in
O(n log2 n) time and O(n log n) space are

√
2-approximation algorithms for solving

the weighted region problem in a planar polygonal subdivision with positive weights
under the Euclidean metric.

5 The Three-Dimensional Case

In this section, we consider WRP in three dimensions. It has been shown that the
problem of finding a shortest path under any LP metric in a three-dimensional poly-
hedral environment is NP-hard [28]. So, here we consider a specific variation where
the regions are rectilinear.

Since the metric for measuring the distance isManhattan, any oblique path between
two consecutive breakpoints in three-dimensional space can be converted to three
parallel line segments to x , y, and z axeswithout increment in the cost of the path. Thus,
we consider all the paths to be rectilinear. First of all, we generalize the first algorithm
for constructing a graph G′

1 in three dimensions, which contains the minimum cost
path between two points s and t . Then, we show that the second algorithm can also
be generalized for constructing a graph G′

2 in the case of rectilinear regions in three
dimensions.

Let n be the total number of vertices of the subdivision and let (xi , yi , zi ), for
i = 1, 2, . . . , n be the coordinates of the vertices of the regions (and of s and t) in
sorted order (these points are sorted three times by x-, y- and z-coordinates). Let P
be the set of planes x = xi , y = yi , z = zi , for i = 1, 2, . . . , n. The set of vertices of
G′
1 consists of the intersection points among at least three planes in P , and the set of

edges of G′
1 consists of the line segments between two adjacent vertices of the graph

which lie on the intersection lines between at least two planes in P . The constructed
graph has O(n3) vertices and edges, and by applying Dijkstra’s algorithm to it, the
minimum cost path under the Manhattan metric is obtained in O(n3 log n) time.

Similar to the definitions ofLH andLV in the planar case, we define notations for the
three-dimensional case. Let XYC denote a part of the workspace which is bounded by
twoplanes pi and pi+1 orthogonal to the x-axis and twoplanes p j and p j+1 orthogonal
to the y-axis in P , for some i and j , which is called an XY − container . Note that an
XYC is not bounded along the z-axis. X ZC and Y ZC notations are defined similarly.
Since all the paths are considered to be rectilinear, for any path in an XYC , there
exists an equivalent path such that all the sub-paths between consecutive breakpoints
along the z-axis are located on the planes bounding XYC . Precisely, according to
the graph construction algorithm of G′

1, each XYC consists of some cuboids where
the cost of movement in every part of a cuboid is the same. Therefore, the sub-paths
along the z-axis in a cuboid have the same cost when they are located either on the
planes bounding XYC or inside the cuboid. Similar results hold for an X ZC and a
Y ZC . Thus, an equivalent path between s and t exists where all the sub-paths between
consecutive breakpoints are located on the considered planes inP . Arguments similar
to the ones used in Theorem 7 show that G′

1 contains the minimum cost path between
s and t under the Manhattan metric.
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To construct G′
2, first, some additional points are added to the set of vertices of

the subdivision. These points are obtained by intersecting planes in P with the edges
of the regions. Since the number of such points is O(n2), the number of vertices of
subdivision becomes O(n2) as well. This step is similar to the one that is used in the
algorithm for computing a shortest path in three-dimensions between two points s and
t among three-dimensional non-intersecting rectilinear obstacles under theManhattan
metric presented by Clarkson et al. [33]. Similar to the planar case, we denote the set
of vertices of the subdivision by VS . Then, the vertices in VS are added to the set of
vertices of G′

2. Next, G′
2 is constructed as follows.

Let pxmid be the plane perpendicular to the x-axis passing through the median of
the x-coordinates of the vertices in VS . The vertices in VS on either side of pxmid

are projected on this plane. Also, the line-segments between the vertices in VS on
either side of pxmid and their projections on pxmid are added to the set of edges of
G′
2. Moreover, the edges and vertices of G′

2 on the plane pxmid are computed using the
planar algorithm. We then recursively do the above procedure on the set of vertices
of the subdivision on either side of pxmid until all the vertices in VS are located on
a plane perpendicular to the x-axis. The above procedure is repeated two more times
according to the y-coordinates and z-coordinates of the vertices in VS . The constructed
graph has O(n2 log2 n) vertices and edges. To be precise, there are O(log n) recursive
steps, each of which gives rise to O(n2 log n) vertices and edges. Finally, by applying
Dijkstra’s algorithm to G′

2, the minimum cost path under the Manhattan metric is
obtained in O(n2 log3 n) time.

In the generalization of the first algorithm, theworkspace is partitioned into cuboids,
and all of the vertices of the cuboids are in the set of vertices of G′

1. Therefore, we
only showed that an equivalent path between s and t exists such that all the sub-
paths between consecutive breakpoints are located on the considered planes in P ,
and according to Theorem 7, the sub-paths on these planes are located on G′

1. In the
generalization of the second algorithm, by considering planes perpendicular to the
x , y, and z axes in the divide and conquer procedure, the workspace is partitioned
into cuboids as well. (Note that the planes that we consider in the divide and conquer
procedure are the planes in P .) The difference here lies in the fact that some vertices
of the cuboids are not in the set of vertices of G′

2. Thus, we need to show that an
equivalent path between s and t exists such that all the sub-paths between consecutive
breakpoints are located on the considered planes in the divide and conquer procedure
(orP), and each breakpoint of the path between two sub-paths on two different planes
is on G′

2. Precisely, a breakpoint of the equivalent path where the path enters another
plane should be on G′

2.
The considered planes in the divide and conquer procedure are the planes in P .

Therefore, according to the arguments in the generalization of the first algorithm, an
equivalent path π ′

st between s and t exists where the sub-paths between consecutive
breakpoints are located on the considered planes in the divide and conquer procedure.
Thus, we only need to show that an equivalent path π ′′

st of π ′
st exists where each

breakpoint of π ′′
st between two sub-paths on two different planes is on G′

2.

Lemma 14 For a shortest pathπ ′
st , such that the sub-paths between consecutive break-

points in π ′
st are located on the considered planes in the divide and conquer procedure
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of the generalization of the second algorithm, there exists an equivalent path π ′′
st such

that each breakpoint of π ′′
st between two sub-paths on two different planes is on G′

2.

Proof Since we considered all the paths to be rectilinear, there exist three kinds of sub-
paths between consecutive breakpoints: sub-paths along the x-axis, sub-paths along
the y-axis, and sub-paths along the z-axis. All these sub-paths in π ′

st are located on
the considered planes in the divide and conquer procedure. W.l.o.g. suppose the case
where a sub-path of π ′

st along the x-axis (sx ) is located on a plane perpendicular to
the z-axis (pz) and a sub-path along the z-axis (sz) is located on a plane perpendicular
to the x-axis (px ). These two sub-paths are connected to each other in a breakpoint
called b. We will show that b is located on a vertex of G′

2 in the equivalent path π ′′
st .

The sub-path sz is also located in an XYC . Therefore, it can be moved inside the XYC
without an increment in the cost of the path. If an edge of the XYC is located on an
edge of a region at a point which is located on the plane pz , we can locate the sub-path
sz on that edge in the equivalent path π ′′

st . Therefore, b is located on an edge of a
region, and since the intersections of the plane pz with the edges of the subdivision
are vertices of the subdivision, b is located on a vertex of G′

2. Otherwise, the XYC is
inside a region on the plane pz , and according to the graph construction algorithm,
there exists a perpendicular projection which is located on the plane pz and also on
one of the planes that surrounds the XYC . Thus, b can be located on that point (the
perpendicular projection) in the equivalent path π ′′

st . 	

According to Lemma 14 and arguments in the generalization of the first algorithm,

there exists an equivalent path between s and t such that all the sub-paths between
consecutive breakpoints are located on the considered planes in the divide and conquer
procedure, and each breakpoint of the path between two sub-paths on two different
planes is on G′

2. Thus, arguments similar to the ones used in Theorem 11 show that G′
2

contains the minimum cost path between s and t under the Manhattan metric.

Theorem 15 The weighted region problem in a three-dimensional workspace among
rectilinear regions with positive weights can be solved in O(n2 log3 n) time and
O(n2 log2 n) space under theManhattanmetric, where n is the total number of vertices
of the subdivision.

6 Conclusion

In this paper, we considered a generalization of path planning problem—called
weighted region problem (WRP). While the unsolvability of WRP over the rational
numbers under the Euclidean metric has been proved [13], we proposed two polyno-
mial time algorithms for solving WRP under the Manhattan metric, which are also√
2-approximation solutions for the Euclidean case. The first one is a simple, easy to

understand and easy to implement algorithm, however, in the second algorithm, the
time and space complexity have been improved. In fact, it takes O(n log2 n) time and
O(n log n) space to compute the minimum cost path between two start and destination
points s and t under the Manhattan metric, where n is the total number of vertices in
the subdivision. We also considered the case of rectilinear regions in three dimensions
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and generalized our algorithms for this case. It has been shown that �(n log n) is a
lower bound for the shortest rectilinear path problem from s to t in the presence of
disjoint isothetic rectangles [34]. Therefore, the lower bound of the problem consid-
ered in this paper is also �(n log n). Improving the time complexity and providing a
better approximation factor for the Euclidean metric remain open.
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