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Abstract
The degree/diameter problem for mixed graphs asks for the largest possible order of a
mixed graph with given diameter and degree parameters. Similarly the de-
gree/geodecity problem concerns the smallest order of a k-geodetic mixed graph with
given minimum undirected and directed degrees; this is a generalisation of the
classical degree/girth problem. In this paper we present new bounds on the order of
mixed graphs with given diameter or geodetic girth and exhibit new examples of
directed and mixed geodetic cages. In particular, we show that any k-geodetic mixed
graph with excess one must have geodetic girth two and be totally regular, thereby
proving an earlier conjecture of the authors.

Keywords Degree/diameter problem · Geodecity · Mixed graph · Excess · Cage ·
Defect

Mathematics Subject Classification 05C35 · 05C20 · 90C35

1 Introduction

It is often of practical interest to consider networks that include both undirected edges
and directed arcs. For example, road networks contain both two-way and one-way
streets and websites contain links that are unidirectional and others that are
bidirectional. Such networks are represented mathematically by mixed graphs; such
graphs have applications in job scheduling [35] and Bayesian inference [15] amongst
others. The efficiency of such networks may be measured using such graph
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parameters as the diameter (longest distance between nodes) or the geodetic girth
(which pertains to the uniqueness of short paths between nodes). In this paper we
discuss two extremal problems for these parameters in mixed graphs.

In the case of undirected graphs, the degree/diameter problem asks for the largest
possible order of a graph with given diameter and maximum degree. The order of
such a graph is bounded above by the so-called Moore bound; a survey of this
problem can be found in [33]. The degree/girth problem requires the smallest
possible order of a graph with given minimum degree and girth; a good survey of this
problem is [20]. For this problem the Moore bound now serves as a lower bound on
the order. The degree/diameter problem has also been investigated in the setting of
directed graphs [33] and mixed graphs [29]. Several recent papers, such as [32, 38],
have also discussed a directed analogue of the degree/girth problem called the
degree/geodecity problem. In [39] the present authors extended the degree/geodecity
problem to mixed graphs and discussed the total regularity of extremal graphs in the
degree/diameter and degree/geodecity problems.

The structure of this paper is as follows. Section 2 defines the notation that we will
be using and provides some background on the problems that we will discuss. In
Sect. 3 we prove the existence of mixed geodetic cages and discuss monotonicity
relations. We then present strong new bounds on the excess of totally regular mixed
graphs in Sect. 4 and generalise our results to mixed graphs that are not totally
regular in Sect. 5, which allows us to prove the non-existence of k-geodetic mixed
graphs with excess one for k� 3, thereby proving a conjecture of the authors in [39].
Employing similar counting arguments, we derive a new upper bound on the order of
totally regular mixed graphs with undirected degree and directed degree equal to one
in Sect. 6. In Sect. 7 we present new mixed and directed geodetic cages and give
upper bounds for some other values of the degrees and geodetic girth using a
computer search among mixed Cayley graphs. Finally in Sect. 8 we present figures of
some known extremal graphs.

2 Notation

Formally, a mixed graph G consists of a set V(G) of vertices, a set E(G) of undirected
edges and a set A(G) of directed arcs. An undirected edge is an unordered pair of
vertices, whereas an arc is an ordered pair of vertices. We forbid loops as well as
parallel edges and arcs. For any notation not defined here we refer to [4].

Each vertex u is incident with a certain number d(u) of undirected edges; we call
this the undirected degree of u. Similarly the number of arcs with initial point u is the
directed out-degree of u and is denoted dþðuÞ, whereas the directed in-degree of u is
the number of arcs of G with terminal vertex u and is written d�ðuÞ. If there is an
edge between vertices u and v we write u� v, whereas the presence of an arc from u
to v is indicated by u ! v. For any vertex u we set
UðuÞ ¼ fu1; u2; . . .; urg ¼ fv 2 V ðGÞ : u� vg, Z�ðuÞ ¼ fv1; v2; . . .; vsg ¼ fv 2
V ðGÞ : v ! ug and ZþðuÞ ¼ furþ1; . . .; urþzg ¼ fv 2 V ðGÞ : u ! vg. If there exist
r and z such that for all vertices u we have dðuÞ ¼ r; dþðuÞ ¼ z, then G is said to be
out-regular. If we also have d�ðuÞ ¼ dþðuÞ ¼ z for all u then we say that G is totally
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regular. If GU and GZ denote respectively the undirected and directed subgraphs (i.e.
the subgraphs induced by the edges/arcs), then it can be seen that G is out-regular if
and only if GU is regular and GZ is out-regular, and G is totally regular if and only if
GU is regular and GZ is diregular.

A walk W in G is a sequence u0u1. . .u‘ of vertices of G such that for 0� i� ‘� 1
either ui � uiþ1 or ui ! uiþ1. The length of the walk is ‘ and u0 and u‘ are the initial
and terminal vertices of W respectively. The walk is non-backtracking if the walk
does not cross an edge and then immediately retrace it, i.e. if the walk does not
contain a subsequence of three consecutive vertices ui � uiþ1 � ui. We will call a non-
backtracking walk in G a mixed path.

The distance d(u, v) from a vertex u to a vertex v is the length of a shortest mixed
path with initial vertex u and terminal vertex v. Observe that we can have
dðu; vÞ 6¼ dðv; uÞ. If there is no mixed path from u to v then we set dðu; vÞ ¼ 1. The
diameter of G is defined to be diamðGÞ ¼ maxfdðu; vÞ : u; v 2 V ðGÞg. Suppose that
for any ordered pair of (not necessarily distinct) vertices (u, v) of G there is at most
one mixed path from u to v with length � k; then we say that G is k-geodetic. The
largest k such that G is k-geodetic is the geodetic girth or geodecity of G.

A mixed Moore graph is an out-regular mixed graph G such that for every pair of
vertices u, v of G there is a unique mixed path of length � k from u to v. We can draw
a mixed Moore tree to deduce an upper bound on the order of a mixed graph G with
maximum undirected degree r, maximum directed out-degree z and diameter k. Fix a
vertex u and call this root vertex Level 0 of the tree. Draw edges from Level 0 to
Level 1 from u to all of the undirected neighbours of u and arcs from Level 0 to all of
the directed out-neighbours of u. In general, once we have added all vertices at Level
t, where 0� t� k � 1, we add the next level to the tree by the following rule for each
vertex ui in Level t:

– Draw arcs from Level t to Level t þ 1 from ui to all directed out-neighbours of ui.
– If ui appears in Level t as the terminal vertex of an arc from Level t � 1 then draw

edges from Level t to Level t þ 1 from ui to all undirected neighbours of ui.
– If ui appears in Level t as the endpoint of an edge from a vertex uj in Level t � 1,

then below ui in the Moore tree draw an edge from ui to Level t þ 1 to all
undirected neighbours of ui apart from uj.

We continue this process until we have a tree of depth k. As G has diameter k all
vertices of G are contained in the mixed Moore tree. An example for a mixed graph
with maximum undirected degree r ¼ 3, maximum directed out-degree z ¼ 3 and
diameter k ¼ 2 is shown in Fig. 1.

Counting the number of vertices in the Moore tree therefore gives an upper bound
(called the mixed Moore bound) on the order of a mixed graph with given diameter.
An exact expression for the Moore bound for mixed graphs was derived in [10] using
recurrence relations.

Theorem 1 (Mixed Moore bound [10]) The order of a mixed graph with maximum
undirected degree r, maximum out-degree z and diameter k is bounded above by
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Mðr; z; kÞ ¼ A
kkþ1
1 � 1

k1 � 1
þ B

kkþ1
2 � 1

k2 � 1
;

where

/ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr þ z� 1Þ2 þ 4z

q
; k1 ¼ zþ r � 1þ /

2
; k2 ¼ zþ r � 1� /

2

and

A ¼ /þ ðzþ r þ 1Þ
2/

;B ¼ /� ðzþ r þ 1Þ
2/

:

If r ¼ 0 or z ¼ 0 then this expression reduces to the undirected and directed
Moore bounds respectively.

A graph that meets the mixed Moore bound is called a mixed Moore graph. Recall
that a mixed graph G is k-geodetic if and only if for any pair u, v of vertices of G
there is at most one mixed path (i.e. non-backtracking mixed walk) of length � k
from u to v in G. It is easily seen that a mixed graph is Moore if and only if it satisfies
the following conditions.

Theorem 2 A mixed graph G is Moore if and only if

– G is totally regular with undirected degree r and directed degree z,
– the diameter of G is k, and
– G is k-geodetic.

Fig. 1 The Moore tree for r ¼ 3; z ¼ 3; k ¼ 2
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Mixed Moore graphs with diameter k ¼ 2 were first investigated by Bosák in the
seventies [5–7]. In [7] he proved that any mixed Moore graph is totally regular and
used spectral methods to prove that the undirected degree r and directed out-degree z
of a mixed Moore graph with diameter two satisfy a very special condition.

Theorem 3 [7] Apart from trivial cases, if there exists a mixed Moore graph with
diameter two, undirected degree r and directed out-degree z, then there exists a
positive odd integer c such that c j ð4z� 3Þð4zþ 5Þ and c2 þ 3 ¼ 4r.

However, Theorem 3 leaves an infinite number of pairs r, z for which the existence
of a mixed Moore graph with undirected degree r, directed out-degree z and diameter
two is undecided. The smallest orders not covered by Theorem 3 are displayed in
Table 1.

There is one known infinite family of mixed Moore graphs with diameter two,
formed by collapsing all digons in the Kautz digraph K(d, k) into edges. This mixed
graph can be described simply. Take an alphabet X of size zþ 2. The vertices of
KautzðzÞ are words ab, where a 6¼ b. For all a; b; c 2 X with a 6¼ b and b 6¼ c we
introduce an arc ab ! bc when c 6¼ a and an edge ab� ba. It is easily verified that
this yields a mixed Moore graph with undirected degree r ¼ 1, directed out-degree z
and diameter k ¼ 2. In fact it is shown in [24] using spectral techniques that these are
the unique mixed Moore graphs with these parameters.

Table 1 Values of r and z not
covered by Theorem 3

Undirected degree r Directed degree z Order n
1 any r2 þ 2r þ 3

3 1 18

3 40

4 54

6 88

7 108

… …

7 2 84

5 150

7 204

… …

13 4 294

6 368

… …

21 1 486

… …

. … …
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Theorem 4 [24] For all z� 1 there is a unique mixed Moore graph with undirected
degree r ¼ 1, directed out-degree z and diameter k ¼ 2.

In [7] Bosák identified a further mixed Moore graph with undirected degree r ¼ 3,
directed out-degree z ¼ 1, diameter k ¼ 2 and order Mð3; 1; 2Þ ¼ 18. The unique-
ness of this graph was proven in [34].

One method of searching for mixed Moore graphs is to restrict the search space to
Cayley mixed graphs. By carrying out a computer search for Cayley mixed graphs
that meet the Moore bound Jørgensen found two Cayley mixed Moore graphs with
undirected degree r ¼ 3, directed out-degree z ¼ 7, diameter k ¼ 2 and order n ¼
108 [26]. However, it has been shown that there are no further Cayley mixed Moore
graphs with diameter two and order � 485 [19, 30]. A search using a SAT solver has
also completely ruled out the existence of mixed Moore graphs with diameter two
and orders 40, 54 or 84 [28].

It is natural to ask whether there exist any mixed Moore graphs with diameter
greater than two? It was shown by a counting argument in [34] that the answer to this
question is negative, except in trivial cases.

Theorem 5 [34] There are no mixed Moore graphs with diameter k� 3, except for
undirected and directed cycles.

Whilst there remain an infinite number of open cases, it is evident that it is very
difficult for a mixed graph to meet the mixed Moore bound. In general the mixed
Moore tree of depth k will either not contain all vertices of G (in which case the
diameter of G is larger than k) or there will be vertices repeated in the Moore tree (in
which case G is not k-geodetic). It is therefore of interest to study the structure of
mixed graphs with order close to the mixed Moore bound. To this end in the
conditions in Theorem 2 we can either relax the requirement that all of the vertices in
the Moore tree be distinct or the requirement that the Moore tree contains all of the
vertices of G. This motivates the following definitions.

Definition 1

– A mixed graph with maximum undirected degree r, maximum directed out-
degree z, diameter k and order Mðr; z; kÞ � d is called an ðr; z; k;�dÞ-graph and
has defect d. A mixed graph with defect one is called an almost mixed Moore
graph.

– A k-geodetic mixed graph with minimum undirected degree r, minimum directed
out-degree z and order Mðr; z; kÞ þ � is called an ðr; z; k;þ�Þ-graph and has
excess �. The smallest possible value of � such that there exists an ðr; z; k;þ�Þ-
graph will be written �ðr; z; kÞ. We set Nðr; z; kÞ ¼ Mðr; z; kÞ þ �ðr; z; kÞ.

Recent progress on the problem of finding mixed graphs with small defect can be
found in [1], in which a ð5; 2; 2;�4Þ-graph is constructed and shown to be optimal.
In [16, 31] mixed graphs with given diameter and order asymptotically approaching
the Moore bound are constructed using voltage assignments and graphs on alphabets.
The cases d ¼ 1 and � ¼ 1 are of particular interest. It was shown by the present
authors that any ðr; z; 2;�1Þ- or ðr; z; 2;þ1Þ-graph must be totally regular [39].
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López and Miret used spectral theory to derive the following necessary condition for
the existence of an almost mixed Moore graph with diameter k ¼ 2 in [27].

Theorem 6 Let G be a (totally regular) ðr; z; 2;�1Þ-graph. Then r is even and one
of the following three possibilities holds:

– r ¼ 2,
– there exists an odd integer c such that c2 ¼ 4r þ 1 and c j ð4zþ 1Þð4z� 7Þ, or
– there exists an odd integer c such that c2 ¼ 4r � 7 and c j ð16z2 þ 40z� 23Þ.

Using the methods of López and Miret it is possible to show the following result,
which we state without proof.

Theorem 7 Let G be a totally regular ðr; z; 2;þ1Þ-graph. Then either:

– r ¼ 2,
– 4r þ 1 ¼ c2 for some c 2 N and c j ð16z2 � 24zþ 25Þ, or
– 4r � 7 ¼ c2 for some c 2 N and c j ð16z2 þ 40zþ 9Þ.

It is proven in [11] that there is a unique ð2; 1; 2;�1Þ-graph (displayed in Fig. 2)
and in [17] it is shown that there are exactly three ð1; 1; 3;�1Þ-graphs. In [39] a
ð2; 1; 2;þ1Þ-graph is constructed (see Fig. 3) and is shown to be the unique graph
with these parameters; this graph remains the only known mixed graph with excess
one.

If G is an ðr; z; k;�dÞ-graph, then there will be exactly d repetitions in the Moore
tree of depth k based at any vertex u. We form a multiset R(u), with a vertex v
appearing t � 1 times in R(u) if it appears t times in the Moore tree; R(u) is called the
repeat set of u. Similarly if G is an ðr; z; k;þ�Þ-graph then all vertices appearing in
the Moore tree based at a vertex u will be distinct, but the tree will not contain all
vertices of G. If G is totally regular, then there will be exactly � vertices v satisfying
dðu; vÞ� k þ 1; any such v is an outlier of u and the set O(u) of all outliers of u is the
outlier set of u (observe that there are no repetitions in O(u)). For given r, z and k a
mixed graph with smallest possible excess is an (r, z, k)-geodetic-cage, or a geodetic

Fig. 2 A mixed almost Moore
graph
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cage if the values of the parameters can be inferred from the context (we insert
‘geodetic’ to distinguish such constructions from extremal cycle-avoiding mixed
graphs, which are already called mixed cages [2]).

3 Existence of Cages

One subtle point that does not arise in the degree/diameter problem is that it is not
immediately clear that cages exist for all values of the degree d and girth g; therefore
it is necessary to prove that for any d� 2 and g� 3 there exists a graph with degree d
and girth g. This result was first shown by Sachs in [36] using a recursive
construction. The upper bound in [36] was subsequently improved in a joint paper by
Sachs and Erdős [18]. An approachable presentation of these proofs is given in an
appendix of [20].

Our first step is therefore to show that geodetic cages exist for all values of the
geodetic girth k and the degree parameters r and z. In the purely directed case we
obtain the existence of geodetic cages and a good estimate of their order almost for
free from a nice family of digraphs called the permutation digraphs. These digraphs
were first mentioned in [21] and their properties further developed in [9]. They are
defined as follows.

Definition 2 For d; k� 2 the vertex set of the permutation digraph P(d,k) consists of
all sequences x0x1. . .xk�1 of length k drawn from an alphabet ½d þ k� ¼
f0; 1; 2; . . .; d þ k � 1g such that for 0� i\j� k � 1 we have xi 6¼ xj.

The adjacencies of P(d,k) are defined by

x0x1. . .xk�1 ! x1x2. . .xk�1xk ;

where xk 2 ð½d þ k� � fx0; x1; . . .; xk�1gÞ.
It is shown in [9] that permutation digraphs are highly symmetric. The symmetric

group on d þ k symbols acts on P(d, k) in a natural way by permuting the symbols of

Fig. 3 A mixed graph with
excess one
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the underlying alphabet, meaning that the permutation digraphs are arc-transitive,
although not 2-arc-transitive. Their symmetry groups are derived and the Cayley
permutation digraphs classified in [9]. The important property of the permutation
digraphs from our point of view is that P(d, k) is k-geodetic and for fixed k� 2 the
digraphs P(d, k) have order approaching the directed Moore bound M(d, k)
asymptotically from above. The digraph P(2, 2) is displayed in Fig. 4.

Lemma 1 For d; k� 2 the permutation digraph P(d,k) is diregular with degree d,
has geodetic girth k and has order

dþkPk ¼ ðd þ kÞðd þ k � 1Þ. . .ðd þ 1Þ:
Hence for fixed k� 2 the excess of P(d,k) is

ððd þ kÞðd þ k � 1Þ. . .ðd þ 1ÞÞ � ðdk þ dk�1 þ . . .þ d þ 1Þ� kðk þ 1Þ
2

� 1

� �
dk�1

as d ! 1.

Proof For all d; k� 2 the digraph P(d, k) contains directed cycles of length k þ 1,
for example

012. . .ðk � 1Þ ! 12. . .ðk � 1Þk ! 23. . .ðk � 1Þk0 ! . . .

! k01. . .ðk � 2Þ ! 012. . .ðk � 1Þ;
so the geodetic girth of P(d, k) is certainly � k.

Fig. 4 P(2, 2)
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By vertex-transitivity of P(d, k), to prove k-geodecity it is sufficient to demon-
strate that if P and Q are paths of length � k in P(d, k) from the vertex 012. . .ðk � 1Þ
to a vertex x0x1. . .xk�1, then P ¼ Q. All vertices at distance r� k � 1 from
012. . .ðk � 1Þ have first symbol r, whereas all vertices at distance k from 012. . .ðk �
1Þ have a first symbol that does not lie in f0; 1; . . .; k � 1g. As dð01. . .ðk �
1Þ; x0x1. . .xk�1Þ� k by assumption, it follows that if x0 2 f0; 1; . . .; k � 1g then both
P and Q have length x0, whereas if x0 62 f0; 1; . . .; k � 1g then both P and Q must
have length k; in either case ‘ðPÞ ¼ ‘ðQÞ.

If x0 ¼ r 2 f0; 1; . . .; k � 1g then the only path with length r from 01. . .ðk � 1Þ to
x0x1. . .xk�1 is the path with initial vertex 01. . .ðk � 1Þ obtained by successively
deleting the symbol i on the left-hand side and adding the symbol xk�rþi on the right
for i ¼ 0; 1; . . .; r � 1. If x0 62 f0; 1; . . .; k � 1g, then the first arc e of both P and Q
must be 012. . .ðk � 1Þ ! 12. . .ðk � 1Þx0. Deleting the arc e from P and Q leaves
two paths P0 and Q0 of length k � 1 from 12. . .ðk � 1Þx0 to x0x1. . .xk�1; by the above
reasoning P0 ¼ Q0 and hence P ¼ Q. h

Lemma 1 shows that a (0, z, k)-geodetic cage exists for all values of z; k� 1. As
the permutation digraphs are diregular, we see that for d; k� 1 there is also a smallest
possible diregular k-geodetic digraph with degree d. By combining this construction
with that of Sachs [36] for undirected graphs we can show the existence of mixed
geodetic cages for all r; z; k� 1.

Theorem 8 There exists a mixed geodetic (r,z,k)-cage for all r; z; k� 1.

Proof We employ a truncation argument. Let H be an undirected cage with degree r,
girth g ¼ 2k þ 1 and order n. Let H 0 be a directed geodetic cage with geodetic girth k
and directed out-degree nz. We form a mixed graph G by identifying each vertex u of
H 0 with an isomorphic copy Hu of H and connecting the copies of H by arcs in
accordance with the topology of H 0; specifically, for each vertex u of H 0 partition the
nz arcs from u in H 0 into n sets A1;A2; . . .;An of z arcs and assign a set Ai of arcs to
each of the n vertices in Hu, such that if an arc in Ai goes to a vertex v in H 0, then in G
it is directed to any vertex of Hv. The resulting mixed graph G obviously has geodetic
girth k. A similar construction starting with directed cages substituted for vertices of
an undirected cage establishes the other part of the theorem.

h

As in the undirected degree/girth problem, the bounds given in Theorem 8 are
much too large to be of any practical help. We also note that by using regular graphs
with girth 2k þ 1 (which exist by [36]) and diregular k-geodetic digraphs (we can use
the permutation digraphs), the truncation argument in Theorem 8 also shows the
existence of a smallest totally regular ðr; z; k;þ�Þ-graph.
Corollary 1 For all r; z� 1 and k� 2 there exists a smallest totally regular
ðr; z; k;þ�Þ-graph.

Now that the existence of mixed geodetic cages has been established, the question
of monotonicity arises. Intuition suggests that the order of a cage should grow strictly
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with increasing r, z and k. Monotonicity of the order of cages in the undirected
degree/girth problem was proven by Fu, Huang and Rodger [22] and degree
monotonicity of undirected cages was discussed in [40], but appears to be a difficult
problem. We generalise the approach of [22] to prove strict monotonicity of the order
of mixed cages in the geodetic girth k. The following proof also applies to purely
directed geodetic cages.

Theorem 9 Nðr; z; kÞ\Nðr; z; k þ 1Þ for all k� 2.

Proof Let G be an ðr; z; k þ 1Þ-cage. Suppose that there exists a vertex u of G with
even undirected degree dðuÞ ¼ 2t. Write UðuÞ ¼ fu1; u2; . . .; u2t�1; u2tg. Define the
graph G0 as follows: delete u from G, join u2i�1 to u2i by an undirected edge for
1� i� t and for every vertex u� in Z�ðuÞ insert an arc from u� to some vertex uþ in
ZþðuÞ. This construction is shown in Fig. 5, with the new arcs and edges shown
dashed. Call the added arcs and edges new elements.

Suppose that G0 is not k-geodetic; let w and w0 be vertices of G0 with distinct
mixed paths P and Q of length � k from w to w0. As each new element in G0 can be
extended to a walk of length two in G whilst preserving the non-backtracking
property and G is ðk þ 1Þ-geodetic, we can assume that the mixed path P contains at
least two new elements. Examining a mixed path with length � k � 2 between
adjacent new elements in P, we see that there exists a non-backtracking closed walk
of length k through u in G, which is impossible. Thus G is at least k-geodetic and,
having order smaller than the ðr; z; k þ 1Þ-cage G, its geodetic girth must be exactly
k.

Thus we can assume that every vertex of G has odd undirected degree. Let u� v
be an undirected edge of G. Let UðuÞ ¼ fv; u1; u2; . . .; u2tg and
UðvÞ ¼ fu; v1; v2; . . .; v2sg. Form a new graph G00 by deleting u and v and matching
up the remaining neighbours of u and v by new elements as in the previous

Fig. 5 The construction in Theorem 9
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construction, i.e. setting u2i�1 � u2i for 1� i� t, v2j�1 � v2j for 1� j� s and inserting
an arc from each vertex of Z�ðuÞ to ZþðuÞ and an arc from each vertex of Z�ðvÞ to
ZþðvÞ. Assuming k� 2, notice that the sets UðuÞ � fvg, UðvÞ � fug, Z�ðuÞ, ZþðuÞ,
Z�ðvÞ and ZþðvÞ are pairwise disjoint.

If G00 has geodetic girth � k � 1, with two distinct mixed paths P and Q from a
vertex w to a vertex w0, then as before we can assume that P contains two new
elements.

Consider consecutive new elements in P. By the preceding argument these new
elements cannot be associated with same vertex in G, for example a new edge
between undirected neighbours of u and an arc from Z�ðuÞ to ZþðuÞ would yield a
contradiction as above. By symmetry we can assume that the first element is
associated with u and the second with v; for example, these elements could be a new
arc from Z�ðuÞ to ZþðuÞ followed by a new edge in U(v). Looking at the mixed
subpath of P between these consecutive new elements, we see that in G there is either
a mixed path of length � k � 2 from NþðuÞ to N�ðvÞ; it follows that there are
distinct mixed paths of length � k from u to v in G, a contradiction, so G00 is k-
geodetic. h

Applying the procedure of Theorem 9 to a smallest totally regular ðr; z; k;þ�Þ-
graph (which we know to exist by Corollary 1) by joining vertices of Z�ðuÞ to ZþðuÞ
by arcs in a one-to-one fashion, we see that strict monotonicity in the geodetic girth k
also holds for the order of smallest possible totally regular ðr; z; k;þ�Þ-graphs.
Monotonicity in the directed out-degree is simple to demonstrate.

Theorem 10 Nðr; z; kÞ�Nðr; zþ 1; kÞ. If r ¼ 0, then strict inequality holds.

Proof Let G be an ðr; zþ 1; kÞ-cage. Delete one outgoing arc from every vertex; the
resulting graph has minimum undirected degree r, minimum directed out-degree z
and, as a subgraph of G, is obviously still k-geodetic. If r ¼ 0, then the deleted arcs
can be chosen such that the resulting subgraph G0 of G contains a source vertex z, i.e.
the in-degree of z is zero; deleting z does not decrease the geodetic girth or the
minimum out-degree. h

4 Bounds on Totally Regular Mixed Graphs with Small Excess

The proof of the non-existence of mixed Moore graphs [34] uses an argument that
admits of very useful generalisations. We now present a counting argument that gives
a new bound on the order of totally regular ðr; z; k; �Þ-graphs.
Theorem 11 For k� 3, the excess � of a totally regular ðr; z; k;þ�Þ-graph satisfies

�� r

/

hkk�1
1 � 1

k1 � 1
� kk�1

2 � 1

k2 � 1

i
;

where
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/ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr þ z� 1Þ2 þ 4z

q
;

k1 ¼ 1

2
ðr þ z� 1þ /Þ

and

k2 ¼ 1

2
ðr þ z� 1� /Þ:

Proof Let the vertex x be the end-point of an arc in an undirected branch TðuiÞ of the
Moore tree of depth k based at a vertex u such that dðu; xÞ� k � 1. We will call such
a vertex an arrow vertex (with respect to u). All undirected neighbours of the arrow
vertex x occur in TðuiÞ, together with a single vertex of Z�ðxÞ. As G is totally regular,
there are z� 1 vertices of UðxÞ [ Z�ðxÞ that do not occur in TðuiÞ. Suppose that
every vertex of Z(u) can reach x by a mixed path of length � k. As x cannot occur in
the directed branches of u, it would then follow that each of the z directed branches
must contain a vertex in UðxÞ [ Z�ðxÞ; however, as r þ 1 vertices of UðxÞ [ Z�ðxÞ
already occur in TðuiÞ, this means that a vertex is repeated in the Moore tree, which
contradicts k-geodecity. Therefore x 2 S

ui2ZðuiÞ OðuiÞ.
We now count the number of such arrow vertices x. For 1� t� k � 1, let Zt be the

number of vertices in the undirected branches at Level t in the Moore tree based at u
that are end-points of arcs emanating from Level t � 1 and let Ut be the number of
vertices in the undirected branches at Level t that are connected by an edge to Level
t � 1. Obviously U1 ¼ r; Z1 ¼ 0 and Z1 ¼ rz. These numbers satisfy the recurrence
relations

Utþ1 ¼ ðr � 1ÞUt þ rZt; Ztþ1 ¼ zUt þ zZt

for t� 1. It follows that

Ztþ2 ¼ zUtþ1 þ zZtþ1 ¼ zððr � 1ÞUt þ rZtÞ þ zZtþ1:

Substituting using the second relation,

Ztþ2 ¼ zZtþ1 þ rzZt þ zðr � 1Þð1=zÞðZtþ1 � zZtÞ ¼ ðr þ z� 1ÞZtþ1 þ zZt:

This second-order recurrence relation has characteristic equation

k2 � ðr þ z� 1Þk� z ¼ 0;

with solutions k1; k2 as given in the statement of the theorem. Observe that the

discriminant /2 ¼ ðr þ z� 1Þ2 þ 4z is strictly positive, so k1; k2 are real and dis-
tinct. It follows that

Zt ¼ Akt1 þ Bkt2

for t� 1 and some constants A and B. Substituting Z1 ¼ 0; Z2 ¼ rz, we obtain
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Zt ¼ rz

/
ðkt�1

1 � kt�1
2 Þ

for t� 1. Summing, we find that there are

Xk�2

i¼0

rz

/
ðki1 � ki2Þ ¼

rz

/
kk�1
1 � 1

k1 � 1
� kk�1

2 � 1

k2 � 1

� �

such vertices. As the union of the outlier sets of the vertices in Z(u) contain a
maximum of z� distinct vertices between them, it follows that

z�� rz

/
kk�1
1 � 1

k1 � 1
� kk�1

2 � 1

k2 � 1

� �

and the result follows. h

Some values of the lower bound in Theorem 11 for k ¼ 4 are displayed in Table 2.
We are not aware of any instance in which the bound of Theorem 11 is tight.
However, as we shall now demonstrate, it does yield a powerful result on mixed
graphs with excess one.

Corollary 2 If G is a totally regular ðr; z; k;þ1Þ-graph with k� 3, then r ¼ 1 and
k ¼ 3.

Theorem 12 There are no totally regular ðr; z; k;þ1Þ-graphs for k� 3.

Proof Let G be a totally regular ð1; z; 3;þ1Þ-graph. For any vertex u 2 V ðGÞ write
u� for the undirected neighbour of u. Let the adjacency matrices of G;GU and GZ be
A;AU and AZ respectively. Fix a vertex u and draw the Moore tree rooted at u.

Table 2 Lower bound on the
excess from Theorem 11 for
k ¼ 4

r/z 1 2 3 4 5 6

1 2 3 4 5 6 7

2 6 8 10 12 14 16

3 12 15 18 21 24 27

4 20 24 28 32 36 40

5 30 35 40 45 50 55

6 42 48 54 60 66 72

7 56 63 70 77 84 91

8 72 80 88 96 104 112

9 90 99 108 117 126 135

10 110 120 130 140 150 160

11 132 143 154 165 176 187

12 156 168 180 192 204 216

13 182 195 208 221 234 247

14 210 224 238 252 266 280

15 240 255 270 285 300 315
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Examination of the Moore tree shows that there are two walks of length � 3 from u
to itself (the trivial walk u and the walk u� u� � u of length two), two walks of
length � 3 from u to u� (u� u� and u� u� � u� u�), three walks of length � 3 from
u to any directed out-neighbour v of u (u ! v; u� u� � u ! v and u ! v� v� � v)
and unique walks of length � 3 from u to the vertices at distance two and three from
u. It follows that

I þ Aþ A2 þ A3 ¼ I þ J þ Aþ AZ � P;

where I is the n� n identity matrix, J is the all-one matrix and Pvv0 ¼ 1 if oðvÞ ¼ v0

and 0 otherwise. As G is totally regular, J commutes with the left-hand side, I and AZ ;
therefore JP ¼ PJ and o is a permutation.

Take an edge uu�. The argument of Theorem 11 and the fact that o is a permu-
tation shows that oðZþðuÞÞ ¼ Zþðu�Þ and oðZþðu�ÞÞ ¼ ZþðuÞ. Applying this result
to an arbitrary directed in-neighbour v of u, we see that there is a path v� v� ! oðuÞ.
Let w 2 ZþðoðuÞÞ. A diagram of this situation is shown in Fig. 6. There is a path of
length three from v to w, so dðu;wÞ� 3; in fact, since o is a permutation, we have
equality. Since only r þ z� 1 in-neighbours of w lie in the Moore tree rooted at u, it
follows that w must be the outlier of an out-neighbour of u. Examining the Moore
tree of depth three based at v, we see that if w is an outlier of a vertex in ZþðuÞ, then it
would appear twice in the Moore tree rooted at v, once in the undirected v�-branch
and once in the u-branch in Zþðu�Þ, violating 3-geodecity. Therefore w is the outlier
of u�; as the excess is one, u� has a unique outlier, so z ¼ 1.

We can dispose of the case r ¼ z ¼ 1; k ¼ 3 by the argument of Theorem 11. Let
u8 � a; u8 ! b; u9 ! c; u10 � d; u10 ! e; see Fig. 7. Our argument shows that
oðu2Þ ¼ u3, so

Fig. 6 Configuration for Theorem 12 for z ¼ 2
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fa; b; c; d; eg ¼ fu; u1; u6; u7; u11g;
where u11 ¼ oðuÞ. As the undirected neighbours of u; u1 and u6 are accounted for,
fb; c; eg ¼ fu; u1; u6g and fa; dg ¼ fu7; u11g. We have fc; eg 6¼ fu; u1g or there
would be a repeat in the Moore tree rooted at u5. u 6¼ b or else there would be paths
u4 � u2 and u4 ! u8 ! u ! u2, so u 2 fc; eg. Thus u1 62 fc; eg, so b ¼ u1 and
fc; eg ¼ fu; u6g. By 3-geodecity applied to u8, b ¼ u1 implies that a 6¼ u7, so a ¼
u11 ¼ oðuÞ and hence d ¼ u7. e 6¼ u6, or u10 would have two paths of length � 3 to
u7. Therefore c ¼ u6; e ¼ u.

Taking into account all adjacencies, it follows that there are three arcs from
fu6; u7; u11g to fu4; u9; u11g. u11 6! u11 and u11 6! u4, or we would have
u4 ! u8 � u11 ! u4. Hence u11 ! u9. u6 6! u11, or u9 ! u6 ! u11 ! u9, so u6 !
u4 and u7 ! u11. But now there are paths u1 � u ! u2 � u4 and u1 ! u3 � u6 ! u4,
contradicting 3-geodecity. As G has even order, G has excess �� 3. h

It follows from Corollary 2, Theorem 12 and the results of [39] that any
ðr; z; k;þ1Þ-graph is either totally regular with k ¼ 2, satisfying the conditions in
Theorem 7, or else k� 3, z� 2 and G is not totally regular.

We conclude this section with a result on the connection between outlier sets and
automorphisms of mixed graphs with excess one. It is known that the outlier function
of a digraph G with excess one is an automorphism if and only if G is diregular [38].
The above results now allow us to extend this result to the more general mixed
setting.

Theorem 13 The outlier function of an ðr; z; k;þ1Þ-graph G is an automorphism if
and only if G is totally regular.

Proof Suppose firstly that G is not totally regular; recall that G must be out-regular.
Let v0 2 S0. Suppose that o is an automorphism. It follows that oðv0Þ 2 S0. However,
this implies that oðv0Þ has [ r þ z in-neighbours distributed among the r þ z
branches of the Moore tree based at v0, so that some out-neighbour of v0 has � 2

Fig. 7 Moore tree for a 3-geodetic mixed graph with r ¼ z ¼ 1
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mixed paths to oðv0Þ with length � k. Thus if o is an automorphism, then G is totally
regular.

Now let G be totally regular. Let k ¼ 2 and write A for the adjacency matrix of G.
Then

I þ Aþ A2 ¼ J þ rI � P;

where I is the n� n identity matrix, J is the all-one matrix and Puv ¼ 1 if oðuÞ ¼ v
and 0 otherwise. As G is totally regular, both I and J commute with A. Therefore P
commutes with A, so that o is an automorphism. There are no totally regular mixed
graphs with excess one for k� 3 by Theorem 12, so the proof is complete. h

5 Excess of Mixed Graphs that are Not Totally Regular

We will now revisit the counting arguments used in the previous section to derive a
bound in the more difficult context of mixed graphs that are not totally regular. We
will see that a bound for all mixed graphs, totally regular or not, can be achieved by
relaxing the bound in Theorem 11 by a factor of z

2rþ3z. We will need the following
result from [39].

Theorem 14 [39] Any ðr; z; k;þ1Þ-graph must be totally regular if either k ¼ 2 or
z ¼ 1.

Using the new bound presented in the following theorem we will improve on
Theorem 14 significantly.

Theorem 15 The excess of any (r,z,k)-cage satisfies

�� rz

ð2r þ 3zÞ/
hkk�1

1 � 1

k1 � 1
� kk�1

2 � 1

k2 � 1

i
;

where k1; k2 and / are as defined in Theorem11.

Proof Let G be an (r, z, k)-cage. We can assume that the directed subgraph of G is
out-regular, by deleting some arcs if necessary. Let the number of arrow vertices in
the Moore tree of an out-regular ðr; z; k;þ�Þ-graph be A(r, z, k). By the calculation of
Theorem 11 we know that

Aðr; z; kÞ ¼ rz

/

hkk�1
1 � 1

k1 � 1
� kk�1

2 � 1

k2 � 1

i
:

We are therefore aiming to prove that

�� 1

2r þ 3z
Aðr; z; kÞ:

We have Aðr;z;kÞ
2rþ3z \

Aðr;z;kÞ
r , where Aðr;z;kÞ

r is the number of arrow vertices per undirected
branch of an out-regular ðr; z; k;þ�Þ-graph. Thus each branch contains more than
Aðr;z;kÞ
2rþ3z vertices, so if G contains a vertex u with undirected degree dðuÞ� r þ 1 then
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the claimed bound holds. Hence we can assume that G is out-regular.
Let the deficiency r�ðvÞ of a vertex v 2 S be z� d�ðvÞ and the surplus rþðv0Þ of a

vertex v0 2 S0 be d�ðv0Þ � z. As G is out-regular we have for the total deficiency r

r ¼
X
v2S

r�ðvÞ ¼
X
v02S0

rþðv0Þ:

As each vertex in S0 contributes at least one to r, we trivially have r� jS0j. We will
now find an upper bound for r in terms of r, z and �.

Fix a vertex u of G and draw the Moore tree of depth k rooted at u. Write
UðuÞ ¼ fu1; u2; . . .; urg. Let v 2 S have deficiency r�ðvÞ ¼ s. Suppose firstly that
dðu; vÞ� k (i.e. either v lies at the bottom of the tree or v 2 OðuÞ). Then v can have
in-neighbours in at most r þ z� s branches of the Moore tree and so lies in the
outlier sets of at least s members of NþðuÞ.

Now suppose that either u ¼ v or dðu; vÞ� k � 1 and v lies in an undirected
branch of the tree. At most z� s directed branches of the tree can contain in-
neighbours of v (in fact z� s� 1 branches if v is an arrow vertex), so again v occurs
at least s times in the multiset OðZþðuÞÞ.

Lastly we must consider the case that v lies in a directed branch of the tree and
dðu; vÞ� k � 1. Consider the Moore tree based at any ui 2 UðuÞ, say u1. v lies in an
undirected branch of this tree and so by our previous analysis v occurs at least s times
in OðNþðu1ÞÞ.

We have now dealt with all members of S. Summing their deficiencies to find r we
find that the elements of S appear at least r times in the multiset
OðNþðuÞÞ [ OðNþðu1ÞÞ. As this multiset contains ð2r þ 2zÞ� elements, we conclude
that

r�ð2r þ 2zÞ�:
We now estimate the size of the set S0. Again we consider the Moore tree rooted at u.
If an arrow vertex x relative to u lies in V ðGÞ � S0, then x cannot have an in-
neighbour in every directed branch of the tree and so must be an outlier of at least
one directed out-neighbour of u. There are z� elements in OðZþðuÞÞ, so it follows that
at least Aðr; z; kÞ � z� of the arrow vertices must lie in S0. Therefore

ð2r þ 2zÞ�� r� jS0j �Aðr; z; kÞ � z�:

Rearranging we derive the inequality

�� 1

2r þ 3z
Aðr; z; kÞ:

This proves the theorem. h

This result now enables us to rule out the existence of mixed graphs with excess
one for k� 4 and ‘most’ values of r and z for k ¼ 3.

Theorem 16 There are no ðr; z; k;þ1Þ-graphs for k� 4 or for k ¼ 3, r� 4 and
z[ 2r

r�3.
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Proof Setting � ¼ 1 in Theorem 15 shows that if Aðr; z; kÞ[ 2r þ 3z, then no
ðr; z; k;þ1Þ-graph can exist. If k� 5, then

Aðr; z; kÞ�Aðr; z; 5Þ ¼ rz3 þ 2r2z2 þ r3z� r2zþ rz:

If z� 2, then this expression obviously exceeds 2r þ 3z, so let z ¼ 1. Then by
Theorem 14 G must be totally regular; however, no such graphs exist by Theorem
12.

Let k ¼ 4. We have Aðr; z; 4Þ ¼ rz2 þ zr2. If r� 2 and z� 2, then
rz2 þ zr2 � 4r þ 4z[ 2r þ 3z. The result follows for z ¼ 1 by Theorem 14 and
Theorem 12, so we can assume that r ¼ 1. We want to show that z2 þ z[ 3zþ 2, i.e.
z2 � 2z� 2[ 0. This inequality holds for z� 3, so this leaves only the pair ðr; zÞ ¼
ð1; 2Þ to deal with. However in this case the Moore bound M(1, 2, 4) is even, so that
G must have odd order. However, r ¼ 1 implies that G has a perfect matching, so this
is impossible.

Finally let k ¼ 3. We have Aðr; z; 3Þ ¼ rz, so Aðr; z; 3Þ[ 2r þ 3z if and only if
r� 4 and z[ 2r

r�3. h

For k ¼ 3 this leaves open the cases r ¼ 1; 2; 3, r ¼ 4 and 2� z� 8, r ¼ 5 and
2� z� 5, r ¼ 6 and 2� z� 4, r ¼ 7; 8 and 9 and 2� z� 3 and r� 10 and z ¼ 2. We
can deal with the majority of these cases by a slightly more sophisticated method.

Lemma 2 If G is an ðr; z; k;þ1Þ-graph that is not totally regular, then every vertex
v0 2 S0 has directed in-degree zþ 1. Therefore r ¼ jS0j.
Proof Consider the Moore tree rooted at v0 2 S0. Each branch of the tree can contain
at most one in-neighbour of v0 by k-geodecity. Therefore, as v0 has at least r þ zþ 1
in-neighbours we conclude that each branch contains exactly one in-neighbour of v0

and oðv0Þ 2 Z�ðv0Þ. Hence v0 has exactly r þ zþ 1 in-neighbours. h

Lemma 3 No v0 2 S0 is an outlier.

Proof Assume for a contradiction that G is an ðr; z; k;þ1Þ-graph in which oðuÞ ¼ v0

for some u 2 V ðGÞ and v0 2 S0. As v0 is the outlier of u, no in-neighbour of v0 can lie
at distance less than k from u. By k-geodecity, we conclude that every branch of the
Moore tree rooted at u contains a unique in-neighbour of v0 at distance k from u.
Therefore we must have oðuÞ 2 N�ðv0Þ to account for the final in-neighbour of v0. As
v0 ¼ oðuÞ, this contradicts k-geodecity. h

Lemma 4 For k ¼ 3, if an ðr; z; 3;þ1Þ-graph exists, then z2 þ zþ r� r� zþ r.

Proof Let G be an ðr; z; 3;þ1Þ-graph. The Moore bound for k ¼ 3 is

Mðr; z; 3Þ ¼ r3 þ z3 þ 3rz2 þ 3r2z� r2 þ z2 þ r þ zþ 1:

The order of G is n ¼ Mðr; z; 3Þ þ 1. The Moore bound for k ¼ 2 is

Mðr; z; 2Þ ¼ r2 þ z2 þ 2rzþ zþ 1:

Fix some v0 2 S0. By Lemma 3, every vertex of G can reach v0 by a mixed path of
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length � 3. We achieve a lower bound for the number of these vertices by assuming
that S 	 N�ðv0Þ. Taking into account that v0 has exactly one extra directed in-
neighbour by Lemma 2 and since all vertices of T�3ðv0Þ are distinct by 3-geodecity
we obtain the following inequality:

n ¼ Mðr; z; 3Þ þ 1�Mðr; z; 3Þ þMðr; z; 2Þ � rð1þ r þ zÞ:
Rearranging,

rð1þ r þ zÞ�Mðr; z; 2Þ � 1 ¼ r2 þ z2 þ 2rzþ z:

Multiplying out, it is easily seen that r� r þ z: Now we turn to the upper bound. Fix
a vertex u and draw the Moore tree based at u. By the argument of Theorem 15, we
see that any vertex v in S that lies in fu; oðuÞg [ NkðuÞ or any of the undirected
branches of the tree must be an outlier of at least r�ðvÞ vertices in NþðuÞ. Therefore
these vertices between them contribute at most r þ z to the total r.

Fix a directed out-neighbour uþ of u and consider the vertices in the Moore tree
rooted at uþ at distance � 1 from uþ. Any vertex v 2 S belonging to this set will be
an outlier of at least r�ðvÞ vertices in ZþðuþÞ. Between them such vertices can
therefore contribute at most z2 to the total r. Since we have now considered all
vertices in G, the conclusion follows. h

Theorem 17 There are no ðr; z; 3;þ1Þ-graphs with r� 2.

Proof Suppose that G is an ðr; z; 3;þ1Þ-graph with r[ 1. We know from Lemma 4
that z2 þ r þ z� r� r þ z, so we can write r ¼ z2 þ r þ z� a, where 0� a� z2.
Fix an arbitrary vertex u of G and draw the Moore tree rooted at u. There are rz arrow
vertices in the tree relative to u, i.e. rz vertices in the set ZþðUðuÞÞ. If any of the
arrow vertices does not belong to S0, then it will be an outlier of a vertex in ZþðuÞ. It
follows that at least ðr � 1Þz of the arrow vertices belong to S0. Repeating this
reasoning for each vertex in NþðuÞ and taking into account that the vertices of ZþðuÞ
are arrow vertices relative to any vertex in U(u), we see that there are at least

ðr � 1Þzþ ðr � 1Þzþ ðr � 1Þðr � 2Þzþ z2ðr � 1Þ ¼ ðr � 1Þðz2 þ rzÞ
vertices of S0 in the tree. In fact, if we take u to be an element of S0, a valid
assumption by Theorem 12, then we can actually deduce that

r ¼ z2 þ r þ z� a ¼ jS0j � ðr � 1Þðz2 þ rzÞ þ 1:

Rearranging, we see that a must satisfy

a� z2 þ r þ z� rz2 � r2zþ z2 þ rz� 1 ¼ �zr2 � ðz2 � z� 1Þr þ ð2z2 þ z� 1Þ:

If r� 2 and z� 2, then
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a� � zr2 � ðz2 � z� 1Þr þ ð2z2 þ z� 1Þ� � 4z� 2ðz2 � z� 1Þ
þ ð2z2 þ z� 1Þ ¼ �zþ 1\0;

so it follows that we must have r ¼ 1 and, considering the parity of the Moore
bound, z must be odd. h

By Theorems 16 and 17 the only remaining open case left for k� 3 is the question
of the existence of a non-totally regular ð1; z; 3;þ1Þ-graph. We finally settle this
outstanding problem.

Theorem 18 If G is an ðr; z; k;þ1Þ-graph, then k ¼ 2 and G is totally regular.

Proof Suppose that G is an ðr; z; k;þ1Þ-graph with k� 3. Then by Theorems 16
and 17 we have r ¼ 1, k ¼ 3 and z is odd. Also G is not totally regular by
Theorem 12, so that by Theorem 14 we have z� 3. Fix a vertex u of G. Let u� be the
undirected neighbour of u and fu1; u2; . . .; uzg be the set ZþðuÞ of directed out-
neighbours of u. Draw the Moore tree of depth 3 rooted at u.

By counting the in-neighbours of a vertex v 2 S that are available to lie in the
directed branches of the tree, it can be seen that v will be the outlier of at least r�ðvÞ
vertices of NþðuÞ unless v lies in UðZþðuÞÞ, i.e. unless v is the undirected neighbour
of a directed out-neighbour of u. For example, if v 2 ZþðuÞ, then the vertices u� and
v can reach v by mixed paths of length � k and v has two in-neighbours already
appearing in the tree (one is u and the other is v� at Level 2), so that v has at most
z� r�ðvÞ � 1 further in-neighbours that can lie in the remaining z� 1 directed
branches, so that v is the outlier of at least r�ðvÞ vertices in NþðuÞ. Repeating this
analysis for each position in the Moore tree implies the result.

However, if v lies in UðZþðuÞÞ, then we can only say that it will be the outlier of
at least r�ðvÞ � 1 vertices of NþðuÞ (it can be reached by two vertices of NþðuÞ by
� k-paths and has a further z� r�ðvÞ in-neighbours available for the remaining
z� 1 directed branches). Observe also that if an arrow vertex in the Moore tree lies in
S, then this vertex v will be an outlier of at least r�ðvÞ þ 1 vertices of ZþðuÞ.

Summing the deficiencies of all the vertices in S to get the total deficiency r, we
conclude that there are at most 2zþ 1 vertices of S, for at most z vertices of S can lie
in UðZþðuÞÞ and every other vertex v of S is an outlier of at least r�ðvÞ vertices in
NþðuÞ and hence appears at least r�ðvÞ times in oðNþðuÞÞ, which is a multiset with
size zþ 1. We now make this estimate more precise. For any vertex u of G define
qðuÞ ¼ jS \ UðZþðuÞÞj. Also let qmin ¼ minfqðuÞ : u 2 V ðGÞg. If u is a vertex at
which this minimum value qmin is achieved, then as there are exactly qmin undirected
neighbours of ZþðuÞ that lie in S, the total deficiency satisfies r� zþ qmin þ 1.

Suppose that qmin � 1. For any vertex u, the sets UðZþðuÞÞ, UðZþðu�ÞÞ and
UðZþðuiÞÞ for 1� i� z are mutually disjoint and each contain at least qmin vertices of
S, which are distinct by 3-geodecity. Thus

ðzþ 2Þqmin � jSj � r� zþ qmin þ 1: ð1Þ
Rearranging, we see that either qmin ¼ 0 or qmin ¼ 1. Suppose that qmin ¼ 1; then we
have equality in Equation 1, which implies that jSj ¼ zþ 2 and qðu�Þ ¼ qðuiÞ ¼ 1
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for 1� i� z. Then as qðuÞ ¼ 1, there is a directed out-neighbour of u (say u1) such
that u�1 2 S. Applying the same reasoning to u1, we conclude that each of the zþ 2
sets UðZþðu1ÞÞ, UðZþðu�1ÞÞ and UðZþðu0ÞÞ, where u0 is any directed out-neighbour
of u1, each contain one element of S; however, including u�1, we see that there would
be at least zþ 3 elements of S in the Moore tree of depth three rooted at u1, a
contradiction.

Thus qmin ¼ 0. Hence by Lemma 4 we have r ¼ zþ 1. As no vertices of S lie in
UðZþðuÞÞ, each of the elements v 2 S is an outlier of at least r�ðvÞ vertices of
NþðuÞ, so that we must have oðNþðuÞÞ ¼ S as multisets, where v 2 S appears r�ðvÞ
times on the right-hand side. If any arrow vertex v in the Moore tree rooted at u (i.e.
any vertex of Zþðu�Þ) belongs to S, then this vertex would contribute at least r�ðvÞ þ
1 times to the set oðZþðuÞÞ, so that as r� zþ 1, in total there would be � zþ 2
vertices in oðNþðuÞÞ, which is impossible. Furthermore, if an arrow vertex lies in
V ðGÞ � ðS [ S0Þ, then this vertex would be an outlier of a vertex in ZþðuÞ, contra-
dicting oðNþðuÞÞ ¼ S. Thus all arrow vertices in the tree belong to S0.

Applying the same reasoning to the vertices in NþðuÞ, we see that if some w 2
NþðuÞ has qðwÞ ¼ 0, then all vertices of Zþðw�Þ would lie in S0, so that the Moore
tree of depth three rooted at u would contain at least 2z vertices of S0, which is strictly
greater than r for z� 3. Thus UðZþðwÞÞ contains at least one vertex of S for each
w 2 NþðuÞ; it follows that each branch of the Moore tree rooted at u contains at least
one vertex of S at distance three from u. As jSj � r ¼ zþ 1, we must have jSj ¼
zþ 1 and each vertex in S has directed in-degree z� 1.

There are only zþ 1 vertices in S, so we conclude that qðwÞ ¼ 1 for each
w 2 NþðuÞ. As there is only one vertex of S0 not contained in Zþðu�Þ, there must be a
directed out-neighbour of u, say u1, such that S0 \ Zþðu�1Þ ¼ ;. Since the zþ 1
vertices of S are contained in UðZþðNþðuÞÞÞ, we also have S \ Zþðu�1Þ ¼ ;, so that
Zþðu�1Þ 	 V ðGÞ � ðS [ S0Þ. It follows that Zþðu�1Þ ¼ oðZþðu1ÞÞ. However, as just
one vertex of S is contained in UðZþðu1ÞÞ, at least z vertices in Nþðu1Þ must have
outliers in S, implying that z ¼ 1, a contradiction. h

This completes our classification of k-geodetic mixed graphs with excess one for
k� 3. In [39] the authors conjectured that any mixed graph with excess one is totally
regular; Theorem 18 proves this conjecture.

6 Bounds on Totally Regular Mixed Graphs with Small Defect

We now return to the degree/diameter problem for mixed graphs and extend the
counting arguments from the previous section to deal with totally regular mixed
graphs with small defect. The first non-trivial bound for such graphs was derived in
[17], where it is shown that for a totally regular ðr; z; k;�dÞ-graph with k� 3 the
defect is bounded below by the undirected degree r. There is equality for k ¼ 3 and
hence the bound is tight. We present a new upper bound on the order of totally
regular ð1; 1; k;�dÞ-graphs that improves on the result of [17] for k� 4.

Let G be a totally regular mixed graph with undirected degree r ¼ 1, directed
degree z ¼ 1 and diameter k. We will denote the unique undirected neighbour of a
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vertex v of G by v�, the directed in-neighbour by v� and the directed out-neighbour
by vþ. Since r ¼ 1, G contains a perfect matching and must have even order.

For any vertex v of G we make the further definition that v1 ¼ ðvþÞ�, that is v1 is
the undirected neighbour of the directed out-neighbour of v. We extend this definition

as follows. We set v0 ¼ v and by iteration define vs ¼ ðvs�1Þ1 for s� 2. By analogy
we specify that v�1 ¼ ðv�Þ�, so that v� is the directed in-neighbour of the undirected

neighbour of v. Again we set iteratively v�s ¼ ðv�ðs�1ÞÞ�. Notice that ðv1Þ�1 ¼
ðv�1Þ1 ¼ v for all v 2 V ðGÞ.

We draw the Moore tree of G of depth k based at a vertex u as indicated in Fig. 8.
In particular, if a vertex at Level t� k � 1 of the tree has both an undirected
neighbour and a directed out-neighbour below it at Level t þ 1 of the tree, then we
will place the undirected neighbour on the left and label the vertices accordingly. If
k� 3, then there will be vertices repeated in the tree, so that a vertex of G can receive
distinct labels in the Moore tree; nevertheless, for counting purposes we will still
distinguish between the position labels in the tree. The left-hand side branch
beginning at u1 is the undirected branch and the right-hand side branch beginning at
u2 is the directed branch.

To reiterate, an arrow vertex in the Moore tree of G rooted at u is a vertex x at a
Level t, 2� t� k � 1, of the tree in the undirected branch such that x appears as the
terminal vertex of an arc with its initial vertex at Level t � 1. Unlike the k-geodetic
case, arrow vertices can be equal in G or be equal to a vertex in the directed branch;
therefore we will slightly abuse the term ‘arrow vertex’ by associating it, not with a
vertex of G, but with a position or label in the tree.

Consider an arrow vertex x at Level t of the Moore tree. Its directed in-neighbour
x� appears at Level t � 1 and its undirected neighbour x� at Level t þ 1, so that the
entire in-neighbourhood N�ðxÞ ¼ fx�; x�g is also contained in the undirected branch

u0

u1 u2

u3 u4 u5

u6 u7 u8 u9 u10

u11 u12 u13 u14 u15 u16 u17 u18

u19 u20 u21 u22 u23 u24 u25 u26 u27 u28 u29 u30 u31

Fig. 8 The Moore tree for r ¼ z ¼ 1 and k ¼ 5
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of the Moore tree. As G has diameter k, u2 must be able to reach x by a mixed path of
length � k, so it follows that at least one of x�; x� also appears in the directed branch
of G. For every such occurrence there will be an additional repeat of u0, so that we
can bound the defect d from below by counting the smallest possible number of
positions in the undirected branch such that for every arrow vertex x either x� or x�

lies in one of these positions. We will call such a set of positions a transversal of the
undirected branch.

We will now focus on the undirected branch of the Moore tree. The undirected
branch of a Moore tree of depth 8 is shown in Fig. 9. For convenience we use a
different labelling of the undirected branch; for example, vertex 1 corresponds to u1
in Fig. 8, 2 to u3, 3 to u6, 5 to u11, etc. For the moment we ignore the complication
that a vertex of G could appear multiple times as an arrow vertex in this tree. Under
this assumption we will show that d is bounded from below by the size of a minimum
transversal of the Moore tree.

Consider an arrow vertex x at Level t of the tree, where 2� t� k � 1. In the
undirected branch shown in Fig. 9 these are vertices 2, 4, 5, 7, 9, 10, 12, 13, 15, 17,
18, 20, 22, 23, 25, 26, 28, 30, 31 and 33. As already noted, either the undirected
neighbour x� or the directed in-neighbour x� of x must occur in the directed branch of
the Moore tree, and each such occurrence counts towards the number of repeats of
the root vertex u of the tree. However, the in-neighbourhoods of the arrow vertices
overlap; for example, the vertex 8 is an in-neighbour both of the vertex 5 and the

Fig. 9 The undirected branch for k ¼ 8
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vertex 13. We will partition the positions in the undirected branch of the Moore tree
corresponding to vertices in the in-neighbourhoods of the arrow vertices into chains.

A chain is a maximal string of vertices in the undirected branch of the Moore tree
of the form v ¼ v0; v1; v2; v3; . . ., where v is an in-neighbour of an arrow vertex. If v is
at Level t� k � 2, then v2 is at Level t þ 2. For example 1, 3, 8, 21 is a chain which
we have labelled (a) in Fig. 9. Every in-neighbourhood of an arrow vertex is
contained in a unique chain. Every arrow vertex at Level t, where 2� t� k � 2, is the
beginning of a chain, as is the vertex 1. Conversely, by iterating the � operation on an
in-neighbour of an arrow vertex, i.e. considering the sequence of vertices
v; v�1; v�2; . . ., we see that every chain begins either at 1 or an arrow vertex at
Level t� k � 2. This decomposition is displayed for k ¼ 8 in Fig. 10.

We will call the number of vertices (i.e. positions in the Moore tree) in a chain
v; v1; v2; . . . the length of the chain. For example, for k ¼ 8 the chain 1, 3, 8, 21 has length
4. Let C be a chain of length ‘. Any pair of consecutive vertices in C is the in-
neighbourhood of an arrow vertex, so at least one of them must appear in the directed
branch of the Moore tree. As any vertex in C is contained in two pairs of consecutive
vertices of the chain, it follows that the smallest transversal ofC, i.e. the smallest number
of vertices in theMoore tree that intersect every in-neighbourhoodof arrowvertices that is
contained in the chain, is d‘3e (this follows from the domination number of the path [12]).

The number of chains beginning at Level t of the tree, where 2� t� k � 2, is
equal to the number of arrow vertices at Level t. From the calculation of Theorem 11
we know that this number is

Fig. 10 The chain decomposition for k ¼ 8
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Zt ¼ 1

2t�1
ffiffiffi
5

p ðð1þ
ffiffiffi
5

p
Þt�1 � ð1�

ffiffiffi
5

p
Þt�1Þ:

The first vertex 1 of the undirected branch is also the first vertex of a chain. We
therefore define Z 0

t ¼ 1 for t ¼ 1 and Z 0
t ¼ Zt for 2� t� k � 1. The length of a chain

beginning at Level t is ‘ðtÞ ¼ 1þ bk�t
2 c. It follows from our argument that the

smallest transversal of the undirected branch of the Moore tree has size

Xk�2

t¼1

Z 0
t

1

3
þ 1

3

k � t

2

� �	 

:

This expression gives a lower bound for the number of positions in the undirected
branch of the Moore tree that are occupied by vertices that also appear in the directed
branch. It could happen that these positions in the undirected branch are actually
occupied by the same vertex, which would reduce the number of vertices that would
have to be repeated in the directed branch.

However, it is easily seen that this does not affect our lower bound for the defect.
Let T be the transversal of the undirected branch that is repeated in the directed
branch of a largest ðr; z; k;�dÞ-graph. If s positions of T are occupied by the same
vertex v, then v occurs at least once in the directed branch of the Moore tree, but is
also repeated at least s� 1 times in the undirected branch, so that this set of s
positions nevertheless contributes at least s to the total defect d. We have therefore
proved the following theorem.

Table 3 New bounds on
ð1; 1; k;�dÞ-graphs k dðkÞ M(1, 1, k) New upper bound Parity adjusted

3 1 11 10 10

4 2 19 17 16

5 3 32 29 28

6 5 53 48 48

7 9 87 78 78

8 15 142 127 126

9 24 231 207 206

10 39 375 336 336

11 63 608 545 544

12 102 985 883 882

13 166 1595 1429 1428

14 269 2582 2313 2312

15 435 4179 3744 3744

16 704 6763 6059 6058

17 1139 10944 9805 9804

18 1843 17709 15866 15866

19 2983 28655 25672 25672

20 4827 46366 41539 41538

21 7810 75023 67213 67212
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Theorem 19 Any totally regular ð1; 1; k;�dÞ-graph has defect

d�
Xk�2

t¼1

Z 0
t

1

3
þ 1

3

k � t

2

� �	 


for k� 3.

In Table 3 are summarised the new upper bounds on the order of ð1; 1; k;�dÞ-graphs
fromTheorem 19.Note that any totally regularmixed graphwith undirected degree one
must have even order; this is taken into account in the final column of the table.

If we allow dðkÞ to denote the lower bound on the defect of a ð1; 1; k;�dÞ graph
from Theorem 19 then the following result shows in a more illuminating manner the
rate of growth of dðkÞ.
Theorem 20 For k� 1 we have

dðk þ 6Þ ¼ dðkÞ þ Fk�1 þ Fkþ4;

where F0 ¼ F1 ¼ 1;F2 ¼ 2;F3 ¼ 3;F4 ¼ 5; . . . is the Fibonacci sequence.

Proof Take a Moore tree of a ð1; 1; k;�dÞ-graph and increase its depth by six. Then
each of the pre-existing chains in the Moore tree of depth k are lengthened by three,
so that each such chain contributes one more to the sum in Theorem 19. There are
Fj�2 chains that begin at Level j� 2 in the undirected branch of such a Moore tree,
with one chain beginning at Level 1. Therefore there are

1þ F0 þ F1 þ F2 þ . . .þ Fk�5 þ Fk�4 ¼ Fk�2

chains present in the tree of depth k. Hence the chains in the tree of depth k contribute
dðkÞ þ Fk�2 to the sum in Theorem 19. There are Fk�3 vertices at Level k � 1 and
Fk�2 vertices at Level k that grow into chains with length four in the depth k þ 6 tree,
each of which contribute two to the sum. Finally for i ¼ 1; 2; 3; 4 there are Fkþi�2

vertices at Level k þ i that grow into chains of length not exceeding three, each of
which contributes one to the sum for the depth k þ 6 tree. In total, this gives
dðk þ 6Þ ¼ dðkÞ þ Fk�1 þ Fkþ4. h

7 Directed and Mixed Cages

We summarise here the results of a computer search for the smallest possible
digraphs of given d, k and mixed graphs for certain values of r, z, k. For digraphs
without undirected edges, we adopt the usual notation where the (out)-degree is
denoted by d; such a graph could equally be viewed as a mixed graph with r ¼ 0 and
z ¼ d. Such searches quickly become computationally infeasible as the order of the
graphs grows. In many cases we can obtain a useful upper bound on the order of
cages by restricting the search space to Cayley graphs; thus we present tables of the
smallest Cayley graphs separately from tables of smallest general graphs.

Recall that a Cayley graph CayðG; SÞ of a group G and subset S 	 G has vertex
set the elements of the group G, and a (directed) arc from x to xs for every s 2 S. If
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the set S contains involutions or inverse pairs, then the resulting directed 2-cycles in
the Cayley graph are considered to be undirected edges. Thus a mixed Cayley graph
of order n, undirected degree r and directed degree z is constructed from a group G of
order n, together with a set S such that S contains exactly r elements whose inverse is
also in S, and z elements whose inverse is not. To ensure the resulting Cayley graph is
connected, we insist that hSi ¼ G.

The Cayley graph search was carried out using GAP [23] and proceeded by
examining each possible group in increasing order, starting from the Moore bound
for given r, z, k. The geodecity of such a graph is then the largest value of k for which
all possible words of length � k in the generating set S have different values. (We
consider only reduced words, i.e. words in which a generator is not immediately
followed by its inverse.) It is well known that if / is an automorphism of the group
G, then the Cayley graphs CayðG;SÞ and CayðG;/ðSÞÞ are isomorphic. This
provides a very useful means to cut down the search space for Cayley graphs, since
only orbit representatives of possible generating sets need be considered.

The general graph search was carried out using a bespoke C program, the output
of which was tested against the Cayley graph search to ensure correct functioning.
The program proceeds by starting with a Moore tree for given values of r and z, then
adding vertices and arcs and/or edges to obtain a graph of order n. As each arc/edge
is added, the graph obtained is tested to ensure it still has geodecity at least k; if not,
the search backtracks and tries another arc/edge.

Selected output graphs from the search are illustrated in Sect. 8.

7.1 Digraphs

Table 4 shows the results of the Cayley digraph search. For d ¼ 2 we were able to
complete the search for all groups of order less than 1024, so the results presented are
known to be optimal. For higher degrees the search space becomes increasingly

Table 4 Smallest Cayley
digraphs of given degree d and
geodecity k

d k M n � Group

2 2 7 12 5 Dic12

2 3 15 20 5 AGLð1; 5Þ
2 4 31 54 23 Z9oZ6

2 5 63 136 73 Z17oZ8

2 6 127 330 203 Z3oðZ11oZ10Þ
2 7 255 720 465 PGLð2; 9Þ
3 2 13 20 7 AGLð1; 5Þ
3 3 40 72 32 S3 o S2
3 4 121 320 199 ðððZ2 � Q8ÞoZ2ÞoZ5ÞoZ2

4 2 21 27 6 ðZ3 � Z3ÞoZ3

4 3 85 136 51 Z17oZ8

5 2 31 42 11 AGLð1; 7Þ
6 2 43 56 13 AGLð1; 8Þ
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large, and so for degrees 5 and 6 we were only able to search far enough to determine
the smallest digraphs of geodecity 2.

The general graph search results in Table 5 show a similar pattern, although
because the search space is very much larger than in the Cayley case the range of
values for which we are able to determine the order of cages is quite restricted.

7.2 Mixed Graphs

The Cayley graphs in Table 6 were again found by searching groups of increasing
order until the first Cayley graph with the required geodecity was found. Thus the
entries in this table are all minimal. The search for general graphs is again much more
difficult. We have been able to find bounds for the orders of some cages, but the
search space is so large that only a few provably minimal entries are known.

8 Figures of Some Known Cages

Fig. 12 Two digraphs with d ¼ 2; k ¼ 3; � ¼ 5

Fig. 11 Two digraphs with d ¼ 2, k ¼ 2 and excess � ¼ 2

Table 5 Smallest digraphs of
given degree d and geodecity k
(* = smallest known)

d k M n � Comment

2 2 7 9 2 Figure 11

2 3 15 20 5 Figure 12

2 4 31 54* 23* No graphs of order less than 34

3 2 13 16 3 Figure 13
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Fig. 13 The unique extremal digraph d ¼ 3; k ¼ 2; n ¼ 16

Table 6 Smallest Cayley mixed
graphs of given degree
parameters and geodecity k

r þ z r z k M n � Group

2 1 1 2 6 6 0 S3

3 11 20 9 AGLð1; 5Þ
4 19 32 13 ðZ8oZ2ÞoZ2

5 32 54 22 ðZ9oZ3ÞoZ2

3 2 1 2 11 12 1 D12

3 28 48 20 Z2 � S4

1 2 2 12 12 0 A4

3 34 64 30 ððZ8oZ2ÞoZ2ÞoZ2

4 3 1 2 18 18 0 Z3 � S3

2 2 2 19 24 5 SLð2; 3Þ
1 3 2 20 20 0 AGLð1; 5Þ
4 1 2 27 30 3 Z5 � S3

3 2 2 28 42 14 Z7 � S3

2 3 2 29 39 10 Z13 � Z3

1 4 2 30 42 12 AGLð1; 7Þ
6 5 1 2 38 48 10 D48

4 2 2 39 48 9 D8 � S3

3 3 2 40 52 12 Z13oZ4

2 4 2 41 54 13 ðZ3 � Z3ÞoZ6

1 5 2 42 42 0 AGLð1; 7Þ
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Fig. 15 A mixed graph with
r ¼ 1; z ¼ 1; k ¼ 4; � ¼ 11

Table 7 Smallest mixed graphs of given degree parameters and geodecity k (* = smallest known)

r þ z r z k M n � Comment

2 1 1 2 6 6 0 Kautz graph

3 11 16 5 Figure 14

4 19 30 11 Figure 15

5 32 54* 22* No graphs of order less than
50

3 2 1 2 11 12 1 Cayley graph of D12

2 1 3 28 48* 20* No graphs of order less than
32

1 2 2 12 12 0 Kautz graph

4 3 1 2 18 18 0 Bosák graph

2 2 2 19 21 2 Figure 16

1 3 2 20 0 Kautz graph

Fig. 14 Two mixed graphs with r ¼ 1; z ¼ 1; k ¼ 3; � ¼ 5
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