
Graphs and Combinatorics (2023) 39:6
https://doi.org/10.1007/s00373-022-02597-6

ORIG INAL PAPER

Reconstruction of a Coloring from its Homogeneous Sets

C. Piña1,2 · C. Uzcátegui2

Received: 16 September 2021 / Revised: 26 October 2022 / Accepted: 6 November 2022 /
Published online: 27 December 2022
© The Author(s) 2022

Abstract
We study the following reconstruction problem for colorings. Given a countable set X
(finite or infinite), a coloring on X is a function ϕ : [X ]2 → {0, 1}, where [X ]2 is the
collection of all 2-elements subsets of X . A set H ⊆ X is homogeneous for ϕ when
ϕ is constant on [H ]2. Let hom(ϕ) be the collection of all homogeneous sets for ϕ.
The coloring 1 − ϕ is called the complement of ϕ. We say that ϕ is reconstructible
up to complementation from its homogeneous sets, if for any coloring ψ on X such
that hom(ϕ) = hom(ψ) we have that either ψ = ϕ or ψ = 1− ϕ. We present several
conditions for reconstructibility and non reconstructibility. For X an infinite countable
set, we show that there is a Borel way to recovering a coloring from its homogeneous
sets.

Keywords Graph reconstruction · Coloring of pairs · Maximal homogeneous sets ·
Borel selectors
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1 Introduction

In this paper we study the following reconstruction problem for colorings. Given
a countable set X (finite or infinite), a coloring on X is a function ϕ : [X ]2 →
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{0, 1}, where [X ]2 is the collection of 2-element subsets of X . Let hom(ϕ) be the
homogeneous sets for ϕ; that is, the collection of H ⊆ X such that ϕ is constant
on [H ]2. Clearly, hom(ϕ) = hom(1 − ϕ). We say that ϕ is reconstructible up to
complementation from its homogeneous sets, if for any coloring ψ on X such that
hom(ϕ) = hom(ψ) we have that either ψ = ϕ or ψ = 1 − ϕ. In the terminology of
graphs, we are talking about graphs that can be reconstructed (up to complementation)
from the collection of their cliques and independent sets.

This type of reconstruction problem was considered long time ago in [3] for finite
graphs but apparently was not pursued any further. A somewhat similar problem was
addressed in [4, 5, 9]. They analyzed a variant of the well known graph reconstruction
conjecture (see [1]), and studied conditions under which a pair of graphs with the
same homogeneous sets are isomorphic up to complementation. In this paper we
study conditions under which a pair of graphs with the same homogeneous sets are
equal up to complementation.

An example of a reconstructible coloring is given by the random graph. We extract
from this example a generalmethod for showing reconstrutibilitywhich is quite useful.
Suppose that for every F ⊆ X with |F | = 4 there is Y ⊇ F such that the restriction
of ϕ to [Y ]2 is reconstructible, then ϕ is reconstructible. In particular, whenever a
coloring ϕ on N has infinitely many initial segments which are reconstructible, then
ϕ itself is reconstructible.

The first example that we found of a non-reconstructible coloring is given by a
partition of N into two infinite sets. We associate to this partition a coloring ϕ where
ϕ({x, y}) = 1 if and only if both x and y belong to the same part of the partition.
This example satisfies a very simple criterion for non reconstructibility: If there is a
pair {x, y} (an edge) such that ϕ({x, z}) = 1 − ϕ({y, z}) for all z ∈/{x, y}, then ϕ

is non-reconstructible. The reciprocal is not true. Such pairs (edges) will be called
critical. We show a characterization of colorings that admits a critical pair.

In the example mentioned above of a coloring associated to a partition ofN into two
parts, the collection of its homogeneous sets has exactly two maximal elements with
respect to inclusion. Motivated by that, we present some results relating the structure
of the family of maximal homogeneous sets to the reconstruction problem.

In the last section of the paper we study the reconstruction problem from a descrip-
tive set theoretic point of view. For instance, the collection of reconstructible colorings
on N is a dense Gδ subset of the space of colorings {0, 1}[N]2 , that is, from the Baire
category point of view, almost every coloring is reconstructible.We can regard hom(ϕ)

as a closed subset of the Cantor space {0, 1}N (which will be denoted, as usual, by 2N),
thus as an element of the hyperspace K (2N), which is a Polish space endowed with the
usual Vietoris topology. We show that there is a Borel way to recover a coloring from
its homogeneous sets. More precisely, there is Borel map f : K (2N) → {0, 1}[N]2

such that f (hom(ϕ)) is a reconstruction of ϕ, i.e., hom( f (hom(ϕ)) = hom(ϕ).
To finish this introduction we comment about our original motivation. A collection

H of subsets of N is tall, if for every infinite set A ⊆ N, there is an infinite set B ∈ H
such that B ⊆ A. Ramsey’s Theorem says that hom(ϕ) is tall for every coloring
ϕ on N. Some tall families admit a Borel selector, that is, a Borel map such that
given an infinite set A, the map selects an infinite subset of A belonging to the tall
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family [6]. The collection hom(ϕ) is an important example of a tall family admitting
a Borel selector [6, 7]. It is an open problem to find a characterization of those tall
Borel families that admit a Borel selector. A quite related question is to characterize
when a tall Borel family H admits a coloring ϕ such that hom(ϕ) ⊆ H. In other
words, when is it possible to extract from such tall family H a coloring ϕ such that
hom(ϕ) ⊆ H? These considerations lead naturally to a Borel reconstruction problem:
SupposeH = hom(ϕ), can we recover fromH, in a Borel way, a coloring ψ such that
hom(ψ) = H? In the last section of the paper we show that the answer is positive.

2 Preliminaries

We will use standard notation from set theory. Throughout the article, X will denote
a countable (finite or infinite) set. Given k ∈ N, we will denote by [X ]k the collection
of all subsets of X of size k, by [X ]<k the subsets of X of size strictly less than k,
and by [X ]≤k the union [X ]k ∪ [X ]<k . The collection of all finite subsets of X will be
denoted by [X ]<ω. X<ω denotes the collection of all finite sequences of elements of
X and X≤n the collection of sequences of length at most n of elements of X .

A coloring on a set X , is any mapping ϕ : [X ]2 → {0, 1}. Whenever is clear from
the context, we identify 2 with {0, 1}. For instance, the collection of all colorings
{0, 1}[X ]2 will be denoted by 2[X ]2 . Given a coloring ϕ on X and Y ⊆ X , we will
denote by ϕ|Y the restriction of ϕ to [Y ]2. We say that ψ extends ϕ, and write ϕ ⊆ ψ ,
whenever ϕ is a coloring on Y , ψ is a coloring on X , Y ⊆ X and ψ |Y = ϕ. We
write ϕ ⊂ ψ when ϕ ⊆ ψ and ϕ 	= ψ . For X infinite, the family of colorings 2[X ]2

will be seen as a topological space with the usual product topology which makes it
homeomorphic to 2X .

A partition of X is a collection (Ai )i∈I of non empty subsets of X such that I ⊆ N,
X = ⋃

i∈I Ai , and Ai ∩ A j = ∅ for every i 	= j in I . Given X = ⋃
i∈I Ai a partition

of X , we let the coloring associated to the partition be the mapping ϕ : [X ]2 → 2
defined by ϕ({x, y}) = 1 if and only if x, y ∈ Ai for some i ∈ I . Given a linear
ordering (X ,<) and {n,m} ∈ [X ]2, we denote by {n,m}< the fact that n < m. If
e = {rn}n is an enumeration of Q, the Sierpiński coloring ϕe : [N]2 → 2, associated
to e, is defined by ϕe({n,m}<) = 1 if and only if rn < rm .

The random graph R = 〈N, E〉 (see [2]) has the following extension property.
Given two finite disjoint subsets A, B of N, there is n ∈ N such that {x, n} ∈ E for all
x ∈ A and {y, n} /∈ E for all y ∈ B. This makes R universal in the following sense.
Given a graph 〈N,G〉, there is a subset X ⊆ N such that 〈N,G〉 and 〈X , E |X 〉 are
isomorphic.

Given a coloring ϕ : [X ]2 → 2, we say that H ⊆ X is i-homogeneous (for ϕ) if
ϕ([H ]2) = {i} for i ∈ {0, 1}. This notion is clearly trivial if |H | = 2, so we assume
that an homogeneous set has at least three elements. Denote by hom(ϕ) the set of
homogeneous sets for ϕ; that is,

hom(ϕ) = {H ⊆ X : ϕ is constant on [H ]2}.
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Proposition 2.1 Let ϕ and ψ be two colorings on a set X. Then hom(ϕ) = hom(ψ)

if and only if hom(ϕ) ∩ [N]3 = hom(ψ) ∩ [N]3.
Proof Suppose hom(ϕ) ∩ [N]3 = hom(ψ) ∩ [N]3 and let H be a homogeneous set
for ϕ. Let {x, y}, {w, z} be two different pairs in [H ]2, by hypothesis {x, y, w} and
{y, w, z} are ψ-homogeneous, hence H is ψ-homogeneous. ��

It is clear that if ϕ is the coloring associated to the partition X = ⋃
i∈I Ai , then

hom(ϕ) = {H : H ⊆ Ai for some i ∈ I } ∪ {H : |H ∩ Ai | ≤ 1 for every i ∈ I }. On
the other hand, if ϕe is the Sierpiński coloring associated to an enumeration e = {rn}n
of Q, then H ∈ hom(ϕe) if and only if H is monotone respect to e; that is, if either
rn < rm for every n < m in H , or rn ≥ rm for every n < m in H . In general, it is well
known, that if |X | ≥ 6, there is an homogeneous set of size 3. Furthermore, we recall
that Ramsey’s Theorem states that every coloring ϕ : [X ]2 → 2 on an infinite set X
has an infinite homogeneous set.

A coloringϕ : [X ]2 → 2 is said to be reconstructible (up to complementation) from
its homogeneous sets if given a coloring ψ : [X ]2 → 2 such that hom(ϕ) = hom(ψ),
we have that either ϕ = ψ or ϕ = 1−ψ . LetR be the collection of all reconstructible
colorings, and let ¬R be its complement. We will call a coloring non-reconstructible
if it belongs to ¬R. Since hom(ϕ) = hom(1 − ϕ), we have that ϕ ∈ R if and only
if 1 − ϕ ∈ R. Finally, given ϕ,ψ ∈ 2[X ]2 , we say that ψ is a reconstruction of ϕ, if
hom(ψ) = hom(ϕ) and we say it is a non-trivial reconstruction if in addition ψ 	= ϕ

and ψ 	= 1 − ϕ.

3 Reconstructible Colorings

The aim of this section is to present some sufficient conditions for the reconstructibility
of a coloring. On the one hand, we shall see that in order to determine if a coloring
belongs to R, it is enough to ensure that some finite restrictions do. On the other, we
will introduce properties E0 and E1, and we will see that any coloring with any of
these properties is in R.

3.1 Finitistic Conditions for Reconstructibility

Our first result is a very useful criterion for reconstructibility.

Proposition 3.1 Let ϕ be a coloring on X. If for every F ∈ [X ]≤4 there is Y ⊆ X such
that F ⊆ Y and ϕ|Y ∈ R, then ϕ ∈ R.

Proof Let ψ be a coloring on X such that hom(ϕ) = hom(ψ). Suppose that for every
F ∈ [X ]≤4 there is Y ⊆ X such that F ⊆ Y and ϕ|Y ∈ R; and that there are
x, y ∈ X such that ϕ({x, y}) = ψ({x, y}). We will show that ϕ = ψ . Let w, z ∈ X
with {x, y} 	= {z, w}. By hypothesis, there is Y ⊆ X such that {x, y, w, z} ⊆ Y and
ϕ|Y ∈ R. We have hom(ϕ|Y ) = hom(ψ |Y ), ϕ|Y ∈ R and ϕ({x, y}) = ψ({x, y}),
therefore ϕ|Y = ψ |Y . In particular, ϕ({w, z}) = ψ({w, z}) and we are done. ��

There are colorings ϕ ∈ R such that ϕ|F /∈ R for some |F | ≤ 4 (see Example 5.2).
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Corollary 3.2 Let ϕ be a coloring on N. Suppose that for infinitely many n, ϕ|{0,··· ,n} ∈
R, then ϕ ∈ R.

The previous result naturally suggests the following problem.

Question 3.3 Let ϕ be a reconstructible coloring on N and F ⊆ N be a finite set. Is
there a finite set G ⊇ F such that ϕ|G ∈ R?

Proposition 3.1 stresses the importance of knowing examples of colorings on finite
sets belonging toR. Our first example is trivial but we include it for future reference.

Example 3.4 Any constant coloring belongs toR.

The next result provides a general method to extend any coloring on a finite set to
a reconstructible one. It will be used several times in the sequel.

Proposition 3.5 Let ϕ0 be any coloring of the pairs of F = {x, y, w, z}. Let a and b
be two elements not in F. The coloring ϕ on F ∪ {a, b} extending ϕ0 as in Fig. 1 is
reconstructible (where the colors between the elements of F are not drawn).

Proof Let X = F ∪ {a, b} and ψ be a coloring of [X ]2 such that hom(ϕ) = hom(ψ).
Suppose there is {u, v} ∈ [X ]2 such that ϕ({u, v}) = 1 − ψ({u, v}). We will show
that ϕ = 1−ψ . We will assume that u = x and v = y. A completely analogous argu-
ment works for the other cases. Notice that {a, b, x}, {a, b, y}, {a, b, z}, {a, b, w} ∈
hom(ϕ) = hom(ψ). Let i = ϕ({x, a}). Thus ψ looks as depicted in Fig. 2. Again the
colors between elements of F are not drawn.

We consider two cases:
Case 1: Suppose ϕ({x, y}) = i . It follows that {x, y, a} ∈ hom(ϕ) = hom(ψ),

and therefore ψ({a, z}) = ψ({a, b}) = ψ({a, w}) = ψ({a, y}) = ψ({x, y}) = 1− i .

Fig. 1 Partial drawing of ϕ

x

a b

y z w

Fig. 2 Partial drawing of ψ

x

a b

y z w
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Now notice that ϕ({z, w}) = ψ({z, w}) would imply {a, z, w} ∈ hom(ϕ)� hom(ψ)

which is a contradiction. It follows that ϕ({z, w}) = 1 − ψ({z, w}).
Case 2: Suppose ϕ({x, y}) = 1 − i . Then {x, y, a} /∈ hom(ϕ) = hom(ψ). But,

ψ({a, x}) = ψ({a, b}) = ψ({a, y}), thus ψ({a, x}) 	= ψ({x, y}) = i and therefore
ψ({a, w}) = ψ({a, z}) = ψ({a, x}) = 1 − i . Then, we argue as in the previous case
to see that ϕ({z, w}) 	= ψ({z, w}).

In either case, we have that ϕ = 1 − ψ . ��
From the previous result we get the following more general fact.

Proposition 3.6 Let ϕ be a coloring on X and a, b /∈ X. Then, there is a coloring ψ

on X ∪ {a, b} such that ϕ ⊂ ψ and ψ ∈ R.

Proof Define ψ on X ∪ {a, b} by ψ({a, b}) = ψ({a, x}) = ψ({b, x}) = 1 for all
x ∈ X , and ϕ ⊂ ψ . From Proposition 3.5 we get that ψ satisfies the hypothesis of
Proposition 3.1, hence ψ ∈ R. ��

As an application of Proposition 3.1 we have the following result about a coloring
on binary sequences.

Proposition 3.7 The coloringassociated to the extensionorderingonbinary sequences
is reconstructible.

Proof Let ϕ be the coloring associated to the extension ordering on 2<ω, i.e.,
ϕ({x, y}) = 1 if and only if y is an extension of x . We first show the result for
the restriction of ϕ to X = 2≤3. This coloring looks as despicted in Fig. 3, where only
some 1-edges are drawn.

We show that ϕ ∈ R. Let ψ be a coloring of [X ]2 such that hom(ϕ) = hom(ψ).
Notice that every branch and every antichain is homogeneous (for both colorings).
Suppose that ϕ({x, y}) = 1−ψ({x, y}) for some {x, y} ∈ [X ]2. We need to show that
ϕ = 1 − ψ . We consider the case x = d and y = b, the other cases are similar. Then
all branches starting on i , h, j or k are of color 1 for ϕ and of color 0 for ψ . Since
{i, h, d} is not homogeneous, then ψ({i, h}) = 1. Therefore {i, h, j, k, l,m, n, o} is
1-homogeneous for ψ . Since {l,m, f } is not homogeneous, then ψ({l, f }) = 0 or
ψ({m, f }) = 0. In either case, we get that all branches starting from l, m, n or o
are all 0-homogeneous for ψ . As before, we conclude that {d, e, f , g} and {b, c} are
1-homogeneous for ψ . This shows that ϕ = 1 − ψ .

Now we finish the proof of the proposition. To see that ϕ ∈ R, we use Proposi-
tion 3.1. Let F ⊂ 2<ω be a set with at most four elements. It is easy to verify that

Fig. 3 Partial drawing of ϕ
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〈F, ϕ|F 〉 is isomorphic (as a graph) to a subset of 〈X , ϕ|X 〉. From the result above,
ϕ|X ∈ R and we are done. ��

The following examples will be needed later in the paper.

Example 3.8 Let X = {0, 1, 2, 3, 4, 5} and consider the partition of X given by
{0, 1, 2}, {3, 4} and {5}. Let ϕ be the coloring associated to this partition. It is depicted
in Fig. 4, where we only draw the pairs with color 1, i.e. those {x, y} which are a
subset of a part of the partition.

We claim that ϕ|Y ∈ R for every Y ⊆ X . We show it for X = Y , the rest is similar.
Let ψ be a coloring on X such that hom(ϕ) = hom(ψ). Notice that {0, 4, 5}, {0, 3, 5}
and {2, 4, 5} are ϕ-homogeneous and {0, 1, 3} and {3, 4, 5} are not ϕ-homogeneous.
Since hom(ϕ) = hom(ψ), ψ({0, 1}) = ψ({3, 4}) = 1 − ψ({0, 3}). Thus, ψ is either
ϕ of 1 − ϕ.

Proposition 3.9 Let ϕ be a coloring on a set F = {a, b, c, d, e}, and let G = {x, y, z}
be disjoint from F. Let X = F ∪ G, and ψ be the extension of ϕ to X as depicted in
Fig. 5, where we only draw the pairs {u, v} of color 1 with u ∈ Fand v ∈ G. Then
ψ ∈ R.

Proof Let ρ be a coloring on X such that hom(ψ) = hom(ρ). We assume without
lost of generality that ρ({x, a}) = ψ({x, a}) = 1, and we prove that ρ = ψ . Using
the same kind of arguments as in Example 3.8, it is easy to verify that ρ({u, v}) =
ψ({u, v}) for every u ∈ F and v ∈ G, and also for u, v ∈ G. So, it remains to
show that ρ also extends ϕ. Indeed, given u, v ∈ F , there is w ∈ {x, y, z} such
that ψ({w, u}) = ψ({w, v}) = 0. Thus, ρ({w, u}) = ρ({w, v}) = 0. We need to
show that ψ({u, v}) = ρ({u, v}). Suppose otherwise, ψ({u, v}) 	= ρ({u, v}). Then,
{u, v, w} ∈ hom(ρ)� hom(ψ), a contradiction. ��
Example 3.10 The coloring ϕ on {0, 1, 2, 3, 4, 5} depicted in Fig. 6 is reconstructible.

Fig. 4 Coloring of a partition
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Fig. 5 Partial drawing of ψ
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Fig. 6 Coloring ϕ
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Let ψ be a reconstruction of ϕ, i.e. hom(ϕ) = hom(ψ). Notice that any homoge-
neous set is a subset of either H1 = {0, 1, 2, 3} or H2 = {0, 4, 5}. It is easy to check
that if ψ gives the same color, say black, to H1 and H2, then ψ = ϕ. So, suppose ψ

gives to H1 and H2 color black and gray, respectively. Then one has to consider two
completely analogous cases depending on whether ψ({1, 4} is black or gray. Suppose
it is black. Sinceψ({1, 2}) is black and {1, 2, 4} is not homogeneous,ψ({2, 4}) is gray.
Since {2, 4, 5} is not homogeneous,ψ({2, 5}) is black. Analogously, one conclude that
ψ({1, 5}) is gray. Since {3, 4, 5} is not homogeneous, {3, 5} must be black. On the
other hand, since {2, 3, 5} is not homogeneous, {3, 5} must be gray. A contradiction.

3.2 Properties E0 and E1

Nowwe introduce a property for a coloring stronger than being inR. It was motivated
by the extension property of the random graph. Given i ∈ {0, 1}, we say that a coloring
ϕ : [N]2 −→ 2 has the property Ei if for every finite set F ⊂ N there is z ∈ N \F
such that ϕ({z, x}) = i for every x ∈ F .

It is clear that if ϕ has the property E0 then 1 − ϕ has the property E1. So, for our
reconstruction problem, we could only work with either E0 or E1. The random graph
clearly has the property Ei , for i ∈ {0, 1}. Another example is the following.

Proposition 3.11 Let R ⊆ N × N be a strict linear ordering on N. Let ϕR be defined
by ϕR({n,m}<) = 1 if and only if (n,m) ∈ R. If 〈N, R〉 does not have a maximal
(resp. a minimal) element, then ϕR has the property E1 (resp. E0).

Proof Suppose 〈N, R〉 does not have a maximal element. Let F ⊆ N be a finite set.
Then, there is z ∈ N such that (x, z) ∈ R for all x ∈ F . Thus, ϕR({z, x}) = 1 for all
x ∈ F . ��
Proposition 3.12 Every coloring with property Ei , i ∈ {0, 1}, belongs toR.

Proof We will use Proposition 3.1. Let ϕ be a coloring with the property Ei . Let
F = {x, y, z, w} be a subset of N. By the property Ei , there is a ∈ N \{x, y, z, w}
such that

ϕ({a, x}) = ϕ({a, y}) = ϕ({a, z}) = ϕ({a, w}) = i

123
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and there is b ∈ N \{x, y, z, w, a} such that

ϕ({b, x}) = ϕ({b, y}) = ϕ({b, z}) = ϕ({b, w}) = ϕ({b, a}) = i .

Let X = F ∪ {a, b}. Now observe that 〈X , ϕ|X 〉 is isomorphic to the graph in Propo-
sition 3.5. Thus, ϕ|X ∈ R and we are done. ��

We will now see that any coloring with the property Ei provides infinitely many
reconstructible colorings obtained by making finite changes to the original one.

Let ϕ ∈ 2[N]2 and a ⊂ [N]2 be a finite set. Let ϕa ∈ 2[N]2 be defined by ϕ−1
a (1) =

a�ϕ−1(1). In other words, ϕa({x, y}) = ϕ({x, y}) if {x, y} /∈ a; and ϕa({x, y}) =
1 − ϕ({x, y}) if {x, y} ∈ a, for every {x, y} ∈ [N]2. Such colorings are the finite
changes of ϕ.

Proposition 3.13 Let ϕ be a coloring on N and a ⊂ [N]2 a finite set. If ϕ has the
property Ei , for i ∈ {0, 1}, then ϕa has the property Ei .

Proof Let us fix i ∈ {0, 1} and assume that ϕ has property Ei . Let F ⊂ N be a finite
set, and consider G = F ∪ {w : {w, z} ∈ a for somez ∈ N}. By the property Ei of
ϕ, there is z ∈ N \G such that ϕ({z, x}) = i for every x ∈ G. Given x ∈ F , we have
{z, x} /∈ a since z /∈ G. Thus, ϕa({z, x}) = ϕ({z, x}) = i . ��
Corollary 3.14 The finite changes of the following colorings are reconstructible:

(i) Constant colorings on N.
(ii) The random graph.
(iii) The Sierpiński’s coloring.
(iv) ϕR, for R ⊆ N × N a linear ordering on N without maximal or minimal element.

4 Non-Reconstructible Colorings

In this section we analyze non-reconstructible colorings. We start by showing a con-
dition that implies non reconstructibility and which is used in almost all examples
presented. We also show that any coloring can be extended to a non- reconstructible
one (Proposition 4.9).

Definition 4.1 For a coloring ϕ on X and x, y ∈ X , we say that an edge {x, y} is
critical for ϕ, if ϕ({x, z}) = 1 − ϕ({y, z}), for all z ∈ X \ {x, y}.

The following simple observation gives a very useful criterion to show non recon-
structibility.

Proposition 4.2 Let ϕ be a coloring on X with |X | ≥ 3. If ϕ has a critical pair, then
ϕ is non-reconstructible.

Proof Let {x, y} be a critical pair for ϕ. Define ψ : [X ]2 −→ 2 by ψ({w, z}) =
ϕ({w, z}) if {w, z} 	= {x, y} and ψ({x, y}) = 1 − ϕ({x, y}). Notice that {x, y} � H
for any H ∈ hom(ϕ) ∪ hom(ψ). Therefore hom(ϕ) = hom(ψ) and ψ witnesses that
ϕ /∈ R.
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The condition of being a critical pair is stronger than just requiring that the pair is
not contained in a homogeneous set. For instance, let ϕ be a constant coloring over N

and consider the finite change ϕa of ϕ with a = {0, 1}. Then ϕa is reconstructible and
{0, 1} is not contained in any ϕa-homogeneous sets.

Now we give our first example of a non-reconstructible coloring, which is the
prototype of such colorings.

Example 4.3 Consider a partition of N into two infinite sets, for instance, let A0 be the
set of even numbers and A1 be the set of odd numbers. Let ϕ be the coloring associated
to this partition, i.e., ϕ({x, y}) = 1 if and only if {x, y} ⊆ Ai for some i . Then, the
pair {0, 1} is critical for ϕ, thus by Proposition 4.2, ϕ ∈ ¬R.

Moreover, given any nonempty set B ⊆ N consider the coloring ϕB : [N]2 −→ 2
given by ϕB({x, y}) = ϕ({x, y}) if {x, y} 	= {2n, 2n + 1} for any n ∈ B; and
ϕB({2n, 2n + 1}) = 1 for all n ∈ B. Then, ϕ and ϕB have the same homogeneous
sets.

Below we depict the coloring ϕ (see Fig. 7) and a non-trivial reconstruction ψ (see
Fig. 8) of it for the case of a partition of the set {0, 1, 2, 3, 4, 5}.

We present below a characterization of colorings admitting a critical pair. For that
purpose, we introduce a function on colorings. Let X be a set with 3 ≤ |X | ≤ ℵ0. For
each coloring ϕ /∈ R on X , let

r(ϕ) = min{|{{x, y} ∈ [X ]2 : ϕ({x, y}) 	= ψ({x, y})}| : ψ ∈ 2[X ]2 ,
hom(ψ) = hom(ϕ), ψ 	= ϕ,ψ 	= 1 − ϕ}.

For convenience, let r(ϕ) = 0 if ϕ ∈ R. Notice 0 ≤ r(ϕ) ≤ ℵ0.

Fig. 7 Coloring ϕ
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Fig. 8 Coloring ψ
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Lemma 4.4 Let ϕ be a coloring on a countable set with at least 3 elements.

(i) If ϕ has a critical pair, then r(ϕ) = 1.
(ii) r(ϕ) 	= 2 for every ϕ.

Proof

(i) By Proposition 4.2, ϕ /∈ R and the result follows from the proof of Proposition
4.2.

(ii) Ifϕ ∈ R, then r(ϕ) = 0. Letϕ ∈ ¬R, and suppose r(ϕ) = 2 to get a contradiction.
Let ψ be a reconstruction of ϕ such that

|{{x, y} : ϕ({x, y}) 	= ψ({x, y})}| = 2. (1)

Let {x, y} be such thatϕ({x, y}) 	= ψ({x, y}). By (i),ϕ does not have a critical pair.
Since {x, y} is not critical for ϕ, there is z /∈ {x, y} such that ϕ({x, z}) = ϕ({y, z}).
We claim that {x, y, z} /∈ hom(ϕ). Suppose not and let i be its ϕ-color. Then,
{x, y, z} would be a ψ-homogeneous set of color 1 − i , which contradicts (1).
Thus

ϕ({y, z}) = ϕ({x, z}) = 1 − ϕ({x, y}) = ψ({x, y}). (2)

Since {x, y, z} is not ψ-homogeneous, we assume, without lost of generality, that

ψ({x, z}) = 1 − ψ({x, y}). (3)

Notice that ϕ({x, z}) 	= ψ({x, z}) and, by (1), ϕ and ψ agree on any pair different
from {x, z} and {x, y}. Thus

ψ({y, z}) = ϕ({y, z}). (4)

Since {x, z} is not critical for ϕ, there is w /∈ {x, z} such that ϕ({x, w}) =
ϕ({z, w}). From (2), w 	= y. By (1), ϕ({x, w}) = ψ({x, w}) = ψ({z, w}). It
is easy to verify that {x, w, z} ∈ hom(ϕ)� hom(ψ), a contradiction.

��
Theorem 4.5 Letϕ be a coloring ona set X with |X | ≥ 3. The following are equivalent.

(i) There is a critical pair for ϕ.
(ii) r(ϕ) = 1.
(iii) There is a coloring ψ and x ∈ X such that hom(ϕ) = hom(ψ), ϕ 	= ψ and

ϕ|X\{x} = ψ |X\{x}.

Proof (i) ⇒ (i i). By Lemma 4.4.
(i i) ⇒ (i i i). Obvious.
(i i i) ⇒ (i). Let ψ and x be as in the hypothesis of (iii). Towards a contra-

diction, suppose there are no critical pairs for ϕ. Let y ∈ X \ {x} be such that
ϕ({x, y}) 	= ψ({x, y}). Since {x, y} is not critical for ϕ, there is z /∈ {x, y} such
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that ϕ({x, z}) = ϕ({y, z}). Since ϕ|X\{x} = ψ |X\{x}, ψ({y, z}) = ϕ({y, z}). Hence,
{x, y, z} /∈ hom(ϕ) = hom(ψ), otherwise ψ({x, y}) = ψ({y, z}) = ϕ({y, z}) =
ϕ({x, y}), a contradiction. Then,ϕ({x, z}) 	= ψ({x, z}). ByLemma4.4, r(ϕ) ≥ 3, thus
there is {u, w} ∈ [X ]2 with {u, w} different from {x, y}, {x, z} such that ϕ({u, w}) 	=
ψ({u, w}). As ϕ|X\{x} = ψ |X\{x}, we assume that u = x , i.e. ϕ({x, w}) 	= ψ({x, w}).
There are two cases to be considered: (a) Suppose ϕ({x, w}) = ϕ({x, y}). Then,
{x, y, w} ∈ hom(ϕ)� hom(ψ). (b) Suppose ϕ({x, w}) = 1 − ϕ({x, y}). Then,
{x, w, z} ∈ hom(ϕ)� hom(ψ). In both cases we get a contradiction with hom(ϕ) =
hom(ψ). ��

We know very little about the function r .

Question 4.6 Is there a coloring ϕ such that r(ϕ) = ℵ0?

There are non-reconstructible colorings without a critical pair, as we show next.
However, we do not know a method to construct colorings in ¬R without critical
pairs.

Example 4.7 The colorings ϕ and ϕ′ depicted below (Figs. 9 and 11) are non-
reconstructible and do not have a critical pair. Colorings ψ and ψ ′ (Figs. 10 and 12)
are, respectively, a non-trivial reconstruction of ϕ and ϕ′.

We have seen that the finite changes of some reconstructible colorings remain
reconstructible (see Proposition 3.13). The following generalization of Example 4.3
shows an analogous fact for some non-reconstructible colorings.

Proposition 4.8 Let ϕ be the coloring associated to a partition of N into two parts.
Then,

(i) ϕa ∈ ¬R, for every finite set a ⊂ [N]2.
(ii) For every nonempty set I ⊆ N, there is ϕI ∈ ¬R \ {ϕ, 1 − ϕ}.

Fig. 9 ϕ
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Fig. 10 ψ ′
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Fig. 11 ϕ′
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Fig. 12 ψ ′

1

2

3

4

5

6

Proof LetN = A∪B be a partition ofN, andϕ : [N]2 −→ 2 be the coloring associated
to the partition.

(i) Consider a ⊂ [N]2 a nonempty finite set. Let m = max(
⋃

a), p ∈ A with p > m
and q ∈ B with q > m. Notice that {p, z}, {q, z} /∈ a for every z ∈ N \{p, q}.
Thus, ϕa({p, z}) = ϕ({p, z}) and ϕa({q, z}) = ϕ({q, z}) for every z ∈ N \{p, q}.
Then, {p, q} is critical for ϕa , thus by Proposition 4.2, ϕa ∈ ¬R.

(ii) Let A = {ai : i ∈ N} and B = {bi : i ∈ N} be enumerations of A and B,
and consider ∅ 	= I ⊆ N. Define ϕI : [N]2 −→ 2 by ϕI ({x, y}) = ϕ({x, y}) if
{x, y} 	= {an, bn} for any n ∈ I ; and ϕI ({an, bn}) = 1 for every n ∈ I . Then, for
n ∈ I , {an, bn} is critical for ϕI and we are done by Proposition 4.2. ��

We have seen in Proposition 3.6 that any coloring can be extended to a coloring
belonging to R. Our next result shows that it can also be extended to a coloring in
¬R.

Proposition 4.9 Let ϕ be a coloring on X and a /∈ X. There is a coloringψ on X ∪{a}
such that ϕ ⊂ ψ and ψ ∈ ¬R.

Proof Fix x0 ∈ X and a /∈ X . Let ψ be a coloring on X defined by ψ({a, x0}) = 1,
ψ({a, x}) = 1 − ϕ({x0, x}) = 0 for x ∈ X \ {x0}, and ψ |X = ϕ. Then, {a, x0} is
critical for ψ . Hence, ψ ∈ ¬R by Proposition 4.2. ��
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5 Colorings Associated to Partitions of N into More Than Two Parts

In this section we will show that, in contrast with Proposition 4.8, the coloring asso-
ciated to any partition of N into at least three parts belongs to R (Theorem 5.1).
Furthermore, we will provide conditions on the partition so that the finite changes of
the corresponding coloring are also inR (Proposition 5.3 and Proposition 5.4).

Theorem 5.1 Let (Ai )i∈I be a partition of N with |I | ≥ 3. Then, the coloring associ-
ated to the partition belongs toR.

Proof Let (Ai )i∈I be a partition as in the hypothesis. We will use Proposition 3.1 to
show that ϕ ∈ R. Let F ⊆ N be a set with 4 elements. There are two cases to be
considered. If F is homogeneous, then ϕ|F ∈ R. Otherwise, there are i, j, k ∈ I such
that F ⊆ Ai ∪ A j ∪ Ak , |F ∩ Ai | ≤ 3, |F ∩ A j | ≤ 2 and |F ∩ Ak | ≤ 1. Thus, there
is Y such that F ⊆ Y ⊂ Ai ∪ A j ∪ Ak such that ϕ|Y is (isomorphic to) the coloring
in Example 3.8 and hence ϕ|Y ∈ R. ��

The following example shows that Proposition 3.1 cannot be strengthened in the
following sense. It can happen that a coloring ϕ is reconstructible but there is F ⊆ X
with |F | ≤ 4 and ϕ|F /∈ R.

Example 5.2 Let N = A ∪ B ∪ C be a partition of N into infinite sets, and ϕ be the
coloring associated to the partition. By Theorem 5.1, ϕ ∈ R. However, if x, y ∈ A,
z, w ∈ B and F = {x, y, z, w}, then ϕ|F /∈ R as {x, z} is critical for ϕ|F .

In the followingwedealwith thefinite changes of the coloring associated to partition
of N. We show that whether a finite change of such coloring is in R depends on the
type of partitions.

Proposition 5.3 Let (Ak)k be an infinite partition of N. Then, every finite change of
the coloring associated to the partition belongs to R.

Proof Let a ⊂ [N]2 be a finite set and ϕ be the coloring onN associated to the partition
(Ak)k . We claim that ϕa has the property E0 and thus it is in R, by Proposition 3.12.
Let F ⊆ N be a finite set. Let k be such that (F ∪ {x, y}) ∩ Ak = ∅ for all {x, y} ∈ a.
Pick z ∈ Ak . Then ϕa({z, w}) = ϕ({z, w}) = 0 for all w ∈ F . ��
Proposition 5.4 Let (Ai )i<k be a finite partition of N, where k > 2, and at least three
Ai are infinite. Then, every finite change of the coloring associated to the partition is
inR.

Proof Let a ⊂ [N]2 be a finite set and ϕ be the coloring associated to the partition
(Ai )i<k . We will use Proposition 3.1 to show that ϕa ∈ R. Let F ⊆ N be a set with
4 elements and G = ⋃

a. We consider two cases: (1) There are i, j such that Ai and
A j are infinite and F ∩ (Ai ∪ A j ) = ∅. Let u ∈ Ai , v ∈ A j such that {u, v} /∈ G. Put
Y = F ∪ {u, v}. Since ϕa({u, v}) = ϕa({u, x}) = ϕa({v, x}) for all x ∈ F , 〈Y , ϕa |Y 〉
is (isomorphic to) the coloring in Proposition 3.5 and thus ϕa |Y ∈ R. (2) Let i, j, l
be such that Ai , A j and Al are infinite. Let x ∈ A j , y ∈ A j and z ∈ Al such that
{x, y, z}∩(F∪G) = ∅ Let Y = F∪{x, y, z}. Suppose that at most one of the sets Ai ,
A j and Al is disjoint from F . By an argument analogous to that used in Proposition 3.9
it follows that ϕa |Y ∈ R. ��
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Fig. 13 Graph of ϕa

Fig. 14 Graph of ϕb

The following example shows that Proposition 5.4 is optimal in the sense that we
cannot ensure reconstructibility of all finite changes of the coloring associated to finite
partitions ofN. It is interesting, since it shows that the reconstructibility is a somewhat
unstable property.

Example 5.5 There is a partition N = A0 ∪ A1 ∪ A2 of N, with |A0| = 2, such that
some finite changes of the coloring associated to it are inR and some are in ¬R.

Let A0 = {0, 1}, A1 = {2n + 1 : n > 0}, A2 = {2n : n > 0}, ϕ be the coloring
on N associated to the partition (Ai )i<3, and a = {{0, 4}, {1, 5}, {4, 5}}. Notice that
{4, 5} is critical for ϕa , thus ϕa ∈ ¬R by Proposition 4.2.

On the other hand, notice that ϕ∅ = ϕ ∈ R by Theorem 5.1. A non-trivial finite
change of ϕ which belongs toR is ϕb for b = {{4, 5}}. To see this, we argue as in the
proof of Proposition 5.4. Let F = {0, 1, 2, 3, 4, 5}. It is easy to verify that ϕb|F ∈ R.

6 Maximal Homogeneous Sets

In this section we explore reconstructibility of a coloring looking at the maximal
homogeneous sets. Let us start by observing the obvious: for any coloring of N there
are maximal homogeneous sets (by Zorn’s Lemma). For any cardinal 1 ≤ κ ≤ ℵ0
or κ = 2ℵ0 there is a coloring on N with exactly κ maximal homogeneous sets. In
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fact, a constant coloring has N as the unique maximal homogeneous set. Let ϕ be
the coloring associated to a partition of N into two infinite pieces. Then ϕ has two
maximal homogeneous sets. For 3 ≤ κ < ℵ0, we left to the reader to check that a
simple finite change of ϕ produces a coloring with exactly κ maximal homogeneous
sets. The coloring associated to a partition of N into three infinite pieces has countable
many maximal homogeneous sets. Finally, the coloring associated to a partition of N

into infinitely many infinite pieces has 2ℵ0 maximal homogeneous sets. We do not
know in general how this relates to the reconstructibility of the colorings. However,
we present some results when κ ≤ 2.

Lemma 6.1 Let ϕ be a coloring on N. We have:

(i) Any homogeneous set is contained in a maximal homogeneous set.
(ii) Let A = {x ∈ N : x ∈ H for some maximalH ∈ hom(ϕ)}. Then | N \A| ≤ 2.
(iii) If H is a maximal homogeneous set of color i and x ∈/A, then {y ∈ H :

ϕ({x, y}) = i} has at most one element.
Proof

(i) It is a well known result that easily follows from Zorn’s lemma.
(ii) Towards a contradiction, suppose v,w, z ∈/A with ϕ({v, z}) = 0 and ϕ({v,w}) =

ϕ({w, z}) = 1. Let H be an homogeneous set. One has to consider whether H is
of color 0 or 1. Both cases are treated analogously.

(a) Suppose H is of color 0. Let x1 ∈ H . Since v ∈/A, {x1, v, z} is not
homogeneous, we assume w.l.o.g. that ϕ({v, x1}) = 1. As {x1, v, w} is
not homogeneous, ϕ({w, x1}) = 0. Let x2 ∈ H different than x1. Since
{x1, x2, w} is not homogeneous, ϕ({w, x2}) = 1. Analogously, we conclude
that ϕ({v, x2}) = ϕ({x2, z}) = 0. Therefore {v, z, x2} is a 0-homogeneous set,
which contradicts that z ∈/A.

(b) Suppose H is of color 1. Let x1 ∈ H . Since v ∈/A, {x1, v, z} is not
homogeneous and thus ϕ({z, x1}) = 1. As {x1, v, w} is not homogeneous,
ϕ({w, x1}) = 0. Let x2 ∈ H be different than x1. Since {x1, x2, z} is not
homogeneous, ϕ({z, x2}) = 0. Analogously, we conclude that ϕ({v, x2}) = 1
and ϕ({w, x1}) = ϕ({w, x2}) = 0. Let x3 ∈ H \ {x1, x2}. Then ϕ({z, x3}) = 0
and ϕ({v, x3}) = 1. Therefore {v, x2, x3} is a 1-homogeneous set, which con-
tradicts that v ∈/A.

(iii) Suppose there are y, z ∈ H such that ϕ({x, y}) = ϕ({x, z}) = i . We have that
ϕ({y, z}) = i since H is of color i . Then {x, y, z} is homogeneous, which contra-
dicts that x ∈/A.
We extend the definition of the finite changes ϕa of a coloring as follows. For

each coloring ϕ on N and A ⊆ [N]2, let ϕA be given by ϕA(s) = ϕ(s) if s ∈/A and
ϕA(s) = 1 − ϕ(s) if s ∈ A. The next proposition characterizes the colorings with
exactly one maximal homogeneous set.

Proposition 6.2 Let ϕ be a non constant coloring on N. Then, hom(ϕ) has exactly one
maximal element if and only if one of the following holds for a constant coloring ψ

on N.
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Fig. 15 ψA1

Fig. 16 ψA2

(i) ϕ = ψA1 where A1 = {{x0, y} : y ∈ N \{x0}} for some x0 ∈ N.
(ii) ϕ = ψA2 where A2 = {{x0, y} : y ∈ N \{x0, x1}} for some x0, x1 ∈ N.
(iii) ϕ = ψA3 where A3 = {{x0, y} : y ∈ N \{x0, x1, x2}} ∪ {{x2, y} :

y ∈ N \{x0, x2}} for some x0, x1, x2 ∈ N.
(iv) ϕ = ψA4 where A4 = {{x0, y} : y ∈ N \{x0, x2}} ∪ {{x2, y} : y ∈ N \{x2}} for

some x0, x2 ∈ N.

In all cases, {x0, x1} is a critical pair for ϕ and therefore such colorings are non-
reconstructible.

Proof The pictures below describe each case. It is clear that each of the colorings ψAi

has exactly one maximal homogeneous set. Let M be the unique maximal homo-
geneous set of ϕ, say of color i and fix x1 ∈ M . Let A = {x ∈ N : x ∈
H for some maximalH ∈ hom(ϕ)}. Since ϕ is non constant, | N \A| ≤ 2, by
Lemma 6.1. We consider two cases: (1) N \A = {x0}. We have two subcases depend-
ing on the color of {x0, x1}. If ϕ({x0, x1}) = 1 − i . Then ϕ({x0, x}) = 1 − i for all
x ∈ M , by the uniqueness of M . Then ϕ = ψA1 . Analogously, if ϕ({x0, x1}) = i ,
then ϕ = ψA2 . (2) N \A = {x0, x2}. As in case (1) we have that if ϕ({x0, x1}) = i ,
then ϕ = ψA3 . And, if ϕ({x0, x1}) = 1 − i , then ϕ = ψA4 . ��

Now we analyze colorings with exactly two maximal homogeneous sets. The pro-
totype is the coloring associated to a partition of N into two parts. We present the
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Fig. 17 ψA3

Fig. 18 ψA4

analysis according to the cardinality of N \(H1 ∪ H2) where H1 and H2 are the max-
imal homogeneous sets.

Lemma 6.3 Let ϕ be a coloring on N such that hom(ϕ) has exactly two maximal
elements H1 and H2. Then ϕ([H1]2) = ϕ([H2]2).
Proof Assume towards a contradiction that ϕ([H1]2) = {1} and ϕ([H2]2) = {0}. In
particular, |H1 ∩ H2| ≤ 1. By Ramsey’s Theorem, hom(ϕ) contains an infinite set,
thus we can assume that H1 is infinite. Then, |H1 \ H2| = ℵ0 and |H2 \ H1| ≥ 2. For
every x ∈/H2, let

Lx = {y ∈ H2 : ϕ({x, y}) = 0}.

We claim that |Lx | ≤ 1. Otherwise, |{x} ∪ Lx | ≥ 3 and thus it is a 0-homogeneous
set. Therefore, {x} ∪ Lx ⊆ H2, a contradiction. Analogously, letting My = {x ∈ H1 :
ϕ({y, x}) = 1} for any y ∈/H1, we have that |My | ≤ 1.

Let us fix y ∈ H2 \ H1. Since |My | ≤ 1, there are p, q ∈ H1 \ H2 such that
ϕ({y, p}) = ϕ({y, q}) = 0. Thus, L p = Lq = {y}. Since |H1∩H2| ≤ 1 and |H2| ≥ 3,
fix z ∈ H2 \ (H1 ∪ {y}). Thus, z /∈ L p ∪ Lq . That is, ϕ({z, p}) = ϕ({z, q}) = 1, and
therefore {p, q, z} ∈ hom(ϕ). By Proposition 6.1(i), {p, q, z} is contained in either
H1 or H2, which is impossible. ��
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Fig. 19 Two maximal
homogeneous sets

Proposition 6.4 Let ϕ be a coloring on N with exactly two maximal homogeneous
sets H1 and H2 such that N = H1 ∪ H2. Then, ϕ is reconstructible if and only if
H1 ∩ H2 	= ∅.

Proof Clearly, hom(ϕ) has exactly two maximal elements: H1 and H2. By Proposi-
tion 6.3,we assume that H1 and H2 are homogeneous of color 1. Suppose H1∩H2 	= ∅.
Let x0 ∈ H1 ∩ H2 and y ∈ H1 \ H2, z ∈ H2 \ H1. Notice that {x0, y, z} is not homo-
geneous, otherwise {x, y, z} ⊆ H1 or {x, y, z} ⊆ H2, which is impossible. Thus
ϕ({y, z}) = 0. Then, this coloring looks similar to the one depicted in Fig. 19. The
points below x0 are the elements in H1 ∩ H2.

To see that ϕ is reconstructible we use Proposition 3.1. Let F ⊂ N of size 4. If F is
not contained in an homogeneous set, then there is a set Y of size 5 such F ⊂ Y and
ϕ|Y is isomorphic to the coloring given in Example 3.10. Then, ϕ is reconstructible
by Proposition 3.1.

Conversely, suppose now that H1∩H2 = ∅. Let x ∈ H1. Then {y ∈ H2 : ϕ{x, y} =
1} has at most one point. If for some x ∈ H1, there is y ∈ H2 such that ϕ({x, y}) = 1,
then {x, y} is a critical pair. Otherwise, if ϕ({x, y}) = 0 for all x ∈ H1 and all y ∈ H2,
then {x, y} is critical for any x ∈ H1 and y ∈ H2. In any case, ϕ is non-reconstructible
by Proposition 4.2.

Now we treat the case where | N \(H1 ∪ H2)| = 1. Before presenting a general
result, we give an example illustrating this case.
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Fig. 20 Partial drawing of ϕ

Example 6.5 Define ϕ : [N]2 −→ 2 by

ϕ({n,m}) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0, if n = 0and m > 1;
0, if n = 1and m > 0 is even;

1, if n = 0and m = 1;
1, if n = 1and m > 0 is odd;

1, otherwise.

See Fig. 20. It is not difficult to see that the only maximal homogeneous sets are
H1 = N \{0, 1} and H2 = {2n + 1 : n ∈ N}.

Proposition 6.6 Let ϕ be a coloring on N with exactly two maximal homogeneous sets
H1 and H2 and such that N \(H1 ∪ H2) = {z} for some z. Then, ϕ has a critical pair
and therefore is non-reconstructible.

Proof By Proposition 6.3, we assume that H1 and H2 are homogeneous of color 1.We
have to consider several cases.

(i) Suppose there is x0 ∈ H1 and y0 ∈ H2 such ϕ({z, x0}) = ϕ({z, y0}) = 1. We
claim that {x0, z} is a critical pair for ϕ. By a simple argument (as in the proof of
Proposition 6.1) we have that such x0 and y0 are unique. Thus

ϕ({z, x}) = ϕ({z, y}) = 0 for all x ∈ H1 \ {x0} andy ∈ H2 \ {y0}. (5)

We claim that (H1 ∪ H2) \ {x0, y0} is homogeneous. In fact, if x ∈ H1 \ {x0}
and y ∈ H2 \ {y0}, then {z, x, y} is not homogeneous. By (5), ϕ({x, y}) = 1 and
from this the claim follows. By the maximality of H1 and H2, we can assume
w.l.o.g. that H2 \ {y0} ⊆ H1. Notice that N = (H1 \ {x0}) ∪ {x0, y0, z}. Let
p ∈/{x0, z}. If p 	= y0, by (5), ϕ({z, p}) = 0 and ϕ({x0, p}) = 1 as p ∈ H1. On
the other hand, ϕ({y0, z}) = ϕ({z, x0) = 1 and {x0, y0, z} is not homogeneous.
Thus ϕ({x0, y0}) = 0. This shows that {x0, z} is a critical pair.
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Fig. 21 ϕ

Fig. 22 ψ

(ii) Suppose there is x0 ∈ H1 suchϕ({z, x0}) = 1 and for all y ∈ H2,ϕ({z, y}) = 0.By
a similar argument as before one can show that H1 \ {x0} ⊆ H2. Let y0 ∈ H2 \ H1.
Then we consider two subcases. If ϕ({x0, y0}) = 1, then {x0, y0} is a critical pair.
And, if ϕ({x0, y0}) = 0, then {z, y0} is a critical pair. By the symmetry of the
problem, we are left with the case where ϕ({z, x}) = ϕ({z, y}) = 0 for all x ∈ H1
and all y ∈ H2. This implies that H1 ∪ H2 is homogeneous, which is imposible
by the maximality of H1 and H2. In fact, given x ∈ H1 and y ∈ H2 different, we
have that {x, y, z} is not homogeneous, thus ϕ({x, y}) = 1.

We do not have a general result about colorings such thatN \(H1∪H2) has two ele-
ments. We just present an example which seems interesting as it is non-reconstructible
but does not have a critical pair.

Example 6.7 The coloring ϕ (see Fig. 21) has two maximal homogeneous sets, is
non-reconstructible and has no critical pair.

Then, H1 = {2, 4, 5, 6, · · · } and H2 = {3, 4, 5, 6, . . .} are the only maximal homo-
geneous sets and N \(H1 ∪ H2) = {0, 1}. There is no critical pair for ϕ but ψ (see
Fig. 22) is a non-trivial reconstruction of ϕ.

We finish this section with an example of a non-reconstructible coloring with three
pairwise disjoint infinite maximal homogeneous sets. Contrarily, we have proved in
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Fig. 23 Partial drawing of ϕ

Theorem 5.1 that the coloring associated to any partition of N into three parts belongs
toR. Thus, knowing that hom(ϕ) has at least three infinite maximal pairwise disjoint
elements does not guarantee that ϕ ∈ R.

Example 6.8 Let A = {ai : i ∈ N}, B = {bi : i ∈ N} and C = {ci : i ∈ N} be
pairwise disjoint subsets of N such that N = A ∪ B ∪ C . Define ϕ : [N]2 −→ 2
by ϕ({ai , a j }) = ϕ({bi , b j }) = ϕ({ci , c j }) = 1 for every i 	= j ; ϕ({a0, b0}) =
ϕ({a0, c2i }) = ϕ({b0, c2i+1}) = 1 for every i ∈ N; and ϕ({n,m}) = 0 for any other
{n,m} ∈ [N]2. See Fig. 23.

Notice that A, B and C are maximal elements of hom(ϕ). Moreover, {a0, b0} is
critical for ϕ, thus ϕ ∈ ¬R, by Proposition 4.2.

7 Complexity of the Reconstruction Problem

This section is devoted to analyzing the reconstruction problem from the descriptive
set theoretic point of view. We show that the problem of recovering a coloring from
the collection of its homogeneous sets can be done in a Borel way.

The space of colorings 2[N]2 is endowed with the product topology which has as
basic open sets {ϕ ∈ 2[N]2 : ϕ0 ⊆ ϕ} for ϕ0 a coloring on a finite subset of N. Let
K (2N) be the hyperspace of compact subsets of 2N with the Vietoris topology (see,
for instance, [8, 4F]). A subbasis for K (2N) consists of the sets V+ = {L ∈ K (2N) :
L ⊂ V } and V− = {L ∈ K (2N) : L ∩ V 	= ∅}, for V ⊆ 2N open. As 2N is
zero dimensional, we can also assume that V is clopen. We recall that a subset of a
topological space is Gδ (respectively, Fσ ), if it is a countable intersection of open sets
(respectively, a countable union of closed sets).

Under the usual identification of a subset of N with its characteristic function,
hom(ϕ) is not topologically closed in 2N. Notice, however, that if A ∈ cl(hom(ϕ)) \
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hom(ϕ), then |A| ≤ 2. Thus cl(hom(ϕ)) = cl(hom(ψ)) iff hom(ϕ) = hom(ψ). Since
we want to analyze the reconstruction problem from a topological point of view, it is
better to work with a closed set instead of hom(ϕ). However, it is more convenient to
use a closed set larger than the closure. Let

hom(ϕ) = hom(ϕ) ∪ {A ⊂ N : |A| ≤ 2}.

Notice that cl(hom(ϕ)) ⊆ hom(ϕ) and hom(ϕ) is closed. Also, hom(ϕ) = hom(ψ)

iff hom(ϕ) = hom(ψ).
Themain result of this section is to show that there is a Borel function g : K (2N) →

2[N]2 such that

hom
(
g

(
hom (ϕ)

)) = hom(ϕ)

for all ϕ ∈ 2[N]2 . So g(hom(ϕ)) is a coloring recovered from hom(ϕ), but notice that
g(hom(ϕ)) might be neither ϕ nor 1 − ϕ when ϕ /∈ R.

Proposition 7.1 The collection of all colorings on N belonging to R is a dense Gδ

subset of 2[N]2 .

Proof Recall that hom(ϕ) = hom(ψ) if and only if hom(ϕ)∩[N]3 = hom(ψ)∩[N]3
(see Proposition 2.1). The following set is closed:

E = {(ϕ, ψ) ∈ 2[N]2 × 2[N]2 : hom(ϕ) = hom(ψ)}.

In fact, (ϕ, ψ) /∈ E if and only if there is H ∈ [N]3 such that either H ∈ hom(ϕ) \
hom(ψ) or H ∈ hom(ψ) \ hom(ϕ). For every finite set H , it is straightforward to
verify that {ϕ ∈ 2[N]2 : H ∈ hom(ϕ)} is clopen. Thus the complement of E is open.

Now consider the relation ϕ ≈ ψ if either ϕ = ψ or ψ = 1 − ϕ. Clearly ≈ is a
closed subset of 2[N]2 × 2[N]2 . Finally we have

ϕ /∈ R ⇔ ∃ψ ∈ 2[N]2 ((ϕ, ψ) ∈ E ∧ (ϕ 	≈ ψ)).

Thus, the collection of colorings that are not reconstructible is the projection of a Kσ

set (i.e. a countable union of compact sets) and thus it is also Kσ .
Finally, from the definition of the product topology on 2[N]2 , given a coloring ϕ,

we have that the collection of all its finite changes, i.e. {ϕa : a ⊆ [N]2 is finite} is a
dense subset of 2[N]2 . Thus, by Corollary 3.14, R is dense. ��

Proposition 7.2 The function hom : 2[N]2 → K (2N) given by ϕ �→ hom(ϕ) is Borel.

Proof Let V be a clopen subset of 2N. We need to show that C(V+) = {ϕ ∈ 2[N]2 :
hom(ϕ) ∈ V+} and C(V−) = {ϕ ∈ 2[N]2 : hom(ϕ) ∈ V−} are Borel.
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First, if [N]≤2
� V , then C(V+) = ∅ and there is nothing to show. So we assume

that [N]≤2 ⊆ V , In this case, hom(ϕ) ⊆ V is equivalent to hom(ϕ) ⊆ V . Then, we
have that

hom(ϕ) ⊆ V ⇔ (∀H ∈ [N]<ω)(H ∈ hom(ϕ) → H ∈ V ). (6)

Notice that {ϕ ∈ 2[N]2 : H ∈ hom(ϕ)} is clopen for every finite H ⊂ N. From this
and (6) we conclude that C(V+) is Gδ .

ForC(V−) notice that if V∩[N]≤2 	= ∅, thenC(V−) = 2[N]2 and there is nothing to
show. Since, [N]≤2 is a closed nowhere dense subset of 2N, we can assumew.l.o.g. that
V ∩[N]≤2 = ∅. In this case, we have hom(ϕ)∩V 	= ∅ if and only if hom(ϕ)∩V 	= ∅.
And, as before, this happens when hom(ϕ)∩[N]<ω ∩V 	= ∅. Thus C(V−) is open. ��

Let HOM =
{
hom(ϕ) : ϕ ∈ 2[N]2

}
.

Proposition 7.3 HOM is Gδ in K (2N) and thus it is Polish.

Proof LetPn denote the collection of subsets of n+1 of size at least 3. Let L ∈ K (2N).
We claim

L ∈ HOM ⇔ [N]≤2 ⊆ L & (∀n ≥ 2) (∃ϕ ∈ 2[n+1]2) (L ∩ Pn = hom(ϕ)). (7)

In fact, suppose ϕ is a coloring on N and L = hom(ϕ). Then, ϕ|n+1 satisfies the
right hand side of (7).

For the other direction, let L ∈ K (2N) be such that [N]≤2 ⊆ L and consider the
following set

TL = {ϕ ∈ 2[n+1]2 : L ∩ Pn = hom(ϕ) and n ∈ N}.

Then, TL is a finitely branching tree. If L satisfies the right hand side of (7), then TL is
infinite, thus it has a branch ϕ which is clearly a coloring on N. Then, L and hom(ϕ)

contain the same finite sets of size at least 3, thus L = hom(ϕ).
To see that HOM isGδ we observe the following. The collection of all L ∈ K (2N)

such that [N]≤2 ⊆ L is closed. On the other hand, given B ⊆ A ⊂ 2N with A finite.
Then, {L ∈ K (2N) : L ∩ A = B} is Gδ . The reason is that the relation “x ∈ L" is
closed in 2N × K (2N) and we have

L ∩ A = B ⇔ ∀x ∈ A (x ∈ L ↔ x ∈ B).

The last claim is the classical fact that a subset of a Polish space (i.e. a completely
metrizable separable space) is itself Polish if and only if it is Gδ (see [8, 3.11]). ��

Theorem 7.4 There is g : HOM → 2[N]2 Borel such that, for all L ∈ HOM,

hom(g(L)) = L.
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Proof Consider the following relation:

A = {(L, ϕ) ∈ HOM × 2[N]2 : L = hom(ϕ)}.

Since the function hom is Borel (see Proposition 7.2), A is Borel. We claim that all
vertical sections of A are closed (and hence compact). In fact, let E be the equivalence
relation on 2[N]2 given by ϕEψ if hom(ϕ) = hom(ψ). We have seen in the proof
of Proposition 7.1 that E is closed. Recall that hom(ϕ) = hom(ψ) iff hom(ϕ) =
hom(ψ). Thus, for every L ∈ HOM , if L = hom(ϕ), then AL is the E-equivalence
class of ϕ which is closed, as promised.

Since HOM is Polish (by Proposition 7.3), we can use a classical uniformization
theorem to define g. We know that any Borel relation on a Polish space with Kσ

sections has a Borel uniformization (see [8, 18.18]). Thus, there is a Borel map g :
HOM → 2[N]2 such that hom(g(L)) = L . ��
Acknowledgements We thank the referees for all their comments and suggestions which help to improve
the presentation of the results.

Funding Open Access funding provided by Colombia Consortium. Partial funding was provided by Uni-
versidad Industrial de Santander.

Availability of Data and Material Not applicable

Declarations

Conflict of Interest Not applicable.

Code Availability Not applicable.

Ethical Approval Not applicable.

Consent to Participate Not applicable.

Consent for Publication We give the consent for publication.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Bondy, J.A.: A graph reconstructor’s manual. In: Surveys in combinatorics, London Mathematical
Society Lecture Note Series, pp. 221–252. Cambridge University Press, Cambridge (1991)

2. Cameron, P.J.: The random graph. In: The mathematics of Paul Erdős II, volume 14 of Algorithms
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