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Abstract
A graph G is said to be k-vertex rigid in Rd if G� X is rigid in Rd for all subsets X
of the vertex set of G with cardinality less than k. We determine the smallest number

of edges in a k-vertex rigid graph on n vertices in R2, for all k� 4. We also consider

k-edge-rigid graphs, defined by removing edges, as well as k-vertex globally rigid

and k-edge globally rigid graphs in Rd. For d ¼ 2 we determine the corresponding

tight bounds for each of these versions, for all k� 3. Our results complete the

solutions of these extremal problems in the plane. The result on k-vertex rigidity

verifies a conjecture of Kaszanitzky and Király (Graphs Combin, 32:225–240,

2016). We also determine the degree of vertex redundancy of powers of cycles, with

respect to rigidity in the plane, answering a question of Yu and Anderson (Int J

Robust Nonlinear Control, 19(13):1427–1446, 2009).

Keywords Rigid graph � Redundantly rigid graph � Global rigidity � Rigid
framework

1 Introduction

A d-dimensional framework (or geometric graph) is a pair (G, p), where G is a

simple graph and p : VðGÞ ! Rd is a map. We also call (G, p) a realization of G in

Rd. The length of an edge uv in the framework is defined to be the distance between

the points p(u) and p(v). The framework is said to be rigid in Rd if every continuous

motion of its vertices in Rd that preserves all edge lengths preserves all pairwise

distances. It is globally rigid in Rd if the edge lengths uniquely determine all
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pairwise distances. A relization (G, p) is generic if the set of the d|V(G)| coordinates
of the vertices is algebraically independent over the rationals. It is known that for

generic frameworks rigidity and global rigidity in Rd depends only on the graph of

the framework, for every d� 1. So we may call a graph G rigid (resp. globally rigid)

in Rd if every (or equivalently, if some) d-dimensional realization of G is rigid

(resp. globally rigid). We refer the reader to [6, 8, 12] for more details on the theory

of rigid and globally rigid frameworks and graphs.

Rigid and globally rigid graphs occur in several applications, including sensor

network localization [5], molecular conformation [3], formation control [16], and

statics [10]. In some applications it is desirable to have a graph which remains rigid

or globally rigid even if some vertices or edges are removed. This motivates the next

definitions.

We say that a graph G ¼ ðV;EÞ is k-vertex rigid (resp. k-vertex globally rigid) in

Rd if G� X is rigid (resp. globally rigid) for all X � V with jXj � k � 1. A graph

G ¼ ðV;EÞ on n vertices is said to be strongly minimally k-vertex rigid (resp.

strongly minimally k-vertex globally rigid) in Rd if it is k-vertex rigid (resp. k-vertex
globally rigid) and no graph on n vertices with less than |E| edges satisfies this

property. We can define (strongly minimal) k-edge-rigidity and k-edge-global
rigidity in a similar way, by the deletion of edge sets, rather than vertex sets. It will

be convenient to use the following graph parameters. For a graph G we use Rd
vðGÞ to

denote the largest integer ‘ for which G is ‘-vertex rigid in Rd. The other

parameters, corresponding to the other three versions, are denoted by Rd
gvðGÞ,

Rd
eðGÞ, and Rd

geðGÞ, respectively.
In this paper our goal is to obtain tight bounds for the number of edges of a

strongly minimally k-vertex rigid (k-vertex globally rigid, k-edge rigid, k-edge

globally rigid, resp.) graph on n vertices in R2. To be more precise, we look for a

lower bound on the size of such a graph in terms of n and k, and an infinite family of

graphs, with the required property, for which this bound is attained. In some special

cases the tight bounds have already been determined for these extremal problems in

the plane. The smallest size of a 1-vertex rigid (2-vertex rigid, 3-vertex rigid, resp.)

graph on n vertices is equal to 2n� 3 (2n� 1, 2nþ 2, resp.). Here the first bound is

well-known, the other two are from [13, 16]. The smallest size of a 1-vertex globally

rigid (2-vertex globally rigid, 3-vertex globally rigid, resp.) graph on n vertices is

equal to 2n� 2 (2n, 5n
2
, resp.). Again, the first bound is easy, the other two can be

found in [11, 16]. These results are valid for n large enough (compared to k). The
edge versions and the problems for higher values of k remained open. For the status

of the higher dimensional (d� 3) problems see Section 6.

It is worth noting that the case d ¼ 1 is, in a sense, exceptional, and has an easy

solution. It is well-known that a graph G is rigid (resp. globally rigid) in R1 if and

only if G is connected (resp. 2-vertex connected). This implies that a k-vertex
connected graph is k-vertex (edge) rigid as well as ðk � 1Þ-vertex (edge) globally

rigid in R1, for every k� 1. Observe that the minimum degree of a graph satisfying

one of these properties is at least k. Hence a k-regular k-vertex connected graph is

strongly minimal with respect to each of these four properties. Since infinite families
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of k-regular k-vertex connected graphs exist for all k� 2, the tight bound kn
2
follows.

The strongly minimally 1-vertex (edge) rigid graphs are the trees. Verifying k-vertex
connectivity is also an easy task: it can be done locally, by showing k internally disjoint
paths (rigid subgraphs) containing u and v, for all pairs of vertices u, v.

This approach fails for d� 2. A typical proof method for determining the

extremal value for, say, k-vertex rigidity in Rd consists of the following steps: (i)

give a lower bound for the number of edges in a graph satisfying the property, (ii)

construct an infinite family of graphs attaining this bound, (iii) show that each

member in this family is indeed k-vertex rigid in Rd . The last step is usually a rather

lengthy case analysis: for each graph in the family and for every vertex set X of size

(at most) k � 1 one has to show that G� X is rigid. The standard way to verify that

G� X is rigid is by showing that it can be obtained from a small complete graph by

a sequence of operations (called Henneberg operations or extensions) that add one

vertex at a time and preserve rigidity. Even though the extremal graphs tend to be

symmetric, the number of cases to deal with and the number of operations used

grow quickly as one increases k and the size of the graph, which makes this method

inconvenient or even infeasible. We shall use a different approach, based on a key

lemma on chains and merging rigid subgraphs.

The structure of the paper is as follows. In the next section we prove several

preliminary results, including ones that establish connections between the four

different parameters we are dealing with. In Sect. 3 we consider powers of cycles,

which play a fundamental role in our constructions. The results of these sections are

valid in Rd for all d. Then we focus on the two-dimensional case and analyse the

extremal graphs in Sect. 4 for all k� 4. The tight bounds for k-vertex rigidity as well
as for the other three versions are deduced in Sect. 5. The extremal values are

summarized in Table 1. Section 6 contains a few concluding remarks on higher

dimensional extensions.

2 Preliminary Results

The next lemma shows that in the definition of k-vertex (global) rigidity it suffices

to consider the removal of vertex sets of cardinality exactly k � 1. This useful

observation was made and used earlier for k-vertex rigidity [9, 16]. For

Table 1 The extremal values in R2 for the four versions and for all k� 1

Redundancy 1 2 3 4 5 � � � k

Vertex rigidity 2n� 3 2n� 1 2nþ 2 d5n2 e 3n � � � dðkþ1Þn
2 e

Edge rigidity 2n� 3 2n� 2 2n d5n2 e 3n � � � dðkþ1Þn
2 e

Vertex global rigidity 2n� 2 2n d5n
2
e 3n d7n2 e � � � dðkþ2Þn

2 e
Edge global rigidity 2n� 2 2n d5n2 e 3n d7n2 e � � � dðkþ2Þn

2 e

The values obtained in this paper are in boldface. Each entry in the table is valid for n large enough,

compared to a linear function of k
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completeness we give a proof for both versions, and for all dimensions d� 1. Note

that the corresponding observation for k-edge (global) rigidity is straightforward,

since edge addition preserves rigidity as well as global rigidity.

Lemma 1 Let G ¼ ðV ;EÞ be a graph on n� k þ 1 vertices. Then

(i) G is k-vertex rigid in Rd if and only if G� X is rigid in Rd for all X � V
with jXj ¼ k � 1, and

(ii) G is k-vertex globally rigid in Rd if and only if G� X is globally rigid in Rd

for all X � V with jXj ¼ k � 1.

Proof Necessity is clear from the definition in both cases. In order to prove

sufficiency in (i) suppose, for a contradiction, that G� X0 is not rigid for some

X0 � V with jX0j � k � 2. This implies that for any fixed generic d-dimensional

realization ðG� X0; pÞ there is a flex (a continuous deformation that preserves edge

lengths) which changes the distance between two vertices u; v 2 V . Since n� k þ 1,

there is a set X with jXj ¼ k � 1 and X0 � X � V � fu; vg. Then the restriction of

the same flex to V � X shows that G� X is not rigid, a contradiction. h

The proof in case (ii) is similar. Suppose that G� X0 is not globally rigid for

some X0 � V with jX0j � k � 2. Then for any fixed generic d-dimensional realization

ðG� X0; pÞ there exists an equivalent but non-congruent realization ðG� X0; qÞ.
This means that there is a pair u; v 2 V for which the distance between u and v in

ðG� X0; pÞ is different from that in ðG� X0; qÞ. Since n� k þ 1, there is a set X
with jXj ¼ k � 1 and X0 � X � V � fu; vg. Then the restrictions of these realiza-

tions to V � X show that G� X is not globally rigid, a contradiction. h

It is easy to see that a graph G on at most d þ 1 (resp. d þ 2) vertices is rigid

(resp. globally rigid) in Rd if and only if it is complete. A similar observation yields

that a rigid (resp. globally rigid) graph G in Rd on at least d þ 1 (resp. d þ 2)

vertices has minimum degree at least d (resp. d þ 1). Hence we have the following

lower bounds on the minimum degree.

Lemma 2 If G is a k-vertex rigid (k-vertex globally rigid, resp.) graph on at least
d þ k (d þ k þ 1, resp.) vertices, then the minimum degree of G is at least d þ k � 1

(d þ k, resp.). If G is a k-edge rigid (k-edge globally rigid, resp.) graph on at least
d þ k (d þ k þ 1, resp.) vertices, then the minimum degree of G is at least d þ k � 1

(d þ k, resp.).

Lemma 2 implies, among others, that a ðd þ k � 1Þ-regular k-vertex rigid graph

in Rd is strongly minimally k-vertex rigid. We shall use this observation later.

In the rest of this section we focus on the connections between the four redundancy

parameters. The one-dimensional case of the next lemma is easy to deduce from the

characterization of rigid and globally rigid graphs in R1 mentioned earlier. The two-

dimensional case was proved in [16], using the characterization of globally rigid

graphs in R2 from [4]. Here we point out that the inequality holds for all d� 1.

Lemma 3 Let G ¼ ðV;EÞ be a k-vertex rigid graph in Rd for some k� 2. Then G is
ðk � 1Þ-vertex globally rigid. Hence for all d� 1 we have
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Rd
gvðGÞ�Rd

vðGÞ � 1: ð1Þ

Proof By Lemma 1 it suffices to show that G� X is globally rigid for all X � V
with jXj ¼ k � 2. Since G is k-vertex rigid, G� X is 2-vertex rigid. Tanigawa [15]

proved that every 2-vertex rigid graph in Rd is globally rigid in Rd . Thus G� X is

globally rigid in Rd, as required. h

Yu and Anderson [16] showed—in the special case d ¼ 2— that every non-

complete k-vertex rigid graph is k-edge rigid. It is easy to extend their proof to

higher dimensions. Here we give a (similar) proof for the globally rigid version. It

will be convenient to assume that the number of vertices is not too small (rather than

assuming the graph is non-complete).

Theorem 1 Let G be a k-vertex rigid (resp. k-vertex globally rigid) graph in Rd on
at least d þ k (resp. d þ k þ 1) vertices. Then G is k-edge rigid (resp. k-edge

globally rigid) in Rd.

Proof Since the proofs are similar, we only prove the globally rigid version. The

proof is by induction on k. For k ¼ 1 the statement is obvious. Suppose that k ¼ 2.

Let e ¼ uv be an edge of G. The graph G� u is globally rigid. Since G has at least

d þ k þ 1 vertices, Lemma 2 implies that the degree of u in G is at least d þ k. It
follows that G� e can be obtained from G� u by adding a new vertex u and at least
d þ k � 1 ¼ d þ 1 edges incident with u. This operation preserves global rigidity.

Therefore G� e is globally rigid. Since the choice of e was arbitrary, it follows that

Rd
geðGÞ� 2, as required.

Now consider the general case. Suppose that k� 3 and that the statement of the

theorem holds up to k � 1. It suffices to show that Rd
gvðG� eÞ� k � 1 for every

edge e of G. To see this fix an edge e and let S be a vertex-set of size k � 2 in G� e.
If e is incident with a vertex of S, then G� e� S ¼ G� S, and hence G� e� S

is globally rigid by our assumption on G. If e is disjoint from S, then consider G� S.
Since G is k-vertex globally rigid, G� S is 2-vertex globally rigid. Thus G� S is 2-

edge globally rigid (by the case k ¼ 2), and hence G� e� S is globally rigid.

Hence for every edge e the graph G� e is indeed ðk � 1Þ-vertex globally rigid,

which implies, by induction, that G� e is also ðk � 1Þ-edge globally rigid. Now

Rd
geðGÞ� k follows, and the proof is complete. h

Yet another useful inequality involving the parameters is as follows.

Lemma 4 Let G ¼ ðV;EÞ be a globally rigid graph in Rd on n� d þ 2 vertices.
Then

Rd
eðGÞ�Rd

geðGÞ þ 1: ð2Þ
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Proof Let Rd
geðGÞ ¼ k� 1 and let ; 6¼ F � E with jFj � k. Choose an edge f 2 F

and let F0 ¼ F � ffg. Since jF0j ¼ k � 1, G� F0 is globally rigid. By a theorem due

to Hendrickson [2] every globally rigid graph on at least d þ 2 vertices in Rd is 2-

edge rigid in Rd. This implies that G� F ¼ G� F0 � ffg is rigid. Hence

Rd
eðGÞ� k þ 1, as claimed. h

2.1 Operations

In our proofs we shall frequently use the following graph operations. The (d-
dimensional) 0-extension operation adds a new vertex v to the graph as well as d
new edges incident with v. The 1-extension operation removes an edge vivj and adds

a new vertex v as well as a set of d þ 1 new edges which includes vvi and vvj. It is

well-known that both of these operations preserve rigidity in Rd, and the d-

dimensional 1-extension operation preserves global rigidity in Rd, see e.g. [8, 12].

3 Powers of Cycles

Let Cn be a cycle on n vertices, with vertex set V ¼ fv1; v2; . . .; vng, where the

indices follow the cyclic ordering. The k-th power of Cn, denoted by Ck
n, is obtained

from Cn by adding all edges vivj for which the distance from vi to vj in Cn is at most

k.
Consider a cycle Cn ¼ ðV ;EÞ with jV j ¼ n and fix a set S � V of its vertices. To

simplify notation let C ¼ Cn and H ¼ Ck
n. We call a set I � V of consecutive

vertices on C an interval. A chain J � V is the union of consecutive intervals in

C � S. That is, J ¼ I � S for some interval I.
Let G ¼ ðV ;EÞ be a graph. For a set X � V the subgraph of G induced by X is

denoted by G[X].

Lemma 5 Suppose that k� d. Then for every interval I the graph H[I] is rigid in

Rd.

Proof Intervals on at most d vertices induce complete (and hence rigid) subgraphs

in H. Since k� d, it is easy to see that for an interval I with jIj � d þ 1 the subgraph

H[I] contains a spanning subgraph which can be obtained from a complete subgraph

on d vertices by a sequence of d-dimensional 0-extensions. Hence H[I] is rigid.h

Suppose that n� k þ 1. Let J be a chain in C � S. If V and S are clear from the

context, we shall use the notation �J ¼ V � S� J. Suppose that �J 6¼ ;. A neighbour

of J is a vertex v 2 �J which comes right after (or before) J in C � S with respect to

the cyclic ordering of C. Equivalently, a vertex v is a neighbour of J if J [ fvg is a

chain in C � S. Thus a chain has at most two distinct neighbours. Let v1; v2 be the

(not necessarily distinct) neighbours of J. The set of k vertices that preced vi on C
(in the direction of J) is called an end of J and is denoted by Ki, i ¼ 1; 2. Thus J has
two ends. We define two ends in a natural way, even if v1 ¼ v2. See Fig. 1.
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We are ready to prove a key lemma which will be used several times. In order to

be able to use it in a more general setting, we formulate it for supergraphs of H.

Lemma 6 Suppose that k� d. Let H be a graph obtained from Ck
n by adding a

(possibly empty) set of edges. Let J be a chain in C � S which contains an interval I
of size at least d, for which H[J] is rigid, and which is maximal with respect to these

properties. Suppose that �J 6¼ ; and let K1;K2 be the ends of J. Then

(i) jS \ Kij � k � d þ 1, for i ¼ 1; 2, and
(ii) K1 \ K2 \ S ¼ ;.

Proof First observe that Ki � J [ S for i ¼ 1; 2, that is, the ends are disjoint from

the neighbours of J. This follows from the maximality of J and the fact that H½Ki �
S� is a complete, and hence rigid subgraph of H � S. h

Suppose that jS \ Kij � k � d for some i 2 f1; 2g. Then the end Ki contains at

least d vertices from J, which are all connected to the neighbour vi of J in H � S.
Thus vi could be added to J by a 0-extension, preserving rigidity. It contradicts the

maximality of J. This proves (i). To see the second claim suppose that K1 and K2

intersect. Then J is a subset of K1 [ K2. If there is a vertex of S in K1 \ K2 then

I � Ki for some i 2 f1; 2g. Since jIj � d, it would contradict (i). h

Next we show a lower bound on Rd
vðCk

nÞ for all d, k (for k� d and sufficiently

large n), which is tight for d ¼ 2. It is easy to observe, by counting the number of

edges, that if k� d � 1 and n� dþ1
2

� �
þ 1 then Ck

n is not rigid. Hence we may indeed

assume that k� d. The proof of the next lemma illustrates the proof method we shall

use later in our main result.

Theorem 2 Let k� d and n� dð2k � 2d þ 1Þ þ 1. Then

Rd
vðCk

nÞ� 2k � 2d þ 2:

Fig. 1 A chain J in C � S, its
neighbours v1; v2, and its ends
K1;K2. The vertices of the cycle
C are cyclically ordered. The
edges are not visible. The
vertices of S are black. In this
example jSj ¼ 5 and k ¼ 3
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Proof Let H ¼ Ck
n. By Lemma 1 it suffices to show that H � S is rigid for all S � V

with jSj ¼ 2k � 2d þ 1. Since n� dð2k � 2d þ 1Þ þ 1 ¼ djSj þ 1, there is an

interval I in C � S of size at least d, by the pigeon-hole principle. Let J be a

maximal chain in C � S for which I � J and H[J] is rigid. Since k� d, H[I] is rigid

by Lemma 5. Thus J indeed exists. If �J ¼ ; then V � S ¼ J and H � S ¼ H½J�. Thus
H � S is rigid, as required. Otherwise, when �J 6¼ ;, consider the ends K1;K2 of J.
We can use Lemma 6 to deduce that

jSj � jS \ K1j þ jS \ K2j � 2k � 2d þ 2;

a contradiction. This completes the proof. h

Yu and Anderson [16, Theorem 4] considered the two-dimensional special case

and proved that k�R2
vðCk

nÞ� 2k � 2, provided k� 2 and n� 2k þ 2. They left the

problem of determining the exact degree of vertex-redundancy of Ck
n open. The

answer follows by putting d ¼ 2 in Theorem 2.

Corollary 1 Let k� 2 and n� maxf2k þ 2; 4k � 5g. Then R2
vðCk

nÞ ¼ 2k � 2.

Note that a set S � V of size 2k � 2 for which Ck
n � S is not rigid in R2 can be

obtained by choosing S ¼ fv1; v2. . .vk�1; vkþ2; vkþ3; . . .v2kg.

4 Strongly Minimal k-Vertex Rigid Graphs in R2

In this section we assume that d ¼ 2. We define two families of graphs which are

obtained from the k’th power of a cycle by adding one (resp. two) longest diagonals

incident with each vertex and show that they are strongly minimally 2k-vertex rigid

(ð2k þ 1Þ-vertex rigid, resp.) in R2.

4.1 The Case of Even Vertex-Redundancy

Consider a cycle Cn. For simplicity suppose that n is even. Then for each vertex vi
there is a unique vertex vj for which the distance from vi to vj in Cn is equal to

n
2
. The

edge vivj is called a longest diagonal of Cn.

Let Dn be the set of longest diagonals of Cn and let Lkn ¼ Ck
n þ Dn. Note that if

n� 2k þ 2 then Lkn is complete. If n� 2k þ 4 then Lkn is a non-complete ð2k þ 1Þ-
regular graph in which the edges of Dn are disjoint from the edges of Ck

n. See Fig. 2

for an example.

We shall use the following lemma, which is easy to verify.

Lemma 7 Let G1;G2 be two disjoint rigid graphs and let F ¼ fe; f ; gg be a set of
three edges from G1 to G2 such that e and f are disjoint. Then G1 [ G2 [ F is rigid.

The next theorem shows that the addition of the n
2
longest diagonals to Ck

n

increases its vertex redundancy by two.

Theorem 3 Suppose that k� 2 and n� 4k þ 5 is even. Then
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R2
v Lkn
� �

¼ 2k:

Proof Let L ¼ Lkn and let C ¼ Cn, H ¼ Ck
n, and D ¼ Dn denote the corresponding

graphs on vertex set V with jV j ¼ n. Since L is ð2k þ 1Þ-regular, it can be made non-

rigid by removing 2k vertices. This gives R2
vðLÞ� 2k.

To prove that equality holds it suffices to show, by Lemma 1, that L� S is rigid

for every S � V with jSj ¼ 2k � 1. Fix such an S for the rest of the proof. Since

n� 4k þ 5� 2ð2k � 1Þ þ 1, there is an interval in C � S of size at least 2, by the

pigeon-hole principle. Let J be a maximum length (and hence also maximal) chain

in C � S which contains an interval of size at least 2, and for which L[J] is rigid.

Recall that �J ¼ V � S� J. If �J ¼ ;, then V � S ¼ J and L� S ¼ L½J�. Thus L� S
is rigid, as required.

Thus we may suppose that �J 6¼ ;. Let v1; v2 be the neighbours of J in C � S and

let K1;K2 be the ends of J. First we show that v1 6¼ v2. Indeed, if v1 ¼ v2 then there

is only one vertex in �J. Since it has degree 2k þ 1 in L and jSj ¼ 2k � 1, it has at

least two neighbours in J. Thus L½J [ fv1g� ¼ L� S is rigid, as required.

Let J	 be the maximal interval of C which contains J and which is disjoint from

the neighbours of J. Lemma 6, applied to L, implies that K1 \ K2 \ S ¼ ; and

2k � 1 ¼ jSj � jS \ K1j þ jS \ K2j � 2k � 2: ð3Þ

Thus S has at most one vertex in V � ðK1 [ K2Þ. In particular, there is at most one

vertex of S in V � J	. First we deal with the case when there is no vertex of S in

V � J	.
Case 1. S \ ðV � J	Þ ¼ ;.
In this case �J is an interval of size at least two (since v1 6¼ v2). By Lemma 5 H½ �J�,

and hence also L½ �J� is rigid. Thus the choice of J implies that jJj � j �Jj.
We claim that each of the longest diagonals incident with �J connects �J to a vertex

in J	 � ðK1 [ K2Þ. To see this suppose, for a contradiction, that there is a longest

diagonal from a vertex of �J to, say, �J [ K2. Then j �Jj � n
2
� ðk � 1Þ. This in turn

Fig. 2 The graphs L310 and �L211
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gives jJj ¼ n� j �Jj � ð2k � 1Þ� n
2
� k, which contradicts the maximality of J.

Now focus on the two neighbours v1; v2. If the longest diagonal incident with v1
has the other end-vertex in J and v1 has a neighbour in J \ K1, too, then v1 can be

added to J, preserving rigidity. It would contradict the maximality of J. Otherwise
either the longest diagonal ends in a vertex of S or jS \ K1j ¼ k (and hence

S � K1 [ K2). In both cases v2 satisfies that the longest diagonal incident with v2 has
the other end-vertex in J and v2 has a neighbour in J \ K2. Thus v2 can be added to

J, preserving rigidity, a contradiction.

Case 2. There exists a vertex w 2 ðS \ ðV � J	ÞÞ.
In this case �J is a chain, which is the union of two disjoint intervals I1; I2, with

vi 2 Ii, i ¼ 1; 2. We can use Lemma 6 and the fact that jSj ¼ 2k � 1 to deduce that

jS \ Kij ¼ k � 1, that is, vi is connected to exactly one vertex of J \ Ki, for i ¼ 1; 2.
Suppose that k� 3. Then we can use an argument similar to that of the proof of

Lemma 5 to show that H½I1 [ I2� is rigid. We claim that each of the longest diag-

onals incident with ðI1 [ I2Þ � fv1; v2g has the other end-vertex in J	 � ðK1 [ K2Þ.
To see this suppose, for a contradiction, that there is a longest diagonal from, say, v01
to a vertex of �J [ fwg [ K2, where v01 is the vertex of I1 next to v1 on C. Then

j �Jj � n
2
� ðk � 1Þ. This in turn gives jJj ¼ n� j �Jj � ð2k � 1Þ� n

2
� k, which con-

tradicts the maximality of J.

Therefore if j �Jj � 3 then there is at least one longest diagonal connecting �J to J.
Together with the edges from vi to Ki, i ¼ 1; 2 they form a set of three disjoint edges

from J to �J. Thus L� S ¼ L½J [ �J� is rigid by Lemma 7, as required. If jI1j ¼
jI2j ¼ 1 then, since n� 4k þ 5� 2k þ 6, each of the longest diagonals incident with

v1 or v2 has the other end in J. In this case v1 and v2 can be added to L[J] by two 0-

extensions. This shows that L� S is rigid.

So we may assume that k ¼ 2. In this case we have jSj ¼ 3. First suppose

jI1j ¼ jI2j ¼ 1. Then, since n� 10, the longest diagonals from v1 and v2 both go to J.
We can use these diagonals and the edges from vi to J \ Ki, i ¼ 1; 2 to add v1 and v2
to J by 0-extensions and to show that L� S is rigid.

Next suppose that, say, jI1j � 2. Let x and y be the vertices in I1 closest to w, that
is, x is next to w and y is next to x in the cyclic ordering of C. Focus on the longest

diagonals incident with x and y. The maximality of J implies that the other end-

vertices of these diagonals cannot be in I1 [ K1 (since otherwise jI1j � n
2
� 1 and

jJj � n
2
� 3 would follow). Thus either they both end in J or at least one of them

ends in I2 [ K2. In the former case L½J [ I1� is rigid, contradicting the maximality of

J (rigidity follows from Lemma 7, applied to J, I1, the longest diagonals incident

with x, y, and the edge from v1 to J \ K1). In the latter case we must have

jI2j � n
2
� 3. In this case we apply the same argument to I2. Since we cannot

simultaneously have jI2j � n
2
� 3 and jI1j � n

2
� 3 (for otherwise jJj � 3 follows,

contradicting the maximality of J, since C � S has an interval of size at least 4,

when n� 13 and jSj ¼ 3), we obtain that L½J [ I2� is rigid, contradicting the max-

imality of J. This completes the proof. h

We can extend the definition of Lkn to the case when n is odd by adding n�1
2

disjoint longest diagonals plus one more, to make it almost regular. (Note that the
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definition of longest diagonals is slightly different when n is odd, see the next

paragraph.) A similar proof shows that these odd examples are also 2k-vertex rigid,

for n sufficiently large.

4.2 The Case of Odd Vertex-Redundancy

Consider a cycle Cn. For simplicity suppose that n is odd. Then for each vertex vi
there are two vertices vj; v

0
j for which the distance from vi to vj and v0j in Cn is equal

to n�1
2
. The edges vivj; viv

0
j are called longest diagonals of Cn.

Let �Dn be the set of longest diagonals of Cn and let �L
k
n ¼ Ck

n þ �Dn. Note that if

n� 2k þ 3 then �Lkn is complete. If n� 2k þ 5 then �L
k
n is a non-complete ð2k þ 2Þ-

regular graph in which the edges of �Dn are disjoint from the edges of Ck
n. See Fig. 2

for an example.

The next theorem shows that the addition of the n longest diagonals to Ck
n

increases its vertex redundancy by three. The proof is similar to that of the even

case, except for one new subcase (Case 3. below).

Theorem 4 Suppose that k� 2 and n� 6k þ 23 is odd. Then

Rd
v

�L
k
n

� �
¼ 2k þ 1:

Proof Let �L ¼ �L
k
n and let C ¼ Cn, H ¼ Ck

n, and
�D ¼ �Dn denote the corresponding

graphs on vertex set V with jV j ¼ n. Since �L is ð2k þ 2Þ-regular, it can be made non-

rigid by removing 2k þ 1 vertices. This gives R2
vð �LÞ� 2k þ 1. h

To prove that equality holds it suffices to show, by Lemma 1, that L� S is rigid

for every S � V with jSj ¼ 2k. Fix such an S for the rest of the proof. Since

n� 6k þ 23� 2ð2kÞ þ 1, there is an interval in C � S of size at least 2, by the

pigeon-hole principle. Let J be a maximum length (and hence also maximal) chain

in C � S which contains an interval of size at least 2, and for which �L½J� is rigid.
Recall that �J ¼ V � S� J. If �J ¼ ;, then V � S ¼ J and �L� S ¼ �L½J�. Thus �L� S
is rigid, as required.

Thus we may suppose that �J 6¼ ;. Let v1; v2 be the neighbours of J in C � S and

let K1;K2 be the ends of J. First we show that v1 6¼ v2. Indeed, if v1 ¼ v2 then there

is only one vertex in �J. Since it has degree 2k þ 2 in �L and jSj ¼ 2k, it has at least

two neighbours in J. Thus �L½J [ fv1g� ¼ �L� S is rigid, as required.

Let J	 be the maximal interval of C which contains J and which is disjoint from

the neighbours of J. Lemma 6, applied to �L, implies that K1 \ K2 \ S ¼ ; and

2k ¼ jSj � jS \ K1j þ jS \ K2j � 2k � 2: ð4Þ

Thus S has at most two vertices in V � ðK1 [ K2Þ. In particular, there are at most

two vertices of S in V � J	. First we deal with the case when there is no vertex of S
in V � J	.

Case 1. S \ ðV � J	Þ ¼ ;.
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In this case �J is an interval of size at least two (since v1 6¼ v2). By Lemma 5 H½ �J�,
and hence also L½ �J� is rigid. Thus the choice of J implies that jJj � j �Jj.

We claim that each of the longest diagonals incident with �J connects �J to a vertex
in J	 � ðK1 [ K2Þ. To see this suppose, for a contradiction, that there is a longest

diagonal from a vertex of �J to, say, �J [ K2. Then j �Jj � n�1
2

� ðk � 1Þ. This in turn

gives jJj ¼ n� j �Jj � 2k� nþ1
2

� k � 1, which contradicts the maximality of J.

Now focus on the two neighbours v1; v2. The other end-vertices of the two

longest diagonals incident with v1 may belong to J and v1 may also have a

neighbour in J \ K1. If two out of these three potential neighbours in J exist then v1
can be added to J by a 0-extension, preserving rigidity. This would contradict the

maximality of J. On the other hand, if two out of these three vertices belong to S,
then v2 must have at least two edges to J, a contradiction.

Case 2. There exists a unique vertex w 2 ðS \ ðV � J	ÞÞ.
In this case �J is a chain, which is the union of two disjoint intervals I1; I2, with

vi 2 Ii, i ¼ 1; 2. We can use Lemma 6 and the fact that jSj ¼ 2k to deduce that for at
least one of the two neighbours vi of J, i 2 f1; 2g, vi is connected to a vertex of

J \ Ki.

Suppose that k� 3. Then we can use an argument similar to that of the proof of

Lemma 5 to show that H½I1 [ I2� is rigid. We claim that at least one of the two

longest diagonals incident with v1 has the other end-vertex in J	 � ðK1 [ K2Þ. To
see this suppose, for a contradiction, that both longest diagonals connect v1 to a

vertex of �J [ fwg [ K2. Then j �Jj � nþ1
2

� k. This in turn gives

jJj ¼ n� j �Jj � 2k� n�1
2

� k, contradicting the maximality of J. A similar argument

works for v2.

Therefore there exist three edges from �J to J such that two of them are disjoint:

two longest diagonals incident with v1 and v2, respectively, and an edge from vi to

J \ Ki, for some i 2 f1; 2g. Thus �L� S ¼ �L½J [ �J� is rigid by Lemma 7, as required.

Thus we may assume that k ¼ 2. Then jSj ¼ 4. First suppose jI1j ¼ jI2j ¼ 1.

Then, since n� 10, all the longest diagonals incident with v1 and v2 have the other

end-vertices in J	 � ðK1 [ K2Þ. We can use these diagonals and an edge from a

neighbour vi to J \ Ki, i 2 f1; 2g to add v1 and v2 to J by two 0-extension opera-

tions. Therefore �L� S is rigid, as required.

Next suppose that, say, jI1j � 2. Let x, y be the vertices in I1 closest to w on C.
The maximality of J implies that either each of the longest diagonals from x, y go to

J	 � ðK1 [ K2Þ, or jI2j � n�1
2

� 3. Note that there is at most one vertex of S in

J	 � ðK1 [ K2Þ. Thus in the former case �L½J [ I1� is rigid, contradicting the maxi-

mality of J (rigidity follows from Lemma 7, using the longest diagonals incident

with x, y and, if one of them leads to vertex of S, the edge from v1 to J \ K1). In the

latter case we apply the same argument to I2: then either we obtain a similar

contradiction, or it follows that jI1j � n�1
2

� 3. But then we can use these bounds and

n� 15 to deduce that jJj � 3 and jI1j � 4, a contradiction.

Case 3. There exist two vertices w; z 2 ðS \ ðV � J	ÞÞ.
In this case �J consist of three intervals I1; I2; I

	, where vi 2 Ii, i ¼ 1; 2, and I	

may be empty (when w and z are consecutive vertices on C). By Lemma 6 we have
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jS \ Kij ¼ k � 1 for i ¼ 1; 2. Hence there is an edge from vi to J \ Ki for i ¼ 1; 2.

If jJj � n�1
2

� k þ 1 then at least one of the longest diagonals incident with v1
ends in J. With this diagonal and the edge from v1 to J \ K1 we could add v1 to J by
a 0-extension, contradicting the maximality of J. Thus we may assume that

jJj � n� 1

2
� k: ð5Þ

First suppose k� 3. If jI	j � 2 then we can show, as in the previous proofs, that

H½I1 [ I	 [ I2� is rigid. Thus, by the maximality of J, we have jJj � j �Jj. Hence
jJj � n�2k

2
� 2k� 6. The upper bound in (5) implies that every longest diagonal

incident with J has the other end-vertex in V � J	. Since jS \ ðV � J	Þj ¼ 2, all but

four diagonals incident with V � J	 are incident with �J ¼ I1 [ I	 [ I2. By using

jJj � 6 we can now deduce that there is at least one longest diagonal that connects J

and �J. This longest diagonal, together with the edges from vi to J \ Ki, i ¼ 1; 2,

verifies that �L� S is rigid, by Lemma 7. If jI	j � 1 then we proceed as follows. We

consider the vertex x 2 I1 next to w. If both longest diagonals incident with x go to J

then we have that �L½J [ I1� is rigid, by using Lemma 7 (when jI1j � 2) or simply a 0-

extension (when jI1j ¼ 1), which contradicts the maximality of J. So we may

suppose that there is a longest diagonal xa with a 62 J. If a 2 I1 [ K1 then

jI1j � n�1
2

� ðk � 1Þ follows, which contradicts the maximality of J by (5). Thus we

must have a 2 I2 [ K2, and hence jI2j � n�1
2

� k � 3 follows. By applying the same

argument to I2 and the vertex of I2 next to w we can also deduce that

jI1j � n�1
2

� k � 3. This gives jJj � n� jI1j � jI2j � 2k� 7. Moreover, since

n� 6nþ 12, we have jI1j þ jI2j � 4k þ 4. Hence jIij � 8 for some i 2 f1; 2g, con-
tradicting the maximality of J.

Finally consider the case when k ¼ 2. If a longest diagonal incident with J ends

in J	 then jJj � n�1
2

� 1 follows, contradicting (5). So all longest diagonals leaving J

end in V � J	. If at least two of these diagonals go to Ii for some i 2 f1; 2g, then
�L½J [ Ii� is rigid by Lemma 7, a contradiction. Thus we may assume that we have at

most one longest diagonal from J to Ii, for i ¼ 1; 2. Since the pair fw; zg is incident

with four longest diagonals, it follows that all but six longest diagonals incident with

J end in I	. Since n� 24, we have jJj � 5, and hence at least 10 longest diagonals

leave J. We can now deduce that at least four of them end in I	, implying that
�L½J [ I	� is rigid by Lemma 7. Note that two edges of H connect Ii to J [ I	, for
i ¼ 1; 2. Thus if one of I1 or I2 is a singleton then it can be added to J [ I	 by a 0-

extension, contradicting the maximality of J. Therefore we may assume that

jI1j; jI2j � 2 hold. We may also assume that no longest diagonal connects J [ I	 to

I1 [ I2 (for otherwise Lemma 7 can be used to deduce that �L½J [ I	 [ Ii� is rigid for

some i 2 f1; 2g). Hence the longest diagonals incident with I1 end in I2 (or at some

vertex of S next to I2) and the longest diagonals incident with I2 end in I1 (or at some

vertex of S next to I1). Moreover, the end-vertices of the longest diagonals incident

with Ii form an interval on C, for i ¼ 1; 2. These facts, and the assumption

jI1j; jI2j � 2 imply that at least three longest diagonals connect I1 and I2. Hence
�L½I1 [ I2� is rigid by Lemma 7. Now three edges out of the four edges of H that
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connect J [ I	 to I1 [ I2 and Lemma 7 show that �L� S is also rigid. This completes

the proof. h

5 Strongly Minimally Rigid and Globally Rigid Graphs in R2

In this section we deduce the solutions of our extremal problems in R2 for each of

the four versions and for all missing cases.

5.1 Rigidity

As we noted in the Introduction, the problems for k-vertex rigidity have been solved

earlier for k� 3. For k� 4 we have the following bound, which shows that the

minimum degree based lower bound is tight in this range. It was conjectured by

Kaszanitzky and Király [9].

Theorem 5 Let k� 4 and n� 6k þ 23. Then the number of edges in a strongly

minimally k-vertex rigid graph on n vertices in R2 is dðkþ1Þn
2

e.

Proof The lower bound follows from Lemma 2. The constructions given in

Theorems 3 and 4 for k even and odd, respectively, show that it is tight. h

For k-edge rigidity the tight bound is 2n� 3 for k ¼ 1 and 2n� 2 for k ¼ 2. The

extremal graphs are the minimally rigid graphs and the generic circuits. These facts

follow from basic results in rigidity theory. For k� 4 Theorem 5, Lemma 2, and

Theorem 1 give the next result.

Theorem 6 Let k� 4 and n� 6k þ 23. Then the number of edges in a strongly

minimally k-edge rigid graph on n vertices in R2 is dðkþ1Þn
2

e.

It remains to consider the case k ¼ 3. Here we have the following bound.

Theorem 7 The number of edges in a strongly minimally 3-edge rigid graph on

n� 5 vertices in R2 is 2n.

Proof The lower bound follows from Lemma 2. To see that equality holds we

claim that C2
n is (strongly minimally) 3-edge-rigid for all n� 5. It was shown by

Summers, Yu, and Anderson [14], that C2
n is 2-vertex globally rigid. By Theorem 1

it is also 2-edge globally rigid if n� 5 holds. Hence, by Lemma 4, C2
n is 3-edge

rigid. h

5.2 Global Rigidity

For k-vertex global rigidity it is not hard to show that the tight bound is 2n� 2 for

k ¼ 1 (see e.g. Theorem 11 below), and the bounds have also been determined for

k ¼ 2; 3 in previous work. For k� 3 we obtain the following.

Theorem 8 Let k� 3 and n� 6k þ 23. Then the number of edges in a strongly
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minimally k-vertex globally rigid graph on n vertices in R2 is dðkþ2Þn
2

e.

Proof The lower bound follows from Lemma 2. To see that it is tight consider a

strongly minimally ðk þ 1Þ-vertex rigid graph. By Theorem 5 and Lemma 3 it is

strongly minimally k-vertex globally rigid. h

The special case k ¼ 3 of Theorem 8 was proved earlier by Motevallian, Yu and

Anderson [11], who showed that L2n is 3-vertex globally rigid. Our proof method

gives a more general statement by showing that it is in fact 4-vertex rigid.

In the case of k-edge global rigidity Theorem 8 and Theorem 1 yield the

following corollary.

Theorem 9 Let k� 3 and n� 6k þ 23. Then the number of edges in a strongly

minimally k-edge globally rigid graph on n vertices in R2 is dðkþ2Þn
2

e.

As we noted above, for 1-edge global rigidity (which is the same as 1-vertex

global rigidity) the tight bound is 2n� 2. So it remains to consider the case when

k ¼ 2. By rereading the proof of Theorem 7 and using Lemma 2 we obtain:

Theorem 10 The number of edges in a strongly minimally 2-edge globally rigid

graph on n� 5 vertices in R2 is 2n.

6 Concluding Remarks

In this section we summarize the known results about our extremal problems for

d� 3. Kaszanitzky and Király [9] considered the k-vertex rigidity version and

solved the corresponding problems for k ¼ 2 (for all d� 2) and when d ¼ k ¼ 3. In

a recent manuscript [7] we determined the tight bounds in the 3-dimensional case

for all k and for each of the four versions, with the exception of four special cases.

The rigidity versions for d� 4 and k� 3 remain open.

For global rigidity there are no results available for d� 4, except for the case

k ¼ 1, for which we give a short proof below.

Theorem 11 The number of edges in a strongly minimally 1-vertex (or 1-edge)

globally rigid graph on n� d þ 2 vertices in Rd is equal to dn� dþ1
2

� �
þ 1.

Proof A graph is 1-vertex or 1-edge globally rigid if it is globally rigid. Since

globally rigid graphs on at least d þ 2 vertices are 2-edge-rigid by Hendrickson’s

theorem [2], and a rigid graph in Rd on n� d þ 2 vertices has at least dn� dþ1
2

� �

edges, the lower bound follows. The complete graph Kdþ2 is globally rigid in R
d and

satisfies the lower bound with equality. By a result of Connelly [1], every graph

obtained from Kdþ2 by a sequence of d-dimensional 1-extensions is globally rigid in

Rd. Since the 1-extension operation preserves the edge count, the theorem

follows. h
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