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Abstract
Recently, Dvořák, Norin, and Postle introduced flexibility as an extension of list col-
oring on graphs (J Graph Theory 92(3):191–206, 2019, https:// doi. org/ 10. 1002/ jgt. 
22447). In this new setting, each vertex v in some subset of V(G) has a request for a 
certain color r(v) in its list of colors L(v). The goal is to find an L coloring satisfying 
many, but not necessarily all, of the requests. The main studied question is whether 
there exists a universal constant 𝜀 > 0 such that any graph G in some graph class C  
satisfies at least � proportion of the requests. More formally, for k > 0 the goal is to 
prove that for any graph G ∈ C  on vertex set V, with any list assignment L of size k 
for each vertex, and for every R ⊆ V  and a request vector (r(v) ∶ v ∈ R, r(v) ∈ L(v)) , 
there exists an L-coloring of G satisfying at least �|R| requests. If this is true, then C  
is called �-flexible for lists of size k. Choi, Clemen, Ferrara, Horn, Ma, and Masařík 
(Discrete Appl Math 306:20–132, 2022, https:// doi. org/ 10. 1016/j. dam. 2021. 09. 
021) introduced the notion of weak flexibility, where R = V  . We further develop this 
direction by introducing a tool to handle weak flexibility. We demonstrate this new 
tool by showing that for every positive integer b there exists 𝜀(b) > 0 so that the 
class of planar graphs without K4,C5,C6,C7,Bb

 is weakly �(b)-flexible for lists of 
size 4 (here K

n
 , C

n
 and B

n
 are the complete graph, a cycle, and a book on n vertices, 

respectively). We also show that the class of planar graphs without K4,C5,C6,C7,B5 
is �-flexible for lists of size 4. The results are tight as these graph classes are not 
even 3-colorable.
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1 Introduction

A k-coloring of a graph G is a function f ∶ V(G) → S , where |S| = k . The elements 
of S are often called colors. A k-coloring of G is called proper if adjacent vertices 
are assigned different colors. Suppose that for each vertex v in G, we gave v a list 
L(v) of available colors. A list coloring of a graph G is a proper coloring of G where 
each vertex v is assigned a color from L(v). In particular, for two distinct vertices u 
and v, L(u) and L(v) might be different. A graph is k-choosable if every assignment 
L of at least k colors to each vertex guarantees an L-coloring. The choosability of a 
graph G is the minimum k such that G is k-choosable.

In many applications of list coloring, such as scheduling, some vertices may have 
preferences which are not directly captured by the lists themselves. For example, a 
professor may be willing to teach classes X,Y, or Z but prefers to teach X. Ideally, 
the scheduler can satisfy the specific requests of each professor, but it is often the 
case that they cannot. The goal is then to satisfy as many requests as possible. This 
idea motivates the following definitions.

A weighted request is a function w that assigns a nonnegative real number to each 
pair (v, c) where v ∈ V(G) and c ∈ L(v) . For 𝜀 > 0 , we say that w is �-satisfiable if 
there exists an L-coloring � of G such that

The unweighted variant is defined as follows. A request for a graph G with a list 
assignment L is a function r with domain dom(r) ⊆ V(G) such that r(v) ∈ L(v) for all 
v ∈ dom(r) . In the special case that each vertex requests a color, i.e., dom(r) = V(G) , 
we call such a request widespread. Analogously, for 𝜀 > 0 , a request r is �-satisfiable 
if there exists an L-coloring � of G such that at least �|dom(r)| vertices v in dom(r) 
receive color r(v). We say that a graph G with list assignment L is �-flexible, weakly  
�-flexible, or weighted �-flexible if every request, widespread request, or weighted 
request, respectively, is �-satisfiable. Note that weak flexibility does not make sense 
in the weighted setting since one can set some weights to 0 to turn off the requests 
for these vertices. If G is (weighted/weakly) �-flexible for every list assignment with 
lists of length k, we say that G is (weighted/weakly) �-flexible for lists of size k. Note 
that for k-colorable graphs, if the lists are exactly the same the problem becomes 
trivial as by permuting the colors we can achieve 1

k
-flexibility [6].

The concept of �-flexibility was introduced by Dvořák, Norin, and Postle [6]. 
Subsequently, it was studied for various sub-classes of planar graphs, e.g., triangle-
free [5], girth six [4], or C4-free [10]. Graphs of bounded maximum degree were 
subsequently characterized in terms of flexibility [1].

A central notion in graph coloring is that of reducible configurations, which are 
local subgraphs that cannot appear in a smallest counterexample because their presence 
implies that the graph can be colored from a smaller subgraph by induction. Reducible 
configurations for flexibility are slightly more delicate as we explain in Sect. 2. Recently, 
Choi, Clemen, Ferrara, Horn, Ma, and Masařík [2] proposed a strengthened tool (see 
Lemma 1 below) for designing reducible configurations for flexibility. The authors of [2] 
also introduced the notion of weak flexibility defined above.

∑

v∈V(G)

w(v,�(v)) ≥ � ⋅

∑

v∈V(G),c∈L(v)

w(v, c).
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They demonstrated that the weak setting allows one to create stronger reducible 
configurations. We further develop this direction by strengthening the tools for han-
dling weak flexibility; see Lemma 2 in Sect. 3. We exhibit our new tool by showing 
the following results for subclasses of planar graphs.

For an integer n ≥ 3 let Bn denote the book on n vertices, i.e., the graph consist-
ing of n − 2 triangles sharing an edge. Let Cn and Kn denote a cycle and a clique on 
n vertices, respectively. Given a set of graphs F  and a graph H, we say that H is F
-free if there is no subgraph of H isomorphic to any of the graphs in F .

Theorem 1 There exists 𝜀 > 0 such that every planar {K4,C5,C6,C7,B5}-free graph 
is weighted �-flexible for lists of size 4.

Theorem  2 There exists 𝜀 = 𝜀(b) > 0 such that every planar {K4,C5,C6,C7,Bb}-
free graph is weakly �-flexible for lists of size 4.

The results in Theorems 1 and 2 are tight as in general such graphs are not even 
3-colorable. This is exemplified by the construction in Fig.  1. This construction 
implies:

Observation 3 For every �, b ≥ 5 exists a {K4,Bb}-free planar graph G that does not 
contain any cycle Ck of length 5 ≤ k ≤ � , such that G is a not 3-colorable.

Furthermore, our results follow a recent line of research trying to narrow the gap 
between known degeneracy upper-bounds and choosability lower-bounds, in par-
ticular on subclasses of planar graphs, as is described below. We say that a graph G 
is d-degenerate if each induced subgraph of G contains a vertex of degree at most 
d. It is easy to observe that d-degenerate graphs are (d + 1)-choosable. A similar 
statement holds for flexibility as well: in [6] it was proved that d-degenerate graphs 
with lists of size d + 2 are weighted �-flexible. Therefore, as C5-free planar graphs 
are 3-degenerate [11], they are �-flexible for lists of size 5. The same is true for 
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Fig. 1  A construction proving Observation 3 with an attempt for a 3-coloring that fails
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C6-free planar graphs [7]. For C3-free graphs, Dvořák, Masařík, Musílek, and Pan-
grác [5] showed that they are weighted �-flexible for lists of size 4 and that this the 
result is tight. Surprisingly, the discharging proof in [5] is quite involved compared 
to the easy observation that C3-free planar graphs are 3-degenerate, which implies 
4-choosability. An analogous result holds for {C3,C4,C5}-free graphs, where list of 
size 3 are sufficient for weighted �-flexibility and the result is tight [4].

When only C4 is forbidden, Masařík [10] proved that lists of size 5 are sufficient 
for weighted �-flexibility. However, it is unknown whether the result is tight as those 
graphs are 4-choosable [8] (but not necessarily 3-degenerate). There were attempts 
to bring down the list size to 4 but so far only partial results are known in this direc-
tion: planar graphs that do not contain C4 and C3 at distance at most 1 [2] or {C4,C5}

-free planar graphs [12]. See [2, Table 1] for a comprehensive overview of known 
results for various subclasses of planar graphs. Our results aim to improve this nar-
row gap as they show that lists of size 4 are sufficient even for planar graphs in 
which some copies of C3 and C4 are allowed.

2  Methods—Informal Discussion

The purpose of this section is to informally describe some of the difficulties one 
faces when trying to extend a list-coloring proof to a flexibility proof. This discus-
sion serves as the intuition behind the formal definitions in the next section.

As in previous related papers mentioned above, we use the discharging method 
to obtain our results. For an introduction to the discharging method see [3]. A typi-
cal discharging proof that a graph G is L-list-colorable gives a list of unavoidable 
reducible configurations, which are subgraphs of G that cannot appear in a minimal 
counterexample. The goal is to decompose G into subgraphs R1,… ,RN such that Ri 
is a reducible configuration in G[Ri ∪⋯ ∪ RN] (this will be defined as a resolution 
later), so that any L-coloring of G[Ri+1 ∪⋯ ∪ RN] can be extended to an L-color-
ing of G[Ri ∪⋯ ∪ RN] . Extending the coloring in a descending order from RN to R1 
gives an L-coloring of G.

When requests are introduced, this method becomes more difficult. To explain 
this, assume for simplicity that every vertex has a request. If we manage to accom-
modate one request from each Ri and each Ri has at most b vertices, then we would 
satisfy n/b requests, showing that G is �-flexible for � = 1∕b , and our job would be 
done. However, this is not necessarily possible. Indeed, suppose v ∈ Ri has some 
request r(v) and let � be an L-coloring of G[Ri+1 ∪⋯ ∪ RN] . Suppose further that 
v has one neighbor u in Ri+1 ∪⋯ ∪ RN . If �(u) = r(v) , there is no way to simply 
extend � and accommodate the request of v. Thus more changes to � , such as recol-
oring u, would have to occur to accommodate r(v). In addition to this issue, it may 
also be the case that r(v) cannot be satisfied because Ri itself prevents it.

This means that reducible configurations for flexibility need to provide slightly 
more freedom in the colorings they allow. The easier problem to deal with is that 
r(v) cannot be satisfied because Ri itself prevents it. This can be patched by adding 
a requirement that for any one vertex x in Ri , the coloring � extends to Ri even if x 
has a list of size 1 after removing the colors of already colored neighbors of x in 



1 3

Graphs and Combinatorics (2022) 38:180 Page 5 of 33 180

Ri+1 ∪⋯ ∪ RN . For v, this would be used in case L(v) = {r(v)} and �(u) ≠ r(v) . This 
requirement will be called (FIX) in the formal definitions.

The problem occurring when r(v) cannot be satisfied because its neighbor u in 
Ri+1 ∪⋯ ∪ RN is already colored r(v) is more complicated to solve. The idea is the 
following. Instead of constructing just one L-coloring � , one needs to construct 
L-colorings �1,… ,�

�
 and in some of them, u gets colored by a color different than 

r(v). Then �1,… ,�
�
 can be extended to ��

1
,… ,��

�� , where r(v) is satisfied in some 
of them. At the end, this process gives a set of L-colorings of G and at least one of 
them satisfies a positive fraction of the requests. Formally, this is done by creating a 
probability distribution on L-colorings of G.

In order to make this idea work, there must be a sufficient variety of proper col-
orings for each reducible configuration. In our example, if we want to color v by 
r(v), we cannot use r(v) on u. We need to address this when we are coloring u and 
remove r(v) from its list. Further, we would need to do this for each neighbor of v 
in Ri+1 ∪⋯ ∪ RN . This is achieved in the following way. When we are L-coloring 
Ri , we look at all subsets I ⊆ V(Ri) of vertices that could form a neighborhood of a 
vertex in R1 ∪… ∪ Ri−1 , i.e., in the set of not yet colored vertices. Individually for 
each I, we show that any proper L-coloring � of Ri+1 ∪⋯ ∪ RN can still be extended 
to Ri even if we decrease the sizes of the lists of vertices in I by 1. This will be called 
(FORB) in the formal definitions.

To summarize, the reducible configurations for flexibility must have size bounded 
by a constant, any one vertex can be precolored (FIX), and for different subsets of 
vertices, reducing their lists sizes by 1 does not break the extendability of the color-
ing (FORB).

The main feature of weak flexibility is that instead of demanding in (FIX) that 
“any one vertex in Ri can be precolored”, it is enough to ask for “at least one vertex 
in Ri can be precolored”. It is then easier to satisfy this version of (FIX).

We introduce an additional trick, where we ask “at least one vertex in Ri with few 
external neighbors can be precolored”. This makes satisfying (FIX) more difficult 
since the reducible configurations need a vertex of small degree but it helps a lot 
with checking (FORB).

3  Methods—Definitions and Lemmas

We use some of the notation and tools introduced in [2, 4–6]. In particular, our defi-
nitions are quite similar to those used in [2].

Let 1I denote the characteristic function of I, i.e., 1I(v) = 1 if v ∈ I and 1I(v) = 0 
otherwise. Let G be a graph. Given a function f ∶ V(G) → ℤ and a vertex v ∈ V(G) , 
let f ↓ v denote the function satisfying (f ↓ v)(w) = f (w) for w ≠ v and (f ↓ v)(v) = 1 . 
We will use f ↓ v to indicate that the list size at vertex v has been reduced to 1. In 
other words, f ↓ v means that v has been “precolored”. A list assignment L is an 
f-assignment if |L(v)| ≥ f (v) for all v ∈ V(G) . We will let degG be the function from 
V(G) to ℤ which maps each vertex to its degree. If X ⊂ V(G) , then we let degX equal 
degG[X] , where G[X] is the induced subgraph of G consisting of the vertices in X.
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Given a set of graphs F  and a graph H, a set I ⊆ V(H) is F-free if the graph H 
together with one additional vertex u adjacent to all of the vertices in I does not con-
tain any subgraph isomorphic to a graph in F .

Throughout the following definitions, let H be an induced subgraph of a graph G, 
let F  be a set of graphs, and let k be a positive integer.

Definition 1 ((F, k)-boundary-reducibility) We say that H is an (F, k)-boundary-
reducible subgraph if there exists a set R ⊆ V(H) such that R ≠ ∅ and 

(FIX)  for every v ∈ R , H[R] is L-colorable for every ((k − degG + degR) ↓ v)-
assignment L, and

(FORB)  for every F-free set I ⊆ R of size at most k − 2 , H[R] is L-colorable for 
every ( k − degG + degR −1I)-assignment L.

Definition 2 (Weak (F, k)-boundary-reducibility) We say that H is weakly (F, k)- 
boundary-reducible if it satisfies (FORB) and there exists at least one vertex v satis-
fying (FIX) from Definition 1. In this case, we denote v by Fix(H).

In both of the preceding definitions, we will occasionally refer to the set V(H) ⧵ R 
as the boundary of the configuration and the set R as the reduced part of the con-
figuration. Note that (FORB) in particular implies that degG − degR ≤ k − 2 for all 
v ∈ R.

Definition 3 ((F, k, b)-resolution) Let G be an F-free graph with lists of size k. An 
(F, k, b)-resolution of G is a set {G0,G1,… ,GM} of subgraphs of G such that for i ≥ 1 , 
Hi is an induced (F, k)-boundary-reducible subgraph of Gi−1 with reduced part Ri and

Additionally, for each i ≥ 1 |Ri| ≤ b and GM is itself a (F, k)-boundary-reducible graph 
with empty boundary and order at most b. For technical reasons, let GM+1 ∶=�.

A weak (F, k, b)-resolution is defined analogously, except that it uses weak  
(F, k)-boundary-reducibility in the place of (F, k)-boundary-reducibility.

The following lemma is the main tool we use for proving weighted �-flexibility.

Lemma 1 (Lemma 13 in [2]) For integers k ≥ 3 and b ≥ 1 and for a set F  of forbid-
den subgraphs, let G be an F-free graph with an (F, k, b)-resolution. Then there 
exists an 𝜀 > 0 such that G is weighted �-flexible for lists of size k. Furthermore, if 
the request is widespread and G has a weak (F, k, b)-resolution, then G is weakly (

� ⋅
1

b

)

-flexible for lists of size k.

For the proof of Theorem 2 we prove a stronger version of Lemma 1 tailored to 
the setting of weak flexibility. For this, we define new “enhanced” versions of weak 

Gi ∶=G −

i⋃

j=1

Rj.
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(F, k)-boundary-reducibility and of a weak (F, k, b)-resolution. We will now require 
Fix(H) to contain only vertices v satisfying degG(v) − degR(v) ≤ k − 3 . This change 
will allows us to consider smaller sets for the (FORB) condition.

Definition 4 (Enhanced weak (F, k)-boundary-reducibility) A graph H is enhanced 
weakly (F, k)-boundary-reducible if there exist non-empty sets Fix(H) ⊆ R ⊆ V(H) 
such that 

(FIX)  for every v ∈ Fix(H) , degG(v) − degR(v) ≤ k − 3 and H[R] is L-colorable 
for every ((k − degG + degR) ↓ v)-assignment L, and

(FORB)  for every F-free set I ⊆ R of size at most k − 3 , H[R] is L-colorable for 
every ( k − degG + degR −1I)-assignment L.

Before proceeding further, observe that (FORB) in the enhanced version is easier 
to check because I is of size at most k − 3 , instead of k − 2 in the non-enhanced ver-
sion. However, (FIX) in the enhanced version has an additional restriction on the 
degree of vertices in Fix(H) , which makes it more difficult to satisfy. Note that in 
general, the (FORB) condition on a single vertex v implies degG − degR ≤ k − 2 . 
However for vertices in Fix(H) , the (FIX) condition implies degG − degR ≤ k − 3 . In 
particular, a vertex of degree k − 2 is no longer reducible under the enhanced defini-
tion. We overcome this obstacle by allowing (k − 2)-vertices in a resolution under 
special conditions. Forbidding books B

�
 helps with satisfying these special condi-

tions. By doing this we can have both: a vertex of degree k − 2 is reducible in our 
setting, and in addition we obtain subgraphs H that are reducible under the enhanced 
weak (F, k)-boundary-reducibility definition, given that certain special circum-
stances occur. This rather technical improvement helps substantially in reducing the 
complexity of the analysis of the discharging process for the graph classes studied in 
this paper. Note that further generalization of this idea may be possible, but for lack 
of use in this paper we will not aim to formulate this in the full generality.

For a subgraph H of a graph G, let NG(H) be the induced subgraph of G on all 
neighbors of the vertices in H. If G is a graph satisfying the conditions of Defini-
tion 4 and I ⊆ R is an F-free set of size k − 2 so that G[R] is L-colorable for every 
( k − degG + degR −1I)-assignment L, then we call I loose.

Let G be a graph, H its subgraph and v ∈ V(G − H) . We say that v is H-tight if 
degG(v) = k − 2 , NG(v) ⊆ V(H) , and NG(v) is not loose in H.

Definition 5 (Enhanced weak (F, k, b, �)-resolution) Let G be an F-free graph with 
lists of size k. An enhanced weak (F, k, b, �)-resolution of G is a set {G0,G1,… ,GM} 
of subgraphs of G, such that all the following three conditions hold: 

1. For 1 ≤ i ≤ M , there exists a subgraph Hi of Gi−1 satisfying that

– Hi is an induced enhanced weak (F, k)-boundary-reducible subgraph of 
Gi−1 with reducible part Ri such that |Ri| ≤ b , or

– Hi is an induced weak (F, k)-boundary-reducible subgraph of Gi−1 with 
reducible part Ri , such that |Ri| ≤ b and for all v ∈ Fix(Hi) either 
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 is a loose set in Hj for all j > i , or
– Hi is a single vertex with degGi−1

(v) = k − 2.

2. For every 1 ≤ i ≤ M − 1,

GM is a weak (F, k)-boundary-reducible graph with empty boundary and order 
at most b, GM+1 ∶=� , and HM+1 ∶=GM.

3. The following is satisfied:

(TIGHT) For every 1 ≤ j ≤ M , there are at most � different Hj-tight vertices 
vi , where V(Hi) = {vi} with i < j.

Note that in Definition 5, Hi can be Hj-tight only if Hi is a single vertex with 
degGi−1

(v) = k − 2 . A natural way to satisfy (TIGHT) condition is to show that 
whenever there is an Hj such that more than � subgraphs Ha1

,… ,Ha�
,Ha�+1

 are Hj

-tight, then

If two adjacent vertices have many common neighbors, we get a book, which will be 
in F .

We are now ready to state and proof our main lemma.

Lemma 2 (Reducible configurations for weak flexibility) For integers k ≥ 4 , b ≥ 1 , 
� ≥ 0 , and for a set F  of forbidden subgraphs, let G be a F-free graph with an 
enhanced weak (F, k, b, �)-resolution. Then, there exists an 𝜀 > 0 such that G is 
weakly �-flexible for lists of size k.

The proof of the lemma is similar to the proof of Lemma 1 as it appeared in [2, 
Lemma 13]. In particular, we explicitly formulate a few arguments in their proof 
as a separate claim (Claim 4 below) that we use in our proof. We will also need 
the following Lemma 3, which is Lemma 12 in [2].

Let G be a graph with a weak (F, k, b)-resolution R . Let AllFix(G) denote the 
union of all Fix(H) over all reducible subgraphs H in the resolution R.

Lemma 3 (Lemma 12 in [2]) Let b be an integer. Let G be a graph with list assign-
ment L of size k on V(G). Suppose G has a weak (F, k, b)-resolution, G is L-colora-
ble, and there exists a probability distribution on the L-colorings � of G such that 

|NGi−1
(v) ∩ Hj| ≤ k − 3 or NGi−1

(v) ∩ Hj

Gi ∶=G −

i⋃

j=1

Rj,

Hj ∪
⋃

i∈{1,…,�,�+1}

Hai
∈ F.
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for every v ∈ AllFix(G) and c ∈ L(v) , ����[�(v) = c] ≥ � . Then G with L is weakly (

� ⋅
1

b

)

-flexible.

Proof of Lemma  2 For 1 ≤ j ≤ M + 1 , let Hj  be the set of all Hj-tight subgraphs 
where the (TIGHT) property applies. Let Hi ∈ Hj  for some i and j. This means that 
Hi is a single vertex with k − 2 ≥ 2 neighbors in Hj . Hence Hi = �.

Now, we refactor the enhanced weak (F, k, b, �)-resolution R into an enhanced 
weak (F, k, b + �, 0)-resolution R′ . To do so, we attach all Hj-tight subgraphs to Hj 
and thus we create a larger configuration H′

j
 . The vertices in tight subgraphs are not 

part of any Fix set. Formally

and Fix(H�
i
) = Fix(Hi) if H′

i
≠ ∅ and Fix(H�

i
) = � otherwise. Observe that by the 

(TIGHT) property, the size of the resulting H′
j
 will be upper-bounded by b + � and 

that H′
j
 is enhanced weakly (F, k)-boundary-reducible or only weakly (F, k)-bound-

ary-reducible (provided its neighbourhood is always a loose or small set) if it is not 
empty. We simultaneously remember both R and R′ , since each time we are using 
H′

j
 (or G′

j
 ) we are referring to R′ and each time we are using Hj (or Gj ) we are refer-

ring to R.
The next step is to create a probability distribution on L-colorings � of Gi for all 

i starting with G′
M

 . Let p = k−(b+�) and �� = pk−1 . We are going to show that each i 
satisfies the following properties: 

 (i) for every v ∈ AllFix(G�
i
) and a color c ∈ L(v) , the probability that �(v) = c is 

at least �′ , and
 (ii) for every color c and every F -free set I in G′

i
 of size at most k − 3 , the prob-

ability that �(v) ≠ c for all v ∈ I is at least p|I| , and
 (iii) for every color c and every loose F -free set I in G′

i
 of size exactly k − 2 , the 

probability that �(v) ≠ c for all v ∈ I is at least p|I|.

Note that for G�
M+1

 all of the properties trivially hold. Note that Property  (i) on 
G�

0
= G0 = G immediately implies that G with L is weakly 

(

�′ ⋅
1

b

)

-flexible by 
Lemma 3 and therefore weakly �-flexible for � =

��

b
 .   ◻

We will make use of the following claim proven implicitly in [2].

Claim 4 (Implicit in the proof Lemma 13 in [2]) Suppose that we have an enhanced 
weak (F, k, b + �, 0)-resolution and a probability distribution on L-colorings of G�

i+1
 

satisfying Properties (i), (ii), and (iii) on G�
i+1

.

If for each vertex v ∈ Fix(H�
i
) and for each I = N(v) ∩ H�

j
 where j > i one of the 

following holds: 

H�

j
∶=

⎧
⎪
⎨
⎪
⎩

� if exists i such that Hj ∈ Hi

Hj ∪
�

H∈Hj

H otherwise
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(a) |I| = k − 2 and I is loose in H′
j
 , or

(b) |I| < k − 2

then there exists a probability distribution on L-colorings of G′
i
 such that Proper-

ties (i), (ii), and (iii) are satisfied on G′
i
.

In order to use Claim 4, we need verify (a) and (b). If H′
i
 is not a single vertex 

v with degGi
(b) = k − 2 , then (a) or (b) hold by the definition of H′

i
 . Hence we 

need to check the case of H′
i
 being a single vertex v with degGi

(v) = k − 2 . We do 
it by showing v is not H′

j
 tight for any j ≥ i in the following claim. It implies that 

for H′
i
 , either (a) or (b) is satisfied. In particular, we will show that we got rid of 

all tight subgraphs when we refactored R into R′.

Claim 5 There are no i < j such that H′
i
 is H′

j
-tight.

Proof Suppose for contradiction that H′
i
 is H′

j
-tight for some i < j . By the definition, 

H′
i
 is one vertex v with degree k − 2 in Gi−1 . By the definition of R′ , v is not H

�
-tight 

for any � > i . In particular, v is not Hj-tight. Since v is H′
j
-tight, Hj  is not empty. 

Hence H′
j
 is a union of Hj and vertices W, where every w ∈ W has k − 2 neighbors in 

Hj . Since v is not Hj-tight, it has at most k − 3 neighbors in Hj and at least one in W. 
Notice that every vertex w in W has k − 2 neighbors in Hj  hence a list of k − 1 colors 
suffices for extending any coloring of Hj  to w greedily. This and the (FORB) prop-
erty for Hj imply that v is not H′

j
-tight because N(v) in H′

j
 is loose, which is a contra-

diction.  ♢

We conclude that Claim 5 enables us to use Claim 4 directly on R′ . This fin-
ishes the proof of Lemma 2.   ◻

For a positive integer d, a d-vertex, a d+-vertex, and a d−-vertex are a vertex of 
degree d, at least d, and at most d, respectively. A d-face, a d+-face, and a d−-face 
are defined analogously. A (d1, d2, d3)-face is a 3-face where the degrees of the 
vertices on the face are d1, d2, d3 . We will sometimes call 3-faces triangles. A dia-
mond D is a graph isomorphic to K4 minus an edge. The 2-vertices of D are called 
the side vertices, and the 3-vertices are called the middle vertices of D. Let G be 
a graph. By T(a, b, c) we denote a triangle in G with vertices of degree a, b, and c 
in G, and by Dia(a − b, c, d) a diamond in G with middle vertices of degrees a and 
b and side vertices of degrees c and d.

Lemma 4 Let G be a plane {C5,C6,C7}-free graph. Suppose that v is the middle ver-
tex of k distinct diamonds, and v is adjacent to m faces of size 3 or 4 that are not part 
of a diamond in which v is a middle vertex. Then deg(v) ≥ 3k + 2m and k ≤ ⌊

deg(v)

3
⌋.

Proof If not, then v is adjacent to three faces f, g, h, each of them of size at most 4, 
such that f, g share an edge and g, h share an edge. But this induces a cycle Ci with 
5 ≤ i ≤ 7 , a contradiction.   ◻
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In all the figures in the paper, black vertices have all their incident edges drawn, 
whereas a white vertex may have more edges incident than drawn (since white verti-
ces are in the boundary).

4  Proof of Theorem 1

4.1  Reducible Configurations

Let F = {K4,C5,C6,C7,B5} . In this section we will provide a handful of (F, 4)

-boundary-reducible configurations.

Lemma 5 The following configurations are (F, 4)-boundary-reducible. See Figs. 2 
and 3 for reference. If boundary is not mentioned, it is empty.

(C1)  A vertex of degree at most 2.
(C2)  Three 3-vertices appearing on a path of length 2.
(C3)  The triangle T(3, 3, 3).
(C4)  Let u be a 3-vertex adjacent to the middle 4-vertex of the diamond 

D = Dia(4 − 3, 4, 5+) . Let v denote the 5+-vertex that is a side vertex of D. 
Then D ∪ {u} is reducible with boundary v.

(C5)  Dia(3 − 3, 5+, 5+) with 5+-vertices in the boundary.
(C6)  Dia(3 − 5+, 3, 5+) with 5+-vertices in the boundary.
(C7)  The diamond Dia(5 − 4, 3, 3).
(C8)  Let D1 = Dia(4 − 4, 5, 3) and D2 = (5 − 3, 4, 4+) be two diamonds sharing 

the same 5-vertex. Let v denote the 4+-vertex that is a side vertex of D2 . 
Then the subgraph D1 ∪ D2 is reducible with v in the boundary.

(C9)  Let D1 = D2 = Dia(3 − 4, 4, 5+) be two diamonds whose middle 4-vertices 
are connected by an edge. Let v1 and v2 denote the two 5+-vertices that are 
the side vertices of D1 and D2 . Then the subgraph D1 ∪ D2 is reducible with 
v1 and v2 in the boundary.

(C10)  Let D1 = Dia(4 − 3, 5+, 5) and D2 = Dia(5 − 3, 4, 4+) be two diamonds 
sharing a middle 5-vertex. Let v1 denote the 5+-vertex that is a side vertex of 
D1 and let v2 denote the 4+-vertex that is a side vertex of D2 . Then the sub-
graph D1 ∪ D2 is reducible with v1 and v2 in the boundary.

(C11)  A diamond Dia(4 − 4, 3, 4) along with a 3-vertex adjacent to one of the mid-
dle 4-vertices.

(C12)  Let D1 = Dia(3 − 4, 4, 5+) and D2 = Dia(4 − 4, 4, 3) be two diamonds 
whose middle 4-vertices are connected by an edge. Let v denote the 5+-ver-
tex that is a side vertex of D1 . Then the subgraph D1 ∪ D2 is reducible is 
reducible with v in the boundary.

(C13)  Let D1 = Dia(3 − 5, 5, 5) and D2,D3 = Dia(5 − 3, 4, 5+) be two diamonds 
where the two side 5-vertices of D1 are middle vertices of D2 and D3 . Let 
v1 and v2 denote the two side 5+-vertices of D2 and D3 , respectively. Then 
D1 ∪ D2 ∪ D3 is reducible with v1 and v2 in the boundary.
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2

(C1)

2

3

2

(C2)

3

3

3

(C3)

3 3

2

2

+

(C4)

2 2

+

+

(C5)

2

2

+

+

(C6)

2 3

3

3

(C7)

3 3

3

3

3

2

+

(C8)

2 3

2

33

2

++

(C9)

2 3

3

3

2+

+

(C10)

4 3

3

2

2

(C11)

Fig. 2  Reducible configurations for Theorem  1 (Part 1). The labels give the list sizes remaining after 
accounting for the external neighbors and boundary vertices
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We wish to point out that the reducible configurations are meant to be induced sub-
graphs by definition, and we will use them as such in the discharging part of the proof. 
The only configuration, where two external edges can be identified is (C2) and it gives 
(C3), which we explicitly list. It can be straightforwardly checked that no identification 
of vertices in (C1)–(C15) is possible since otherwise, it creates a forbidden subgraph.

Proof of Lemma 5 It is straightforward to check that each configuration (C1)–(C15) 
satisfies the (FIX) and (FORB) conditions in Definition 1. However, checking all the 
cases is rather tedious. Hence we developed a simple computer program that does it, 
see http:// lidic ky. name/ pub/ flexi bility.1 In particular, a greedy coloring works in all 
cases. For an interested reader who wishes to check some cases by hand, we added 
list sizes to Figs. 2 and 3. We also provide here proofs showing that (C2) and (C5) 
are (F, 4)-boundary-reducible. Together, these two configurations demonstrate how 
to prove that the remaining configurations are reducible.

The two reducible configurations H1 and H2 corresponding to (C2) and (C5), 
respectively are depicted in Fig. 4. The reduced parts R1 = H1 and R2 ⊂ H2 are pro-
vided as well. Finally, we have labeled each vertex in the figure with the value of the 
function 4 − degHi

+ degRi
 for i ∈ {1, 2}.

By definition, checking the (FIX) condition for any subgraph H with reducible 
part R is equivalent to showing that for each v ∈ V(R) , R can be properly colored 
after assigning each vertex a list of size ((4 − degH + degR) ↓ v) . It is clear by 
inspection that this is the case for (C2) = H1 = R1 , and hence we only need to check 
the (FORB) condition for (C2). Since (FIX) is already verified, it implies (FORB) 
for subsets of size one in R. It remains to verify (FORB) for subsets of size two in R.

Fig. 3  Reducible configura-
tions for Theorem 1 (Part 2). 
The labels give the list sizes 
remaining after accounting 
for the external neighbors and 
boundary vertices

4 3

3

2

33

2

+

(C12)

3 3

2

33

2 2

4 ++

(C13)

1 This program is also available as a part of the sources in our arXiv submission [9] (file reducible_
configurations.sage).

http://lidicky.name/pub/flexibility
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If we apply (FORB) to a and c, then both a and c will be left with one available 
color in their lists. Vertex b still has three colors in its list. Therefore, we can greed-
ily color a, c, and b in this order to obtain a proper coloring for (C2). If we apply 
(FORB) to a and b, then the color for a will be fixed, and each of b and c will be left 
with two possible colors. Therefore, we can greedily color a, b, and c in this order to 
obtain a proper coloring for (C2). By symmetry, the case of applying (FORB) to b 
and c is also verified, implying that (C2) is reducible.

Let H2 be a subgraph of G isomorphic to (C5). Let R2 ⊂ H2 denote the reduc-
ible part of (C5), i.e. the subgraph of H2 induced by vertices u1,… , u4 . For each 
i = 1,… , 4 , we will check the (FIX) condition for ui . Let Li be an arbitrary list 
assignment where each vertex in R is assigned a list of size ((4 − degH + degR) ↓ ui) . 
We will now show that R can be properly colored. In each case we list the order of 
vertices in greedy coloring.

– L1 ∶ u1, u2, u4, u3.
– L2 ∶ u2, u1, u4, u3.
– L3 ∶ u3, u4, u2, u1.
– L4 ∶ u4, u3, u2, u1.

Next we need to verify that H satisfies the (FORB) condition. However, only one 
subset of R of size two is F-free: {u1, u2} . In that case R can be colored greedily in 
the following order u1, u2, u4, u3 . Thus, (C5) is a reducible configuration.   ◻

4.2  Discharging

In this section we prove the following lemma, which by Lemma 1 implies 
Theorem 1.

Lemma 6 Let G be a connected {K4,C5,C6,C7,B5}-free plane graph. Then G con-
tains at least one of the reducible configurations (C1)–(C13).

Proof Suppose for contradiction that G is a connected {K4,C5,C6,C7,B5}-free plane 
graph that contains none of the configurations (C1)–(C13). We use discharging to 
obtain a contradiction with Euler’s formula.

Fig. 4  Reducible configurations 
(C2) and (C5). The reduced 
parts consist of the black 
vertices

(C2) H1

2 2

3

a c

b

R2

+

u1

v

u2 u3

u4

2

2

3 3

(C5) H2
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We denote the initial charge by ch. For every vertex v, we let ch(v) = deg(v) − 4 , 
and for every face f we let ch(f ) = �(f ) − 4 , where �(F) is the length of the facial 
walk. For convenience we will also assign charge to the edges of G. The initial 
charge is 0 for each edge. By Euler’s formula, the total sum of initial charges is −8.

We sequentially apply the following rules (see also Figs. 5 and 6) that move the 
charge around, while keeping the sum of charges unchanged. The charge at the end 
is called the final charge. The final charges will be all nonnegative, contradicting 
that their sum is −8 . 

 (R1) Every 8+-face sends charge 1/2 to every incident 3-face and 4-face for every 
edge they have in common.

 (R2) For every edge e that is not incident with any 3-face or 4-face the following 
applies. If e is a bridge, e receives charge 1 from the unique face incident with 
e. If e is not a bridge, e receives charge 1/2 for each of the two faces incident 
to e.

 (R3) For every vertex u and an incident edge e = uz with charge 1: 

 (R3a) If u and z are both 3-vertices, then e sends charge 1/2 to u.
 (R3b) If u is a 3-vertex and z is 4+-vertex, then e sends charge 1 to u.
 (R3c) If z is a 4+-vertex, u is the middle 4-vertex of the diamond Dia(4 − 3, 4, 4+) , 

and v is the 3-vertex on this diamond, then e sends 1 to v.
 (R3d) If z is a 4+-vertex, u is one of the middle 4-vertices of the diamond 

Dia(4 − 4, 3, 4) , and v is the 3-vertex on this diamond, then e sends 1/2 to 
v.

 (R4) Every 4-face sends charge 1 to every incident 3-vertex.
 (R5) Let f be a 3-face that is not part of a diamond. If exactly one vertex u of f has 

degree 3, then f sends 1/2 to u.
 (R6) The following rules apply for a 5-vertex u. If u is a middle vertex in 

 (R6a) Dia(5 − 3, 4, 4) or Dia(5 − 3, 5, 4) , then u sends 1 to the middle 3-vertex;
 (R6b) Dia(5 − 3, 6+, 4+) or Dia(5 − 3, 5, 5) , then u sends 1/2 to the middle 

3-vertex;
 (R6c) Dia(5 − 5+, 3, 3) , then u sends 1/4 to every of the two side 3-vertices;
 (R6d) Dia(5 − 4+, 4+, 3) , then u sends 1/2 to the side 3-vertex.

 (R7) The following rules apply for every 5-vertex u and a diamond D, where v is a 
side vertex of D. If D is 

 (R7a) Dia(4 − 4, 5, 3) , then u sends 1/2 to the side 3-vertex;
 (R7b) Dia(4 − 3, 5, 5+) , then u sends 1/2 to the middle 3-vertex;
 (R7c)  Dia(5 − 3, 5, 4+) and u has not already sent 1 to another diamond under 

rule (R6a), then u sends 1/2 to the middle 3-vertex.

 (R8) The following rules apply for every 6+-vertex u and a diamond D, where u is a 
side vertex of D. If D is 
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 (R8a) Dia(5 − 3, 6+, 4+) , then u sends 1/2 to the middle 3-vertex;
 (R8b) Dia(4 − 4, 6+, 3) , then u sends 1/2 to the side 3-vertex;
 (R8c) Dia(4 − 3, 6+, 4+) , then u sends 1/2 to the middle 3-vertex.

 (R9) The following rules apply for every 6+-vertex u and a diamond D, where u is a 
middle vertex of D. If D is 

 (R9a) Dia(6+ − 4+, 3, 3) then u sends 1/2 to each of the side vertices;
 (R9b) Dia(6+ − 4+, 4+, 3) , then u sends 1 to the side 3-vertex;
 (R9c) Dia(6+ − 3, 4+, 4+) then u sends 1 to the other middle 3-vertex.

Claim 6 The final charge of every face of G is nonnegative.

Proof Given that G does not contain any faces of length 5, 6 or 7, we consider 8+
-faces, 4-faces, and 3-faces as three separate cases covering everything.

Suppose that f is an 8+-face. Then the initial charge of f is equal to �(f ) − 4 . By 
(R1) and (R2), f sends at most 1

2
 for each of these edge that is not a bridge and charge 

1 to each bridge by (R2). This means that f sends at most 
⌈
�(f )

2

⌉

≤ �(f ) − 4 total 
charge. Since (R1) and (R2) are the only rules requiring an 8+-face to send out 
charge, every 8+-face has nonnegative final charge.

Suppose that f is a 4-face. Then f has its initial charge 0. Since C5 , C6 , and C7 are 
forbidden subgraphs, f must be incident with four 8+-faces. By (R1), each face shar-
ing an edge with f sends charge 1

2
 to f for every edge they have in common, leaving 

f with a total charge of 2 before applying (R2)–(R9). Given that (C2) is a reducible 
configuration, f cannot contain more than two 3-vertices. Thus, (R4) applies to f at 
most twice, which decreases the charge at f by at most 2. Since no other rules apply 
to 4-faces, f has nonnegative final charge.

Next suppose that f is a 3-face that is not contained in a diamond. Every face 
incident to f must be an 8+-face since C5 , C6 , and C7 are forbidden subgraphs. This 

u

1/2

(R3a)

u

1

(R3b)

+

1

+

u

(R3c)

Fig. 5  Discharging rules described in Lemma 6 used for Theorem 1 (Part 1)
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1/2

+ u

(R3d)

1

1

(R4)

1/2

(R5)

1

(R6a)

1

(R6a)

1/2

+

+

(R6b)

1/4

1/4

+

(R6c)

1/2 +

+

(R6d)

1/2

(R7a)

1/2

+

(R7b)

1/2

(R7c)

1/2

+

(R8a)

1/2

+

(R8b)

1/2

+

+

(R8c)

1/2

1/2+ +

(R9a)

1

+ +

+

(R9b)

1+

+

+

(R9c)

Fig. 6  Discharging rules described in Lemma 6 used for Theorem 1 (Part 2)
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means that after applying (R1), f has charge 1
2
 . Among rules (R2)–(R9), only (R5) 

requires a 3-face to send out charge. If (R5) applies to f, then it only requires f to 
send a charge of 1

2
 . This means that f has nonnegative final charge.

Lastly, assume that f is a 3-face contained in a diamond D. Then f shares one edge 
with another 3-face. Since C5 , C6 , and C7 are forbidden subgraphs, f shares its other 
two edges with 8+-faces. By (R1), f receives charge at least 1

2
 for each edge it shares 

with an 8+-face, leaving f with charge at least 0 before applying (R2)–(R9). None of 
these rules, however, demand charge from a 3-face that is contained in a diamond, 
implying that f will end with nonnegative charge. As we have considered all possible 
faces in G, this completes the proof of Claim 6.  ♢

Claim 7 The final charge of every edge of G is nonnegative.

Proof Let e = uz be an edge of G. If e is incident with a 3-face or a 4-face, then none 
of the rules apply to e and there is nothing to prove. Otherwise, e has charge 1 after 
applying (R2). As (R3) is the only rule that requires any edge to send out charge, it 
suffices to verify that e will never be asked to give more than 1 charge under (R3).

If u and z are both 3-vertices, then only (R3a) applies to e and the edge sends 
exactly 1

2
 to each of u and z. If u is a 3-vertex and z is a 4+-vertex, then only (R3b) 

applies, and e send exactly 1 to u.
If u is a 4+-vertex and z is a 5+-vertex, then (R3) does not apply with z and e 

sends charge at most 1 using either (R3c) or (R3d).
The remaining case is that both u and z are 4-vertices. The rules demand e to send 

charge more than 1 if by symmetry (R3c) applies with u and one of (R3c) and (R3d) 
applies with z. However, this would give reducible configurations (C9) and (C12), 
respectively. Therefore, no edge in G that begins with charge 1 will ever be asked to 
send out more than 1 total charge, completing the proof of Claim 7.  ♢

Claim 8 The final charge of every 4+-vertex is nonnegative.

Proof Suppose that v is a 4-vertex. The initial charge of v is 0, and there are no rules 
requiring v to send out charge, so v will end with nonnegative charge.

Next suppose that v is a 5-vertex. Then the initial charge of v is 1. Only (R6) and 
(R7) require a 5-vertex to distribute charge. Therefore, we may assume that v is inci-
dent with at least one diamond. Given that G does not contain any C5 , C6 , C7 , or B5 
subgraphs, v is incident with at most two diamonds.

First suppose that v is incident with exactly one diamond D. If v is a middle ver-
tex of D then only (R6) applies to v, and if v is a side vertex of D then only (R7) 
applies to v. As neither of these two rules will require v to send out charge more than 
1, v will end with nonnegative charge.

Next suppose that v is incident with two diamonds D1 and D2 . Since G does not 
contain any C5 , C6 , C7 , or B5 subgraphs, D1 and D2 must be edge disjoint. Since 
deg(v) = 5 , v cannot be a middle vertex of both diamonds. If v is a side vertex of 
both diamonds, then only (R7) applies to v. As (R7) will not require v to send charge 
more than 1

2
 to either diamond, v will end with nonnegative charge.



1 3

Graphs and Combinatorics (2022) 38:180 Page 19 of 33 180

Therefore, we may assume that v is a middle vertex of D1 and a side vertex of D2 . 
In this case, it is possible that both (R6) and (R7) apply to v. Among the subcases of 
(R6), only (R6a) requires v to send out charge for more than 1

2
 , and (R7) will never 

ask v send out charge more than 1
2
 . Given that configuration (C8) is reducible, (R6a) 

cannot apply with (R7a). Next, given that configuration (C10) is reducible, (R6a) 
cannot apply with (R7b). By assumption of (R7c), (R6a) cannot apply with (R7c). 
Therefore v is never asked to send more than 1, implying that v will end with non-
negative charge.

Now suppose that v is a 6+-vertex. The only rules that apply to v are (R8) and 
(R9). Under these rules, v sends at most 1 to all diamonds that contain v as a mid-
dle vertex, and v sends at most 1/2 to all diamonds that contain v as a side vertex. 
Assume that v is the middle vertex of k distinct diamonds, and incident to m other 
faces of size 3. By Lemma 4, the final charge of v is at least

and 2 deg(v)
3

− 4 is nonnegative whenever deg(v) ≥ 6 . This completes the proof of 
Claim 8.  ♢

Claim 9 The final charge of every 3-vertex that is not contained in a diamond is 
nonnegative.

Proof Let v be a 3-vertex that is not contained in a diamond. Then the initial charge 
of v is −1 . As there are no rules requiring v to send out charge, we only need to 
verify that v will receive charge at least 1. First suppose that v is not incident to any 
3-faces or 4-faces. Then each of the three edges incident to v receive charge 1 under 
(R2). Next, each of these edges sends 1

2
 to v by (R3), leaving v with a charge of 1

2
.

Now suppose that v is incident to at least one 4-face f. By (R4), v receives 1 from 
f and we are done. Therefore, we may assume that v is not incident to any 4-face, 
and that v is incident to at least one 3-face T. By assumption, T is not contained in a 
diamond.

– Case 1: T contains another 3-vertex. In this case, v must be adjacent to a 4+-ver-
tex u that is not contained T, since (C2) is reducible. Then by (R3b), v receives a 
charge of 1 from the edge uv.

– Case 2: T contains two 4+-vertices. Again, let u be the neighbor of v that in not 
contained in T. Here, v will receive at least 1

2
 from (R3). With that being said, T 

will send the remaining 1
2
 to v under (R5).

This completes the proof of Claim 9.  ♢

Claim 10 The final charge of every 3-vertex that is incident to a diamond is 
nonnegative.

deg(v) − 4 − k −
m

2
= deg(v) − 4 −

3k + 2m

4
−

k

4
≥

3 deg(v)

4
− 4 −

1

4

⌊deg(v)

3

⌋

≥
2 deg(v)

3
− 4,



 Graphs and Combinatorics (2022) 38:180

1 3

180 Page 20 of 33

Proof Assume that v is a 3-vertex incident to a diamond D. Since (C2) and (C3) are 
reducible, there is at most one other 3-vertex incident to D. Since the initial charge 
of v is −1 , and there is no rule requiring a 3-vertex to send charge, it suffices to show 
that v will always receive charge at least 1 after applying rules (R1)–(R9). We con-
sider the following cases.

Case 1 v is the only 3-vertex incident to D and v is a side vertex of D. Given the 
list of forbidden subgraphs in G, the other two faces incident to v must be 8+-faces. 
Hence by (R3), v receives charge at least 1

2
 from the only edge incident to v that is 

not a part of D. There are three subcases to Case 1 showing how v gets another 1
2
 of 

charge. 

1. D = Dia(4 − 4, 4, 3)

  Let x and y denote the two middle vertices of D. Since (C11) is reducible, 
each of the neighbors of x and y that are not contained in D must be 4+-vertices. 
Therefore by (R3d), v receives 1

2
 from the each of two edges incident to x and y 

that are not contained in D.
2. D = Dia(4 − 4, 5+, 3)

  Let u denote the other side vertex in D. If u is a 5-vertex, then v receives 1
2
 from 

u by (R7a). If u is a 6+-vertex, then v receives 1
2
 from u by (R8b).

3. D = Dia(5+ − 4+, 4+, 3)

  Let u denote the 5+-vertex that is the middle vertex of D. If d(u) = 5 , then u 
sends charge 1

2
 to v by (R6d). If d(u) ≥ 6 , then u sends charge 1

2
 by (R9b).

In all three cases, the final charge of v is nonnegative.

Case 2 v is the only 3-vertex incident to D and v is a middle vertex of D. There 
are four subcases to Case 2. In each v receives charge 1 which leads to nonnegative 
final charge. 

1. D = Dia(4 − 3, 4, 4+)

  Let u denote the middle 4-vertex of D. Since (C4) is reducible, the unique 
neighbor z of u not contained in D must be a 4+-vertex. Therefore, the edge uz 
will send charge 1 to v by (R3c), leaving v with nonnegative charge.

2. D = Dia(4 − 3, 5+, 5+)

  Let x and y denote the two side vertices of D. If d(x) = 5 , then x will send 
charge 1

2
 to v by (R7b). If d(x) ≥ 6 , then x will send charge 1

2
 to v by (R8c). As the 

rules apply to y identically as they do to x, it follows that v will end with nonnega-
tive charge.

3. D = Dia(5 − 3, 4+, 4+).
  Let u denote the middle 5-vertex of D and let x and y denote each of the side 4+

-vertices of D with d(x) ≤ d(y) . If d(x) = d(y) = 4 , then u sends charge 1 to v by 
(R6a). If d(x) = 4 and d(y) = 5 , then u sends charge 1 to v by (R6a). If d(x) = 4 
and d(y) ≥ 6 , then u sends charge 1

2
 to v by (R6b) and y sends 1

2
 to v by (R8a). If 

d(x) = d(y) = 5 , then u sends charge 1
2
 to v by (R6b). Since (C13) is reducible, x 

and y will not both send charge 1 to a vertex of a different diamond under rule 
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(R6a). Therefore, v receives charge 1
2
 from either x or y by (R7c). If d(y) ≥ 6 , y 

sends charge 1
2
 to v by (R8a) and u sends charge 1

2
 to v by (R6b). This leaves v with 

nonnegative charge.
4. D = Dia(6+ − 3, 4+, 4+)

  Let u denote the middle vertex of D. Then u sends charge 1 to v by (R9c). This 
leaves v with nonnegative charge.

Case 3 There are two 3-vertices incident to D, one of which is v. Let x denote the 
other 3-vertex incident to D. Since (C5) and (C6) are reducible configurations, both 
x and v are side vertices of D. Since (C7) is reducible, we may assume that if one 
of the middle vertices of D is a 4-vertex, then the other middle vertex is a 6+-vertex. 
There are two subcases to Case 3. 

1. D = Dia(6+ − 4, 3, 3).
  Let u denote the 6+-vertex incident to D. By (R9a), u sends charge 1

2
 to v. Since 

v is a side vertex of D, and deg(v) = 3 , it follows that v is incident to exactly one 
edge that is not contained in D. By (R3), v will receive charge at least 1

2
 from this 

edge, leaving v with nonnegative charge. The case of x is symmetric.
2. D = Dia(5+ − 5+, 3, 3)

  Since v is a side vertex of D, and deg(v) = 3 , it follows that v is incident to 
exactly one edge that is not contained in D. By (R3), v will receive charge at least 
1

2
 from this edge. Let a and b denote the middle vertices of D. If d(a) = 5 , then v 

receives charge 1
4
 from a by (R6c). If d(a) ≥ 6 , then v receives charge 1

2
 from a by 

(R9a). As the rules apply to b identically as they do to a, it follows that v will end 
with nonnegative charge. Again, the case of x is symmetric.

Since we have covered all cases where v is contained in a diamond, this com-
pletes the proof of Claim 10. ♢

Claims 6–10 show that the final charge of every vertex, face, and edge is non-
negative. Hence the sum of the charges is also nonnegative, which is a contra-
diction with the sum of the initial charges being −8. This finishes the proof of 
Lemma 6.   ◻

5  Proof of Theorem 2

5.1  Reducible Configurations

We will use the following list of enhanced weakly reducible configurations. See 
Fig. 7 for illustration of these configurations. 

 (D1) A vertex of degree at most 2.
 (D2) T(3, 3, 3) and T(3, 3, 4).
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 (D3)  Two diamonds D1 = Dia(6 − 3, 4, 3) and D2 = Dia(6 − 3, 4, 4) sharing a 
middle 6-vertex.

 (D4) Dia(3 − 3, 4+, 4+) where the side vertices are in the boundary.
 (D5) Dia(4 − 5, 3, 3).
 (D6) Dia(4 − 3, 4, 4).
 (D7) Dia(5 − 3, 4, 4) with another 3-vertex adjacent to the 5-vertex.
 (D8) Dia(5 − 5, 3, 3) with another 3-vertex adjacent to one of the 5-vertices.
 (D9)  Three 3-vertices u, v, w such that uv and vw are edges, and u and w are 

independent.
 (D10) Dia(5 − 3, 4, 3).
 (D11) T(5, 3, 3) with another 3-vertex adjacent to the 5-vertex.
 (D12) Two triangles T1 = T2 = T(6, 3, 3) sharing the 6-vertex.

In the next section we will prove the following theorem, showing that (D1)–(D12) 
are unavoidable. We remark that no identification of vertices in (D1)–(D12) is possi-
ble since otherwise, it creates a forbidden subgraph. It is possible that some external 
edges can be identified in (D8), (D9), and (D11). We explicitly list those cases in 
Fig. 7 as (D8′ ), (D9′ ), (D11′ ), and (D11′′ ). 

Theorem 11 Every {K4,C5,C6,C7}-free planar graph contains one of (D1)–(D12).

Let F = {K4,C5,C6,C7,B�
} for any fixed � . We will show that (D2), (D3), and 

(D5)–(D12) are enhanced weakly (F, 4)-boundary-reducible configurations. We will 
also show that (D4) is only a weakly (F, 4)-boundary-reducible configuration. How-
ever, the only neighbors of the vertices in the reducible part of (D4) are the non-
adjacent vertices in the boundary, and all non-adjacent pairs that do not forbid F  
in each of (D1)–(D12) form loose sets, implying that the condition required by the 
enhanced weak resolution is satisfied.

In order to use Lemma 2, we want to have an enhanced weak (F, 4, b, �)-reso-
lution for some � and b. First, we check the condition (TIGHT) in the following 
lemma.

Lemma 7 Let G be an F-free graph containing H, where H is one of (D2)–(D12). 
The number of H-tight vertices is at most � ≤ 10�.

Proof Let H be one of (D2)–(D12) and v be an H-tight vertex adjacent to u and w in 
H. First, suppose that u and w are not adjacent. There are no non-edges in (D2) and 
(D4). The non-edge in (D9) forms a loose set. By inspection of each pair of non-
adjacent vertices in (D5)–(D8) and (D10)–(D12), we observed that if v was adjacent 
to any of these pairs, we would obtain a C5 or a C6 , contradicting that G is F-free.

Fig. 7  Reducible configurations for Theorem 2. The labels give the list sizes remaining after accounting 
for the external neighbors and boundary vertices. The vertices whose colors cannot be fixed are drawn 
as squares. These vertices cannot be fixed because either their coloring does not extend or they have two 
external neighbors, with the one exception being (D4)

▸
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Second, suppose that uw is an edge. As B
�
 is in F  , the number of H-tight vertices 

for uv is at most � − 3 . Since H is one of (D2)–(D12), it has at most 10 edges. This 
bounds that the total number of H-tight vertices as � ≤ 10(� − 3) ≤ 10� .   ◻

Lemma 8 The configurations (D2), (D3), (D5)–(D12) are enhanced weakly  
(F, 4)-boundary-reducible. See Fig. 7 for illustration.

Proof Given the rules for enhanced weak (F, k)-boundary reducibility, it is straight-
forward to verify that configurations (D2)–(D12) are reducible. We also provide a 
computer program at http:// lidic ky. name/ pub/ flexi bility2 to do so. One notable dif-
ference is that the greedy algorithm is not always sufficient. We also added test for 
Gallai tree, which helped. Just greedy algorithm could end with a diamond, where 
middle vertices have lists L of size 3 and side vertices would have lists of size 2, 
which is not a Gallai tree and hence it is L-colorable, but not in a greedy way.

In order to highlight the difference between regular and weak reducibility, we will 
give a short proof that (D10) is weakly (F, k)-boundary reducible, but not (F, k)

-boundary reducible. Let R be a subgraph of a graph G defined by configuration 
(D10). Let a, b, c and d be vertices of R. The initial list sizes of a list assignment L 
as defined by the function (4 − (degG + degR)) are given in Fig. 8. 

First we will show that we cannot fix the color of a and still properly color R. 
Indeed, if the lists of b and c are identical and both contained the color assigned to a, 
there would be no proper L-coloring of R.

That being said, if we fix the color of any other vertex in R, then we will still be 
able to properly L-color R. Therefore, we can only apply (FIX) to a subset of the 
vertices of R. Given the graphs in F  , it immediately follows that the graph H = R 
is weakly (F, k)-boundary reducible, but as we have show, it is not (F, k)-boundary 
reducible.

In the enhanced version, the main trick is that we never need to check (FORB) 
on two adjacent vertices. We do that by allowing (FIX) only on vertices, where their 
external neighbors are non-adjacent. The easiest way to do so is to use (FIX) only on 
vertices that have at most 1 external neighbor. In case of (D10), the only option for 
(FIX) is the vertex d.   ◻

Fig. 8  Configuration (D10)

d

b

a c

3

2

4 2

2 This program is also available as a part of the sources in our arXiv submission [9] (file reducible_
configurations.sage).

http://lidicky.name/pub/flexibility
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The above works in all cases except (D1) and (D4). As the case (D1) was already 
discussed, we now justify the usage of the configuration (D4).

Lemma 9 The configuration (D4) is weakly (F, 4)-boundary-reducible and for all 
vertices x in its reducible part holds that |N(x) ∩ Rj| ≤ 1 or N(x) ∩ Rj is a loose set, 
where Rj is a reducible part of some other configuration.

Proof The check of the reducibility is straightforward.
The only vertices adjacent to the vertices in the reducible part are the two verti-

ces in the boundary which are non-adjacent as K4 ∈ F  . Therefore, it is sufficient 
to check non-adjacent non-F-forbidding vertices in configurations (D1)–(D12). As 
was already discussed the only such a non-edge is the non-edge in (D9) which forms 
a loose set.   ◻

5.2  Discharging Rules

In this section, we prove the following Lemma 10, that makes Theorem 2 a corollary 
of Lemma 2.

Lemma 10 Let G be a connected {K4,C5,C6,C7}-free plane graph. Then G contains 
at least one of the reducible configurations (D1)–(D12).

Proof Assume for contradiction that G is a {K4,C5,C6,C7}-free plane graph with no 
(D1)–(D12). We will use discharging to arrive to a contradiction.

For every vertex v assign the initial charge ch(v) ∶= 2 deg(v) − 6 , and for every 
face f assign ch(f ) ∶= �(f ) − 6 , where �(F) is the length of the facial walk around 
f. By Euler’s formula, the total initial charge of all vertices and faces is −12 . We 
sequentially apply the following rules (see also Fig.  9) that transfer charge. The 
charge after applying all the rules is called the final charge. We will show that the 
final charge is nonnegative for every vertex and every face, which is a contradiction 
with the total sum of all charges being −12 . 

 (R1) Every 8+-face sends charge 1
4
 to every incident 3-face and 4-face for every edge 

they have in common.
 (R2) For every 3-vertex v that is incident to a triangle t and an edge uv that is not 

part of any triangle, the following applies. The two faces3 that are incident to 
uv, each send the following charge to t: 

 (R2a) 1

8
 if deg(u) = 3,

 (R2b) 1

4
 if deg(u) ≥ 4.

3 May be the same face twice if uv is a bridge.
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 (R3) Every 4-vertex sends charge 1 to every 3-face and 4-face adjacent to it.
 (R4) Every 5-vertex sends charge 1 to every 4-face adjacent to it.
 (R5) Every 5-vertex that is a middle vertex in Dia(5 − 3, 4, 4) , Dia(5 − 3, 3, 5+) , 

or Dia(5 − 5, 3, 3) sends charge 3
2
 to every 3-face of such diamond.

 (R6) Every 5-vertex v, where rule (R5) does not apply, sends charge 1 to every 
3-face of a diamond having v as a middle vertex.

 (R7) For every 3-face f = {v, u,w} and 5-vertex v such that f is not part of a dia-
mond having v as a middle vertex, the following applies. 

 (R7a) If both deg(u) ≥ 4 and deg(w) ≥ 4 , then v sends charge 1 to f.
 (R7b) Otherwise v sends charge 2 to f.

 (R8) Every 6+-vertex v sends charge 1 to every 4-face adjacent to it, and 2 to every 
3-face f adjacent to it, unless f is part of a diamond having v as a middle 
vertex.

 (R9) Every 6-vertex v sends charge 7
4
 to every 3-face of every Dia(6 − 3, 3, 4) that 

contains v.
 (R10) Every 6-vertex v sends charge 3

2
 to every 3-face of Dia(6 − 3, 4, 4) that con-

tains v.
 (R11) Every 6-vertex v sends charge 5

4
 to every 3-face of any diamond d having v 

as a middle vertex, where (R9) and (R10) did not apply.
 (R12) Every 7+-vertex v sends charge 7

4
 to every 3-face of any diamond having v as 

a middle vertex.
 (R13) For every two 3-faces f, g that form a diamond, if g has positive charge while 

f has negative charge, then g gives f all its positive charge.

Claim 12 The final charge of every vertex is nonnegative.

Proof There are no vertices of degree less than 3, by (D1). The initial charge of a 
3-vertex is 0, and this does not change in the discharging process. A 4-vertex v has 
initial charge 2. It can be adjacent to at most two 4−-faces, or otherwise a cycle Ck 
with 5 ≤ k ≤ 7 is created. Therefore (R3) applies on v at most twice and no other 
rules apply. Hence v has a nonnegative final charge.

Let v be a 5-vertex that is not a middle vertex of a diamond. Note that v can 
be adjacent to at most two faces of size at most 4, or otherwise a cycle Ck with 
5 ≤ k ≤ 7 is created. Thus, the initial charge of v is 4, and (R4) and (R7) are applied 
together at most twice, implying that v has nonnegative final charge.

Let v be a 5-vertex that is a middle vertex of a diamond d. Then v is adjacent to 
at most one more face f of size at most 4, and f does not share any edge with d, or 
otherwise a cycle Ck with 5 ≤ k ≤ 7 is created. If (R5) does not apply to v, then by 
(R4), (R6) and (R7), v sends 1 to each of the two 3-faces in d and at most 2 to f, 
leaving v with final nonnegative charge. Suppose (R5), where v sends charge 3 to the 
faces in d, applies to v. If v sends charge of at most 1 to f, then it has final nonnega-
tive charge. So by (R4) and (R7a) we may assume that f is a triangle {v, u,w} with 
d(u) = 3 (and d(w) ≤ 4 ). See Fig. 10 for an illustration. But then G contains (D7), 
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Fig. 9  Discharging rules described in Lemma 10 used for Theorem 2

(D11), or (D8) as d is Dia(5 − 3, 4, 4) , Dia(5 − 3, 3, 5+) , or Dia(5 − 5, 3, 3) , respec-
tively. Hence (R7b) does not apply to v and the final charge is nonnegative.

Let v be a 6-vertex that is the middle vertex of k diamonds and it is adjacent to 
m faces of size 3 or 4 that are not part of a diamond in which v is a middle vertex. 
By Lemma 4, 6 ≥ 3k + 2m . Recall that ch(v) = 6 . Suppose k = 2 , then m = 0 . By 
(D12) and (D3), (R9) cannot apply twice and (R9) cannot apply at the same time 
as (R10). Then by (R9)–(R11), the final charge of v is at least 6 − 3.5 − 2.5 = 0 or 
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6 − 3 − 3 = 0 . If k = 1 and m ≤ 1 , then by (R8)–(R11), the final charge of v is at 
least 6 − 3.5 − 2 > 0 . Finally, if k = 0 and m ≤ 3 then by (R8), the final charge of v 
is at least 6 − 3 ⋅ 2 = 0.

Let v be a 7+-vertex that is the middle vertex of k distinct diamonds, and v is adja-
cent to m faces of sizes 3 and 4 that are not part of a diamond in which v is a middle 
vertex. Then by Lemma 4, deg(v) ≥ 3k + 2m . By (R12) v sends total weight of 3.5k 
to the k diamonds in which v is a middle vertex, and by (R8) it sends at most 2m to 
the other faces of size at most 4 it is adjacent to.

Altogether, the final charge of v is at least

where the last inequality follows from Lemma 4, and deg(v) − 6 −
1

2
⋅

⌊
deg(v)

3

⌋

≥ 0 
whenever deg(v) ≥ 7 .  ♢

Claim 13 The final charge of every face that is not contained in a diamond is 
nonnegative.

Proof By (R1) and (R2), an 8+-face f sends out a total charge of at most �(f )
4

 . Thus 
the final charge of f is at least �(f ) − 6 −

�(f )

4
=

3�(f )

4
− 6 which is nonnegative if 

�(f ) ≥ 8.
Let f be a 3-face that is not part of any diamond. Then the faces sharing an edge 

with f must be of size at least 8, since otherwise one of them is of size at most 4, 

2 deg(v) − 6 − 3.5k − 2m = 2 deg(v) − 6 − (3k + 2m) − k∕2

≥ deg(v) − 6 −
1

2
⋅

⌊deg(v)

3

⌋

,

v
u

w

f
v

u

w

f

v
u

w

f

Fig. 10  Three options in a subcase of Claim 12 where v is a 5-vertex that is a middle vertex of a diamond
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which forces a diamond or a cycle Ci with 5 ≤ i ≤ 7 together with f. Hence (R1) 
applies three times with f and f has charge −3 + 3

4
= −2.25 after (R1).

By (D1) and (D2), one of the following holds (see Fig. 11): 

(1) f is T(3, 3, 5+) , or
(2) f is T(3, 4+, 4+) , or
(3) f if T(4+, 4+, 4+).

In case (1), (R2a) applies twice giving charge 4
8
 to f. In addition, (R7b) or (R8) 

applies and the final charge of f is at least −3 + 3

4
+

1

2
+ 2 ≥ 0.

In case (2), (R2) applies once, giving charge 2
8
 to f. Rules (R3), (R7) and (R8) 

apply together twice with f, each time f receives charge at least 1, and thus the final 
charge of f is at least −3 + 3

4
+

1

4
+ 2 ≥ 0.

In case (3), rules (R3), (R7), and (R8) together apply three times to f and thus the 
final charge of f is at least −3 + 3

4
+ 3 > 0.

If f is a 4-face, the faces sharing an edge with f must be of size at least 8, since 
otherwise one of them is of size at most 4, which forces a cycle Ci of size 5 ≤ i ≤ 7 
with f. Hence (R1) applies four times with f contributing charge 4

4
 . By (D9) f has at 

least two 4+-vertices. Thus at least one of (R3), (R4), and (R8) applies to f, giving 
charge 1 to f. Hence the final charge of f is at least −2 + 1 + 1 ≥ 0 .  ♢

Claim 14 The final charge of every 3-face that is contained in a diamond is 
nonnegative.

Proof In the light of (R13), we will consider the faces that form a diamond 
together in pairs and show that as a pair, they receive sufficient charge. Let f and 
g be 3-faces sharing an edge, i.e., they form a diamond. Observe that in this case 
the other faces sharing edges with f and g must be of size at least 8, for otherwise 
one of them is of size at most 4, which forces a cycle Ci of size 5 ≤ i ≤ 7 with f 
and g. Therefore, (R1) applies twice to each f and g resulting in charge ch′ such 
that ch�(f ) = ch�(g) = −3 +

2

4
= −2.5 . Hence we aim to show that f and g together 

receive at least 5 more charge. We denote the vertices of f by u, v, x where u, v are 
shared with g, and by y the third vertex of g.

T (3,3,5+) T (3,4+,4+) T (4+,4+,4+)

Fig. 11  Three possible triangles distinguished within Claim 13 that depicts Cases (1), (2), and (3), from 
left to right
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By symmetry, we assume that deg(u) ≥ deg(v) and deg(y) ≥ deg(x) . Note that by 
(D4), deg(u) ≥ 4 and by (D1) the degree of each of the other vertices is at least 3.

We split the analysis into cases based on the type of diamond f and g form.

– Dia(4 − 3,⋆,⋆)

  By (D2) and (D6), deg(x) ≥ 4 and deg(y) ≥ 5 . Hence we are in case 
Dia(4 − 3, 4+, 5+) . For u, (R3) applies twice, for x one of (R3), (R7b), or 
(R8) applies, and for y one of (R7b), or (R8) applies. Thus the charge f and g 
receive using these rules is at least 3 ⋅ 1 + 2 = 5 . Hence the final charges of f 
and g are nonnegative.

– Dia(5 − 3, 3, 3) , Dia(5 − 3, 3, 4)

  Reducible by (D9) and (D10).
– Dia(5 − 3, 3, 5+)

  In this case, (R5) applies to u and (R7b) or (R8) applies to y. This gives 
charge 2 ⋅ 1.5 + 2 = 5 . Hence the final charges of f and g are nonnegative.

– Dia(5 − 3, 4, 4)

  In this case, (R5) applies to u. In addition (R3) applies to both x and y. This 
gives charge 2 ⋅ 1.5 + 1 + 1 = 5 . Hence the final charges of f and g are non-
negative.

– Dia(5 − 3, 4+, 5+)

  In this case, (R6) applies to u. In addition (R3), (R7b), or (R8) applies to x 
and (R7b), or (R8) to y. This gives charge at least 2 ⋅ 1 + 1 + 2 = 5 . Hence the 
final charges of f and g are nonnegative.

– Dia(6 − 3, 3, 3)

  Reducible by (D9).
– Dia(6 − 3, 3, 4)

  By (R9), u contributes charge 3.5 and by (R4), y contributes charge 1. Let z 
be a neighbor of x that is not u or v. By (D9), deg(z) ≥ 4 Hence the application 
of (R2b) around x contributes charge 1/2. This gives charge 3.5 + 1 + 0.5 = 5 
in total. Hence the final charges of f and g are nonnegative.

– Dia(6 − 3, 3, 5+)

  By (R11), u contributes charge 2.5 and by (R7b) or (R8), y contributes 
charge 2. Let z be a neighbor of x that is not u or v. By (D9), deg(z) ≥ 4 Hence 
the application of (R2) around x contributes charge 1/2. This gives charge 
2.5 + 2 + 0.5 = 5 in total. Hence the final charges of f and g are nonnegative.

– Dia(6 − 3, 4, 4)

  By (R10), u contributes charge 3 and by (R3), x and y each contribute 
charge 1. This gives charge 3 + 1 + 1 = 5 in total. Hence the final charges of f 
and g are nonnegative.

– Dia(6 − 3, 4+, 5+)

  By (R11), u contributes charge 2.5, by (R3), (R7b) or (R8), x contributes 
charge at least 1, and by (R7b) or (R8), y contributes charge 2. This gives 
charge at least 2.5 + 1 + 2 = 5 in total. Hence the final charges of f and g are 
nonnegative.

– Dia(7+ − 3, 3, 3)

  Reducible by (D9).
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– Dia(7+ − 3, 3, 4+)

  By (R12), u contributes charge 3.5, by (R3), (R7b) or (R8), y contrib-
utes charge at least 1. Let z be the neighbor of x that is not u or v. By (D9), 
deg(z) ≥ 4 Hence the application of (R2b) around x contributes charge 1/2. 
This gives charge at least 3.5 + 1 + 0.5 = 5 in total. Hence the final charges of f 
and g are nonnegative.

– Dia(7+ − 3, 4+, 4+)

  By (R12), u contributes charge 3.5, by (R3), (R7b) or (R8), x and y each 
contribute charge at least 1. This gives charge at least 3.5 + 1 + 1 = 5.5 in 
total. Hence the final charges of f and g are nonnegative.

– Dia(4 − 4,⋆,⋆) and Dia(5 − 4,⋆,⋆)

  By (D5), deg(y) ≥ 4 . By (R3) or (R6), u and v together contribute charge 
4, by (R3), y each contributes charge 1. This gives charge at least 4 + 1 = 5 in 
total. Hence the final charges of f and g are nonnegative.

– Dia(6+ − 4+,⋆,⋆)

  By (R3), (R6), (R11), and (R12), u and v together contribute charge at least 
1.25 + 1.25 + 1 + 1 . If (R3), (R7), or (R8) applies to y, then the total charge 
is at least 5.5. Hence we can assume the case Dia(6+ − 4+, 3, 3) . Then (R2a) 
or (R2b) applies at each x and y and the total contribution is at least 0.5. This 
gives charge at least 4.5 + 0.5 = 5 in total. Hence the final charges of f and g 
are nonnegative.

– Dia(5 − 5, 3, 3)

  By (R5), u and v together contribute charge at least 4 × 1.5 = 6 . Hence the 
final charges of f and g are nonnegative.

– Dia(5 − 5, 3+, 4+)

  By (R6), u and v together contribute charge at least 4 × 1 = 4 . By (R3), (R7a), 
or (R8), y contributes charge at least 1. This gives charge at least 4 + 1 = 5 in 
total. Hence the final charges of f and g are nonnegative.

This concludes the proof of Claim 14.  ♢

Since all final charges are nonnegative, this concludes the proof of Lemma 10.  ◻
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