Skip to main content
Log in

Results and Problems on Chorded Cycles: A Survey

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

A chord of a cycle C is an edge between two non-consecutive vertices of the cycle. A cycle C in a graph G is chorded if the vertex set of C induces at least one chord. In 1961 Posa formulated a natural question: What conditions imply a graph contains a chorded cycle? In this paper, we survey results and problems that relate to Posa’s question on chorded cycles in graphs. These include sufficient conditions for a chorded cycle to exist, or sets of chorded cycles exist, or cycles with multiple chords exist, or chorded cycles with additional properties exist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

There was no data used in the preparation of this manuscript.

References

  1. Ali, A.A., Staton, W.: The extremal question for cycles with chords. Ars Combin. 51, 193–197 (1999)

    MathSciNet  MATH  Google Scholar 

  2. Alspach, B.R., Godsil, C.D.: Cycles in graphs. Ann. Discrete Math. 27, 461–468 (1985)

    MathSciNet  Google Scholar 

  3. Amar, D., Fournier, I., Germa, A.: Pancyclism in Chvátal-Erdős’s graphs. Graphs Combin. 7, 101–112 (1991)

    MathSciNet  MATH  Google Scholar 

  4. Babu, C.S., Diwan, A.A.: Disjoint cycles with chords in graphs. J. Graph Theory 60, 87–98 (2009)

    MathSciNet  MATH  Google Scholar 

  5. Balister, P., Li, H., Schelp, R.: Decompositions of graphs into cycles with chords. J. Combin. Theory Ser. B 128, 47–65 (2018)

    MathSciNet  MATH  Google Scholar 

  6. Beck, K., Cenek, L., Cream, M., Gelb, B.: Chorded pancyclic properties in claw-free graphs. Australas. J. Combin. 83(3), 312–336 (2022)

    MathSciNet  MATH  Google Scholar 

  7. Bialostocki, A., Finkel, D., Gyárfás, A.: Disjoint chorded cycles in graphs. Discrete Math. 308, 5886–5890 (2008)

    MathSciNet  MATH  Google Scholar 

  8. Birmelé, E.: Every longest circuit of a 3-connected, \(K_{3,3}\)-minor free graph has a chord. J. Graph Theory 58(4), 293–298 (2008)

    MathSciNet  MATH  Google Scholar 

  9. Bollobás, B.: Extremal Graph Theory. Academic Press, London (1978)

    MATH  Google Scholar 

  10. Bollobás, B., Thomason, A.: Weakly pancyclic graphs. J. Combin. Theory Ser. B 77, 121–137 (1999)

    MathSciNet  MATH  Google Scholar 

  11. Bondy, J.A., Pancyclic graphs, Proceedings of the Second Louisiana Conference on Combinatorics, Graph Theory, and Computing. Louisiana State Univ., Baton Rouge, LA, (1971), 167–172

  12. Bondy, J.A.: Pancyclic graphs I. J. Combin. Theory Ser. B 11, 80–84 (1971)

    MathSciNet  MATH  Google Scholar 

  13. Brandt, S., Sufficient conditions for graphs to contain all subgraphs of a given type. Ph.D. Thesis, Freie Universitat Berlin, 1994

  14. Brandt, S., Faudree, R.J., Goddard, W.: Weakly pancyclic graphs. J. Graph Theory 27(3), 141–176 (1998)

    MathSciNet  MATH  Google Scholar 

  15. Brandt, S., Chen, G., Faudree, R.J., Gould, R.J., Lesniak, L.: Degree conditions for \(2\)-factors. J. Graph Theory 24(2), 165–173 (1997)

    MathSciNet  MATH  Google Scholar 

  16. Chen, G., Gould, R.J., Hirohata, K., Ota, K., Shan, S.: Disjoint chorded cycles of the same length. SIAM J. Discrete Math. 29(2), 1030–1041 (2015)

    MathSciNet  MATH  Google Scholar 

  17. Chen, G., Gould, R.J., Gu, X., Saito, A.: Cycles with a chord in dense graphs. Discrete Math. 341, 2131–2141 (2018)

    MathSciNet  MATH  Google Scholar 

  18. Chiba, S., Fujita, S., Gao, Y., Li, G.: On a sharp degree sum condition for disjoint chorded cycles in graphs. Graphs Combin. 26(2), 173–186 (2010)

    MathSciNet  MATH  Google Scholar 

  19. Chiba, S., Jiang, S., Yan, J.: Partitioning a graph into cycles with a specified number of chords. J. Graph Theory 94, 463–475 (2020)

    MathSciNet  MATH  Google Scholar 

  20. Corrádi, K., Hajnal, A.: On the maximal number of independent circuits in a graph. Acta Math. Acad. Sci. Hungar. 14, 423–439 (1963)

    MathSciNet  MATH  Google Scholar 

  21. Cream, M., Faudree, R.J., Gould, R.J., Hirohata, K.: Chorded Cycles. Graphs Combin. 32, 2295–2313 (2016)

    MathSciNet  MATH  Google Scholar 

  22. Cream, M., Gould, R.J., Chorded \(k\)-pancyclic and weakly \(k\)-pancyclic graphs. Discuss. Math. Graph Theory. To appear

  23. Cream, M., Gould, R.J., Hirohata, K.: A note on extending Bondy’s meta-conjecture. Austral. J. of Combin. 67, 463–469 (2017)

    MathSciNet  MATH  Google Scholar 

  24. Cream, M., Gould, R.J., Hirohata, K.: Extending vertex and edge pancyclic graphs. Graphs Combin. 34(6), 1691–1711 (2018)

    MathSciNet  MATH  Google Scholar 

  25. Cream, M., Gould, R.J., Larsen, V.: Forbidden subgraphs for chorded pancyclicity. Discrete Math. 340, 2878–2888 (2017)

    MathSciNet  MATH  Google Scholar 

  26. Dahan, X.: Regular graphs of large girth and arbitrary degree. Combinatorica 34, 407–426 (2014)

    MathSciNet  MATH  Google Scholar 

  27. Egawa, Y., Faudree, R.J., Györi, E., Ishigami, Y., Schelp, R., Wang, H.: Vertex-disjoint cycles containing specified edges. Graphs Combin. 16(1), 81–92 (2000)

    MathSciNet  MATH  Google Scholar 

  28. Egawa, Y.: Vertex-disjoint cycles of the same length. J. Combin. Theory Ser. B 66, 168–200 (1996)

    MathSciNet  MATH  Google Scholar 

  29. Egawa, Y., Enomoto, H., Faudree, R.J., Li, H., Schiermeyer, I.: Two-factors each component of which contains a specified vertex. J. Graph Theory 43, 188–198 (2003)

    MathSciNet  MATH  Google Scholar 

  30. Elliott, B., Gould, R.J., Hirohata, K.: On degree sum conditions and vertex-disjoint chorded cycles. Graphs Combin. 36(6), 1927–1945 (2020)

    MathSciNet  MATH  Google Scholar 

  31. Enomoto, H.: On the existence of disjoint cycles in a graph. Combinatorica 18(4), 487–492 (1998)

    MathSciNet  MATH  Google Scholar 

  32. Faudree, R.J., Gould, R.J.: Characterizing forbidden pairs for hamiltonian properties. Discrete Math. 173, 45–60 (1997)

    MathSciNet  MATH  Google Scholar 

  33. Faudree, R.J., Gould, R.J., Jacobson, M.S.: Pancyclic graphs and linear forests. Discrete Math. 309, 1178–1189 (2009)

    MathSciNet  MATH  Google Scholar 

  34. Faudree, R.J., Gould, R.J., Jacobson, M.S., Lesniak, L.: Generalizing pancyclic and \(k\)-ordered graphs. Graphs Combin. 20, 291–309 (2004)

    MathSciNet  MATH  Google Scholar 

  35. Ferrero, D., Lesniak, L.: Chorded pancyclicity in \(k\)-partite graphs. Graphs Combin. 34, 1565–1580 (2018)

    MathSciNet  MATH  Google Scholar 

  36. Finkel, D.: On the number of independent chorded cycles in a graph. Discrete Math. 308, 5265–5268 (2008)

    MathSciNet  MATH  Google Scholar 

  37. Fujita, S., Matsumura, H., Tsugaki, M., Yamashita, T.: Degree sum conditions and vertex-disjoint cycles in a graph. Australas. J. Combin. 35, 237–251 (2006)

    MathSciNet  MATH  Google Scholar 

  38. Gao, Y., Li, G., Yan, J.: Neighborhood unions for the existence of disjoint chorded cycles in graphs. Graphs Combin. 29, 1337–1345 (2013)

    MathSciNet  MATH  Google Scholar 

  39. Gao, Y., Lin, X., Wang, H.: Vertex-disjoint double chorded cycles in bipartite graphs. Discrete Math. 342, 2482–2492 (2019)

    MathSciNet  MATH  Google Scholar 

  40. Gao,Y., Wang, X.: The edge condition for independent cycles with chords in bipartite graphs. Appl. Math. Comput. 377, 125163, 7pp (2020)

  41. Gould, R.J.: Graph Theory. Dover Pub. Inc., Mineola, N.Y. (2012)

    MATH  Google Scholar 

  42. Gould, R.J., Hirohata, K., Horn, P.: On independent doubly chorded cycles. Discrete Math. 338, 2051–2071 (2015)

    MathSciNet  MATH  Google Scholar 

  43. Gould, R.J., Hirohata, K., Keller, A.: On independent triples and vertex-disjoint chorded cycles in graphs. Australas. J. Combin. 77, 355–372 (2020)

    MathSciNet  MATH  Google Scholar 

  44. Gould, R.J., Hirohata, K., Horn, P.: Independent cycles and chorded cycles in graphs. J. Combin. 4(1), 105–122 (2013)

    MathSciNet  MATH  Google Scholar 

  45. Gould, R.J., Horn, P., Magnant, C.: Multiply chorded cycles. SIAM J. Discrete Math. 28(1), 160–172 (2014)

    MathSciNet  MATH  Google Scholar 

  46. Hajnal, A., Szemerédi, E., Proof of a conjecture of P. Erdös. In Combinatorial theorey and its applications, II (Proc. Colloq. Balatonfüred,pp. 601–623, p. 1970. North Holland, Amsterdam (1969)

  47. Harvey, D.J.: A cycle of maximum order in a graph of high minimum degree has a chord. Electron. J. Combin. 24, no. 4, Paper No. 4.33, 8pp (2017)

  48. Hendry, G.R.T.: Extending cycles in graphs. Discrete Math. 83, 59–72 (1990)

    MathSciNet  MATH  Google Scholar 

  49. Jiang, T.: A note on a conjecture about cycles with many incident chords. J. Graph Theory 46(3), 180–182 (2004)

    MathSciNet  MATH  Google Scholar 

  50. Kára, J., Král, D.: Minimum degree and the number of chords. Ars Combin. 68, 169–179 (2003)

    MathSciNet  MATH  Google Scholar 

  51. Kawarabayashi, K.: \(K_4^-\)-Factors in a graph. J. Graph Theory 39, 111–128 (2002)

    MathSciNet  MATH  Google Scholar 

  52. Kawarabayashi, K., Niu, J., Zhang, C.Q.: Chords of longest circuits in locally planar graphs. European J. Combin. 28(1), 315–321 (2007)

    MathSciNet  MATH  Google Scholar 

  53. Kostochka, A., Yager, D., Yu, G., Disjoint chorded cycles in graphs with high Ore-degree. Discrete Mathematics and Applications, 259–304, Springer Optim. Appl., 165, Springer, Cham, (2020)

  54. Li, X., Zhang, C.Q.: Chords of longest circuits in 3-connected graphs. Discrete Math. 268(1–3), 199–206 (2003)

    MathSciNet  MATH  Google Scholar 

  55. Li, X., Zhang, C.Q.: Chords of longest circuits embedded in torus and klein bottle. J. Graph Theory 43(1), 1–23 (2003)

    MathSciNet  MATH  Google Scholar 

  56. Lou, D.: The Chvátal-Erdős condition for cycles in triangle-free graphs. Discrete Math. 152, 253–257 (1996)

    MathSciNet  MATH  Google Scholar 

  57. Lovász, L.: Combinatorial Problems and Exercises. North-Holland Pub. Co., Amsterdam (1979)

    MATH  Google Scholar 

  58. Ma, F., Yan, J.: The confirmation of a conjecture on disjoint cycles in a graph. Discrete Math. 341, 2903–2911 (2018)

    MathSciNet  MATH  Google Scholar 

  59. Molla, T., Santana, M., Yeager, E.: A refinement of theorems on vertex-disjoint chorded cycles. Graphs Combin. 33, 181–201 (2017)

    MathSciNet  MATH  Google Scholar 

  60. Molla, T., Santana, M., Yeager, E.: Disjoint cycles and chorded cycles in a graph with given minimum degree. Discrete Math. 343(2020), No. 6, 111837, 20 pp

  61. Ore, O.: Note on hamilton circuits. Amer. Math. Monthly 67, 55 (1960)

    MathSciNet  MATH  Google Scholar 

  62. Posa, L.: Problem 127 (Hungarian) Mat. Lapok 12, 254 (1961)

    Google Scholar 

  63. Thomassen, C.: Girth in graphs. J. Combin. Theory Ser. B 35, 129–141 (1983)

    MathSciNet  MATH  Google Scholar 

  64. Thomassen, C., Chords of longest cycles in cubic graphs. J. Combin. Theory, Series B, 71(2) (1997), 211–214

  65. Thomassen, C.: Chords in longest cycles. J. Combin. Theory Ser. B 129, 148–157 (2018)

    MathSciNet  MATH  Google Scholar 

  66. Qiao, S.: Neighborhood unions and disjoint chorded cycles in graphs. Discrete Math. 312, 891–897 (2012)

    MathSciNet  MATH  Google Scholar 

  67. Qiao, S., Zhang, S.: Vertex-disjoint chorded cycles in a graph. Oper. Res. Lett. 38, 564–566 (2010)

    MathSciNet  MATH  Google Scholar 

  68. Randerath, B., Schiermeyer, I., Tewes, M., Volkmann, L.: Vertex pancyclic graphs. Discrete Applied Math. 120, 219–237 (2002)

    MathSciNet  MATH  Google Scholar 

  69. Verstraëte, J.: Vertex-disjoint cycles of the same length. J. Combin. Theory Ser. B 88, 45–52 (2003)

    MathSciNet  MATH  Google Scholar 

  70. Wang, H.: Vertex-disjoint hexagons with chords in a bipartite graph. Discrete Math. 187, 221–231 (1998)

    MathSciNet  MATH  Google Scholar 

  71. Wang, H., On the maximum number of independent cycles in a graph. Discrete Math. 205 Issues 1–3 (1999), 183–190

  72. Zhang, C.Q.: Longest cycles and their chords. J. Graph Theory 11(4), 521–529 (1987)

    MathSciNet  MATH  Google Scholar 

  73. Zhao, Y.: Bipartite graph tiling. SIAM J. Discrete Math. 23, 888–900 (2009)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author acknowledges the research facilities provided by Emory University.

Funding

The author is supported by the Heilbrun Distinguished Emeritus Fellowship from Emory University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald J. Gould.

Ethics declarations

Conflict of interest

The author would like to thank the referee for the careful reading and helpful suggestions.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gould, R.J. Results and Problems on Chorded Cycles: A Survey. Graphs and Combinatorics 38, 189 (2022). https://doi.org/10.1007/s00373-022-02586-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00373-022-02586-9

Keywords

Mathematics Subject Classification

Navigation