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Abstract
Let D ¼ ðV ;AÞ be a digraph of order n, S a subset of V of size k and 2� k� n. A
strong subgraph H of D is called an S-strong subgraph if S � VðHÞ. A pair of S-
strong subgraphs D1 and D2 are said to be arc-disjoint if AðD1Þ \ AðD2Þ ¼ ;. A pair

of arc-disjoint S-strong subgraphs D1 and D2 are said to be internally disjoint if
VðD1Þ \ VðD2Þ ¼ S. Let jSðDÞ (resp. kSðDÞ) be the maximum number of internally

disjoint (resp. arc-disjoint) S-strong subgraphs in D. The strong subgraph k -con-
nectivity is defined as

jkðDÞ ¼ minfjSðDÞ j S � V ; jSj ¼ kg:

As a natural counterpart of the strong subgraph k-connectivity, we introduce the

concept of strong subgraph k -arc-connectivity which is defined as

kkðDÞ ¼ minfkSðDÞ j S � VðDÞ; jSj ¼ kg:

A digraph D ¼ ðV;AÞ is called minimally strong subgraph ðk; ‘Þ-(arc-)connected if

jkðDÞ� ‘ (resp. kkðDÞ� ‘) but for any arc e 2 A, jkðD� eÞ� ‘� 1 (resp.

kkðD� eÞ� ‘� 1). In this paper, we first give complexity results for kkðDÞ, then
obtain some sharp bounds for the parameters jkðDÞ and kkðDÞ. Finally, minimally

strong subgraph ðk; ‘Þ-connected digraphs and minimally strong subgraph ðk; ‘Þ-arc-
connected digraphs are studied.
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1 Introduction

The generalized k-connectivity jkðGÞ of a graph G ¼ ðV;EÞ was introduced by

Hager [8] in 1985 (2� k� jVj). For a graph G ¼ ðV ;EÞ and a set S � V of at least

two vertices, an S-Steiner tree or, simply, an S-tree is a subgraph T of G which is a

tree with S � VðTÞ. Two S-trees T1 and T2 are said to be internally disjoint if
EðT1Þ \ EðT2Þ ¼ ; and VðT1Þ \ VðT2Þ ¼ S. The generalized local connectivity
jSðGÞ is the maximum number of internally disjoint S-trees in G. For an integer k
with 2� k� n, the generalized k-connectivity is defined as

jkðGÞ ¼ minfjSðGÞ j S � VðGÞ; jSj ¼ kg:

Observe that j2ðGÞ ¼ jðGÞ. If G is disconnected and vertices of S are placed in

different connectivity components, we have jSðGÞ ¼ 0. Thus, jkðGÞ ¼ 0 for a

disconnected graph G. Generalized connectivity of graphs has become an estab-

lished area in graph theory, see a recent monograph [9] by Li and Mao on gener-

alized connectivity of undirected graphs.

To extend generalized k-connectivity to directed graphs, Sun et al. [13] observed

that in the definition of jSðGÞ, one can replace ‘‘an S-tree’’ by ‘‘a connected

subgraph of G containing S’’. Therefore, Sun et al. [13] defined strong subgraph k-
connectivity by replacing ‘‘connected’’ with ‘‘strongly connected’’ (or, simply,

‘‘strong’’) as follows. Let D ¼ ðV;AÞ be a digraph of order n, S a subset of V of size

k and 2� k� n. A subgraph H of D is called an S-strong subgraph if S � VðHÞ. A
pair of S-strong subgraphs D1 and D2 are said to be arc-disjoint if

AðD1Þ \ AðD2Þ ¼ ;. A pair of arc-disjoint S-strong subgraphs D1 and D2 are said

to be internally disjoint if VðD1Þ \ VðD2Þ ¼ S. Let jSðDÞ be the maximum number

of internally disjoint S-strong subgraphs in D. The strong subgraph k -connectivity
[13] is defined as

jkðDÞ ¼ minfjSðDÞ j S � VðDÞ; jSj ¼ kg:

By definition, j2ðDÞ ¼ 0 if D is not strong.

As a natural counterpart of the strong subgraph k-connectivity, we now introduce

the concept of strong subgraph k-arc-connectivity. Let kSðDÞ be the maximum

number of arc-disjoint S-strong digraphs in D. The strong subgraph k-arc-
connectivity is defined as

kkðDÞ ¼ minfkSðDÞ j S � VðDÞ; jSj ¼ kg:

By definition, k2ðDÞ ¼ 0 if D is not strong.

For a digraph D, its reverse Drev is a digraph with same vertex set and such that

xy 2 AðDrevÞ if and only if yx 2 AðDÞ. A digraph D is symmetric if Drev ¼ D. In
other words, a symmetric digraph D can be obtained from its underlying undirected

graph G by replacing each edge of G with the corresponding arcs of both directions,

that is, D ¼ $
G :

The strong subgraph k-(arc-)connectivity is not only a natural extension of the

concept of generalized k-(edge-)connectivity, but also relates to important problems
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in graph theory. For k ¼ 2, j2ð
$
G Þ ¼ jðGÞ [13] and k2ð

$
G Þ ¼ kðGÞ (Theorem 3.6).

Hence, jkðDÞ and kkðDÞ could be seen as generalizations of connectivity and edge-

connectivity of undirected graphs, respectively. For k ¼ n, jnðDÞ ¼ knðDÞ is the

maximum number of arc-disjoint spanning strong subgraphs of D. Moreover, since

jSðGÞ and kSðGÞ are the number of internally disjoint and arc-disjoint strong

subgraphs containing a given set S, respectively, these parameters are relevant to the

problem of finding the maximum number of strong spanning arc-disjoint subgraphs

in a digraph studied, e.g., in [3–5, 12].

In what follows, n will denote the number of vertices of the digraph under

consideration.

A digraph D ¼ ðVðDÞ;AðDÞÞ is called minimally strong subgraph ðk; ‘Þ -
connected if jkðDÞ� ‘ but for any arc e 2 AðDÞ, jkðD� eÞ� ‘� 1. Similarly, a

digraph D ¼ ðVðDÞ;AðDÞÞ is called minimally strong subgraph ðk; ‘Þ-arc-con-
nected if kkðDÞ� ‘ but for any arc e 2 AðDÞ, kkðD� eÞ� ‘� 1.

A 2-cycle xyx of a strong digraph D is called a bridge if D� fxy; yxg is

disconnected. Thus, a bridge corresponds to a bridge in the underlying undirected

graph of D. An orientation of a digraph D is a digraph obtained from D by deleting

an arc in each 2-cycle of D. A digraph D is semicomplete if for every distinct

x; y 2 VðDÞ at least one of the arcs xy, yx is in D. A digraph D is k-regular if the in-
and out-degree of every vertex of D is equal to k. We refer the readers to [2] for

graph theoretical notation and terminology not given here.

Let k� 2 and ‘� 2 be fixed integers. By reduction from the DIRECTED 2-LINKAGE

problem, Sun et al. [13] proved that deciding whether jSðDÞ� ‘ is NP-complete for

a k-subset S of V(D). Thomassen [14] showed that for every positive integer p there

are digraphs which are strongly p-connected, but which contain a pair of vertices not
belonging to the same cycle. This implies that for every positive integer p there are

strongly p-connected digraphs D such that j2ðDÞ ¼ 1 [13].

The above negative results motivate studying strong subgraph k-connectivity for

special classes of digraphs. In Sun et al. [13], showed that the problem of deciding

whether jkðDÞ� ‘ for every semicomplete digraphs is polynomial-time solvable for

fixed k and ‘. The main tool used in their proof is a recent DIRECTED k -LINKAGE

theorem of Chudnovsky, Scott and Seymour [7]. Sun et al. [13] showed that for any

connected graph G, the parameter j2ð
$
G Þ can be computed in polynomial time. This

result is best possible in the following sense. Let D be a symmetric digraph and

k� 3 a fixed integer. Then it is NP-complete to decide whether jSðDÞ� ‘ for

S � VðDÞ with jSj ¼ k [13]. Let D be a strong digraph with n vertices. Sun et al.

[13] proved that 1� jkðDÞ� n� 1 for 2� k� n. The bounds are sharp; Sun et al.

[13] also characterized those digraphs D for which jkðDÞ attains the upper bound.

The main tool used in their proof is a Hamiltonian cycle decomposition theorem of

Tillson [15].

In this paper, we prove that for fixed integers k; ‘� 2, the problem of deciding

whether kSðDÞ� ‘ is NP-complete for a digraph D and a set S � VðDÞ of size k.
This result is proved in Sect. 3 using the corresponding result for jSðDÞ proved in

[13]. In the same section, we also consider classes of digraphs. We characterize

when kkðDÞ� 2, 2� k� n, for both semicomplete and symmetric digraphs D of
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order n. The characterizations imply that the problem of deciding whether kkðDÞ� 2

is polynomial-time solvable for both semicomplete and symmetric digraphs. For

fixed ‘� 3 and k� 2, the complexity of deciding whether kkðDÞ� ‘ remains an

open problem for both semicomplete and symmetric digraphs. It was proved in [13]

that for fixed k; ‘� 2 the problem of deciding whether jkðDÞ� ‘ is polynomial-time

solvable for both semicomplete and symmetric digraphs, but it appears that the

approaches to prove the two results cannot be used for kkðDÞ. In fact, we would not

be surprised if the kkðDÞ� ‘ problem turns out to be NP-complete at least for one of

the two classes of digraphs.

In Sect. 4, we first give sharp upper bounds for the parameters jkðDÞ and kkðDÞ in
terms of classical connectivity. Then we get some lower and upper bounds for the

parameter kkðDÞ including a lower bound whose analog for jkðDÞ does not hold as

well as Nordhaus-Gaddum type bounds.

In Sect. 5, we characterize minimally strong subgraph ð2; n�2Þ-connected
digraphs and minimally strong subgraph ð2; n�2Þ-arc-connected digraphs. Also, we

bound the sizes of minimally strong subgraph ð2; n�2Þ-connected digraphs.

We conclude the paper in Sect. 6 by discussing open problems.

2 Preliminaries

Let us start this section from observations that can be easily verified using

definitions of kkðDÞ and jkðDÞ. Note that the first inequality of the following

inequalities (2) can be found in [13].

Proposition 2.1 Let D be a digraph of order n, and let k� 2 be an integer. Then

kkþ1ðDÞ� kkðDÞ for every k� n� 1 ð1Þ

For a spanning subgraph D0 of D, we have

jkðD0Þ � jkðDÞ; kkðD0Þ � kkðDÞ ð2Þ

jkðDÞ� kkðDÞ� minfdþðDÞ; d�ðDÞg ð3Þ

The inequality (1) means that the parameter kk has a monotonically non-

increasing with respect to k. However, this property may not hold for jk, that is,
jnðDÞ� jn�1ðDÞ� � � � � j3ðDÞ� j2ðDÞ ¼ jðDÞ may not be true. Consider the

following example: Let D be a digraph obtained from two copies D1 and D2 of the

complete digraph
$
K tðt� 4Þ by identifying one vertex in each of them. Clearly, D is

a strong digraph with a cut vertex, say u. For 2� k� 2t � 2, let S be a subset of

VðDÞ n fug with jSj ¼ k such that S \ VðDiÞ 6¼ ; for every i 2 f1; 2g: Since each S-
strong subgraph must contain u, we have jkðDÞ� 1, furthermore, we deduce that

jkðDÞ ¼ 1 for 2� k� 2t � 2. Let Gi be the underlying undirected graph of Di for

i 2 f1; 2g: Each Gi contains b t
2
c edge-disjoint spanning trees, say Ti;jð1� j�b t

2
cÞ,

since Gi is a complete graph of order t (see, e.g., (3.1) in [10]). Now in D, let Hj be a
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subgraph of D obtained from the tree Tj which is the union of T1;j and T2;j by
replacing each edge with two arcs of the opposite directions. Clearly, these

subgraphs are strong, spanning and arc-disjoint. Hence, j2t�1ðDÞ� b t
2
c[ 1 ¼

jkðDÞ for 2� k� 2t � 2.

We will use the following decomposition theorem by Tillson.

Theorem 2.2 [15] The arcs of
$
K n can be decomposed into Hamiltonian cycles if

and only if n 6¼ 4; 6.

3 Complexity

Yeo proved that it is an NP-complete problem to decide whether a 2-regular digraph

has two arc-disjoint hamiltonian cycles (see, e.g., Theorem 6.6 in [5]). Thus, the

problem of deciding whether knðDÞ� 2 is NP-complete, where n is the order of

D. We will extend this result in Theorem 3.1.

Let D be a digraph and let s1; s2; . . .; sk; t1; t2; . . .; tk be a collection of not

necessarily distinct vertices of D. A weak k-linkage from ðs1; s2; . . .; skÞ to

ðt1; t2; . . .; tkÞ is a collection of k arc-disjoint paths P1; . . .;Pk such that Pi is an

ðsi; tiÞ-path for each i 2 ½k�. A digraph D ¼ ðV;AÞ is weakly k-linked if it contains a

weak k-linkage from ðs1; s2; . . .; skÞ to ðt1; t2; . . .; tkÞ for every choice of (not

necessarily distinct) vertices s1; . . .; sk; t1; . . .; tk. The WEAK k -LINKAGE PROBLEM is the

following. Given a digraph D ¼ ðV ;AÞ and distinct vertices

x1; x2; . . .; xk; y1; y2; . . .; yk; decide whether D contains k arc-disjoint paths

P1; . . .;Pk such that Pi is an ðxi; yiÞ-path. The problem is well-known to be NP-

complete already for k ¼ 2 [2].

Theorem 3.1 Let k� 2 and ‘� 2 be fixed integers. Let D be a digraph and S �
VðDÞ with jSj ¼ k. The problem of deciding whether kSðDÞ� ‘ is NP-complete.

Proof Clearly, the problem is in NP. We will show that it is NP-hard using a

reduction similar to that in Theorem 2.1 of [13]. Let us first deal with the case of

‘ ¼ 2 and k ¼ 2. Consider the digraph D0 used in the proof of Theorem 2.1 of [13]

(see Fig. 1), where D is an arbitrary digraph, x, y are vertices not in D, and

t1x; xs1; t2y; ys2; xs2; s2x; yt1; t1y are additional arcs. To construct a new digraph D00

from D0, replace every vertex u of D by two vertices u� and uþ such that u�uþ is an

arc in D00 and for every uv 2 AðDÞ add an arc uþv� to D00. Also, for z 2 fx; yg, for
every arc zu in D0 add an arc zu� to D00 and for every arc uz add an arc uþz to D00.

Fig. 1 The digraph D0
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Let S ¼ fx; yg. It was proved in Theorem 2.1 of [13] that jSðD0Þ � 2 if and only if

there are vertex-disjoint paths from s1 to t1 and from s2 to t2. It follows from this

result and definition of D00 that kSðD00Þ � 2 if and only if there are arc-disjoint paths

from s�1 to tþ1 and from s�2 to tþ2 . Since the WEAK 2-LINKAGE PROBLEM is NP-complete,

we conclude that the problem of deciding whether kSðD00Þ � 2 is NP-hard.

Now let us consider the case of ‘� 3 and k ¼ 2. Add to D00 ‘� 2 copies of the 2-

cycle xyx and subdivide the arcs of every copy to avoid parallel arcs. Let us denote

the new digraph by D000. Similarly to that in Theorem 2.1 of [13], we can show that

kSðD000Þ � ‘ if and only if kSðD00Þ � 2.

It remains to consider the case of ‘� 2 and k� 3. Add to D000 (where D000 ¼ D00 for
‘ ¼ 2) k � 2 new vertices x1; . . .; xk�2 and arcs of ‘ 2-cycles xxix for each

i 2 ½k � 2�. Subdivide the new arcs to avoid parallel arcs. Denote the obtained

digraph by D0000. Let S ¼ fx; y; x1; . . .; xk�2g. Similarly to that in Theorem 2.1 of

[13], we can show that kSðD0000Þ � ‘ if and only if kSðD00Þ � 2.

Bang-Jensen and Yeo [5] conjectured the following:

Conjecture 1 For every k� 2 there is a finite set Sk of digraphs such that a k-arc-
strong semicomplete digraph D contains k arc-disjoint spanning strong subgraphs
unless D 2 Sk.

Bang-Jensen and Yeo [5] proved the conjecture for k ¼ 2 by showing that jS2j ¼
1 and describing the unique digraph S4 of S2 of order 4. Now we have the following

characterization:

Theorem 3.2 For a semicomplete digraph D, of order n and an integer k such that
2� k� n, kkðDÞ� 2 if and only if D is 2-arc-strong and the following does not hold:
D ffi S4 and k ¼ 4.

Proof We first consider the direction ‘‘only if’’. Suppose that D is not a 2-arc-strong

and xy 2 AðDÞ such that D� xy is not strong. Thus, for S ¼ fx; yg we have kSðDÞ ¼
1: Hence k2ðDÞ ¼ 1 and by (1) kkðDÞ ¼ 1 for each k; 2� k� n: Furthermore, by

the result of Bang-Jensen and Yeo, the following does not hold: D ffi S4 and

k ¼ 4. h

We next prove the direction ‘‘if’’. If D is 2-arc-strong and D 6ffi S4, then D
contains two arc-disjoint spanning strong subgraphs by the result of Bang-Jensen

and Yeo, that is, knðDÞ� 2. Furthermore, we have kkðDÞ� 2 for all 2� k� n by (1).

Now we consider the case that D ffi S4. Let S be any subset of V(D) with jSj ¼ 3; by

symmetry of S4 it suffices to assume that S ¼ fv1; v2; v3g (see Fig. 2). Let D1 be the

cycle v1; v2; v3; v1 and D2 be subgraph of D with AðD2Þ ¼ AðDÞ n AðD1Þ. It can be

easily checked that both D1 and D2 are S-strong subgraphs, so k3ðDÞ� 2.

Furthermore by (1), we have k2ðDÞ� 2.

Now we turn our attention to symmetric digraphs. We start from characterizing

symmetric digraphs D with kkðDÞ� 2, an analog of Theorem 3.2. To prove it we

will use the following result of Boesch and Tindell [6] translated from the language

of mixed graphs to that of digraphs.
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Theorem 3.3 A strong digraph D has a strong orientation if and only if D has no
bridge.

Here is our characterization.

Theorem 3.4 For a strong symmetric digraph D of order n and an integer k such
that 2� k� n, kkðDÞ� 2 if and only if D has no bridge.

Proof Let D have no bridge. Then, by Theorem 3.3, D has a strong orientation H.
Since D is symmetric, Hrev is another orientation of D. Clearly, Hrev is strong and

hence kkðDÞ� 2. h

Suppose that D has a bridge xyx. Choose a set S of size k such that fx; yg � S and

observe that any strong subgraph of D containing vertices x and y must include both

xy and yx. Thus, kSðDÞ ¼ 1 and kkðDÞ ¼ 1.

Theorems 3.2 and 3.4 imply the following complexity result, which we believe to

be extendable from ‘ ¼ 2 to any natural ‘.

Corollary 3.5 The problem of deciding whether kkðDÞ� 2 is polynomial-time
solvable if D is either semicomplete or symmetric digraph of order n and 2� k� n:

Now we give a lower bound on kkðDÞ for symmetric digraphs D.

Theorem 3.6 For every graph G, we have

kkð
$
G Þ� kkðGÞ:

Moreover, this bound is sharp. In particular, we have k2ð
$
G Þ ¼ k2ðGÞ.

Proof We may assume that G is a connected graph. Let S ¼ fx; yg, where x, y are

distinct vertices of
$
G . Observe that kSðGÞ� kSð

$
G Þ. Indeed, let p ¼ kSð

$
G Þ and let

D1; . . .;Dp be arc-disjoint S-strong subgraphs of
$
G . Thus, by choosing a path from x

to y in each Di, we obtain p arc-disjoint paths from x to y, which correspond to p arc-

disjoint paths between x and y in G. Thus, kðGÞ ¼ k2ðGÞ� k2ð
$
G Þ.

We now consider the general k. Let kSð
$
G Þ ¼ kkð

$
G Þ for some S � Vð$G Þ with

jSj ¼ k. We know that there are at least kkðGÞ edge-disjoint trees containing S in G,
say Tiði 2 ½kkðGÞ�Þ. For each i 2 ½kkðGÞ�, we can obtain a strong subgraph

Fig. 2 Digraph S4
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containing S, say Di, in
$
G by replacing each edge of Ti with the corresponding arcs

of both directions. Clearly, any two such subgraphs are arc-disjoint, so we have

kkð
$
G Þ ¼ kSð

$
G Þ� kkðGÞ, and we also have k2ð

$
G Þ ¼ k2ðGÞ ¼ kðGÞ.

For the sharpness of the bound, consider the tree T with order n. Clearly, we have

kkðTÞ ¼ 1. Furthermore, 1� kkð
$
T Þ� minfdþðDÞ; d�ðDÞg ¼ 1 by Inequality (3).h

Note that for the case that 3� k� n, the equality kkð
$
G Þ ¼ kkðGÞ does not always

hold. For example, consider the cycle Cn of order n; it is not hard to check that

kkð
$
C nÞ ¼ 2, but kkðCnÞ ¼ 1.

Theorem 3.6 immediately implies the next result, which follows from the fact

that kðGÞ can be computed in polynomial time.

Corollary 3.7 For a symmetric digraph D, k2ðDÞ can be computed in polynomial
time.

4 Sharp bounds of jkðDÞ and kkðDÞ

To prove a new bound on jkðDÞ in Theorem 4.2, we will use the following result of

Sun et al. [13].

Theorem 4.1 Let 2� k� n. For a strong digraph D of order n, we have

1� jkðDÞ� n� 1:

Moreover, both bounds are sharp, and the upper bound holds if and only if D ffi $
K n,

2� k� n and k 62 f4; 6g.

The following result concerns the relation between jkðDÞ (resp. kkðDÞ) and jðDÞ
(resp. kðDÞ).

Theorem 4.2 Let k 2 f2; . . .; ng. The following assertions hold:

(i) For n� jðDÞ þ k; we have jkðDÞ� jðDÞ;
(ii) kkðDÞ� kðDÞ: Moreover, both bounds are sharp.

Proof Part (i). For k ¼ 2, assume that jðDÞ ¼ jðx; yÞ for some fx; yg � VðDÞ. It
follows from the strong subgraph connectivity definition that jfx;ygðDÞ� jðx; yÞ, so
j2ðDÞ� jfx;ygðDÞ� jðx; yÞ ¼ jðDÞ:

We now consider the case of k� 3. If jðDÞ ¼ n� 1, then we have jkðDÞ� n�
1 ¼ jðDÞ by Theorem 4.1. If jðDÞ ¼ n� 2, then there are two vertices, say u and v,
such that uv 62 AðDÞ. So we have jkðDÞ� n� 2 ¼ jðDÞ by Theorem 4.1. If

1� jðDÞ� n� 3, then there exists a jðDÞ-vertex cut, say Q, for two vertices u, v in
D such that there is no u� v path in D� Q. Let S ¼ fu; vg [ S0 where S0 �
VðDÞ n ðQ [ fu; vgÞ and jS0j ¼ k � 2. Since u and v are in different strong

components of D� Q, any S-strong subgraph in D must contain a vertex in Q. By
the definition of jSðDÞ and jkðDÞ, we have jkðDÞ� jSðDÞ� jQj ¼ jðDÞ.

For the sharpness of the bound, consider the following digraph D. Let D be a
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symmetric digraph whose underlying undirected graph is Kk

W
Kn�k (n� 3k), i.e.

the graph obtained from disjoint graphs Kk and Kn�k by adding all edges between

the vertices in Kk and Kn�k.

Let VðDÞ ¼ W [ U, where W ¼ VðKkÞ ¼ fwi j 1� i� kg and U ¼ VðKn�kÞ ¼
fuj j 1� j� n� kg. Let S be any k-subset of vertices of V(D) such that jS \ Uj ¼ s

(s� k) and jS \W j ¼ k � s. Without loss of generality, let wi 2 S for 1� i� k � s
and uj 2 S for 1� j� s. For 1� i� k � s, let Di be the symmetric subgraph of D

whose underlying undirected graph is the tree Ti with edge set

fwiu1;wiu2; . . .;wius; ukþiw1; ukþiw2; . . .; ukþiwk�sg:

For k � sþ 1� j� k, let Dj be the symmetric subgraph of D whose underlying

undirected graph is the tree Tj with edge set

fwju1;wju2; . . .;wjus;wjw1;wjw2; . . .;wjwk�sg:

Observe that fDi j 1� i� k � sg [ fDj j k � sþ 1� j� kg is a set of k internally

disjoint S-strong subgraph, so jSðDÞ� k, and then jkðDÞ� k. Combining this with

the bound that jkðDÞ� jðDÞ and the fact that jðDÞ� minfdþðDÞ; d�ðDÞg ¼ k, we
can get jkðDÞ ¼ jðDÞ ¼ k.

Part (ii) Let A be a kðDÞ-arc-cut of D, where 1� kðDÞ� n� 1. We choose

S � VðDÞ such that at least two of these k vertices are in different strong compo-

nents of D� A. Thus, any S-strong subgraph in D must contain an arc in A. By the

definition of kSðDÞ and kkðDÞ, we have kkðDÞ� kSðDÞ� jAj ¼ kðDÞ.
For the sharpness of the bound, consider the the digraph D in part (i). Recall that

fDi j 1� i� kg is a set of k internally disjoint S-strong subgraph, so

kSðDÞ� jSðDÞ� k, and then kkðDÞ� k. Combining this with the bound that

kkðDÞ� kðDÞ and the fact that kðDÞ� minfdþðDÞ; d�ðDÞg ¼ k, we can get

kkðDÞ ¼ kðDÞ ¼ k. h

Note that the condition ‘‘n� jðDÞ þ k’’ in Theorem 4.2 cannot be removed.

Consider the example after Proposition 2.1. We have n ¼ 2t � 1\2t ¼ jðDÞ þ k
when k ¼ n, but now jnðDÞ[ jðDÞ.

In the proof of Theorem 4.1, they used the following result on jkð
$
K nÞ.

Lemma 4.3 [13] For 2� k� n, we have

jkð
$
K nÞ ¼

n� 1; if k 62 f4; 6g;
n� 2; otherwise.

�

We can now compute the exact values of kkð
$
K nÞ.

Lemma 4.4 For 2� k� n, we have
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kkð
$
K nÞ ¼

n� 1; if k 62 f4; 6g, or, k 2 f4; 6g and k\n;

n� 2; if k ¼ n 2 f4; 6g.

�

Proof For the case that 2� k� n and k 62 f4; 6g, by (3) and Lemma 4.3, we have

n� 1� jkð
$
K nÞ� kkð

$
K nÞ� n� 1. Hence, kkð

$
K nÞ ¼ n� 1 and in the following

argument we assume that 2� k� n and k 2 f4; 6g.
We first consider the case of 2� k ¼ n. For n ¼ 4, since Kn contains a

Hamiltonian cycle, the two orientations of the cycle imply that knð
$
K nÞ� 2 ¼ n� 2.

To see that there are at most two arc-disjoint strong spanning subgraphs of
$
K n,

suppose that there are three arc-disjoint such subgraphs. Then each such subgraph

must have exactly four arcs (as jAð$K nÞj ¼ 12), and so all of these three subgraphs

are Hamiltonian cycles, which means that the arcs of
$
K n can be decomposed into

Hamiltonian cycles, a contradiction to Theorem 2.2). Hence, knð
$
K nÞ ¼ n� 2 for

n ¼ 4. Similarly, we can prove that knð
$
K nÞ ¼ n� 2 for n ¼ 6, as Kn contains two

edge-disjoint Hamiltonian cycles, and therefore
$
K n contains four arc-disjoint

Hamiltonian cycles.

We next consider the case of 2� k� n� 1. We assume that k ¼ 6 as the case of

k ¼ 4 can be considered in a similar and simpler way. Let S � Vð$K nÞ be any vertex

subset of size six. Let S ¼ fui j 1� i� 6g and Vð$K nÞ n S ¼ fvj j 1� j� n� 6g. Let
D1 be the cycle u1u2u3u4u5u6u1; let D2 ¼ Drev

1 ; let D3 be the cycle u1u3u6u4u2u5u1;

let D4 ¼ Drev
3 ; let D5 be a subgraph of

$
K n with vertex set S [ fv1g and arc set

fu1v1; v1u2; u2u6; u6v1; v1u5; u5u3; u3v1; v1u4; u4u1g; let D6 ¼ Drev
5 ; for each

x 2 fvj j 2� j� n� 6g, let Dx be a subgraph of
$
K n with vertex set S [ fxg and

arc set fxui; uix j 1� i� 6g. Hence, we have kSðDÞ� n� 1 for any S � Vð$K nÞ with
jSj ¼ 6 and so kkðDÞ� n� 1. We clearly have kkðDÞ� n� 1 by (3), then our result

holds.h

Now we obtain sharp lower and upper bounds for kkðDÞ for 2� k� n.

Theorem 4.5 Let 2� k� n. For a strong digraph D of order n, we have

1� kkðDÞ� n� 1:

Moreover, both bounds are sharp, and the upper bound holds if and only if D ffi $
K n,

where k 62 f4; 6g, or, k 2 f4; 6g and k\n.

Proof The lower bound is clearly correct by the definition of kkðDÞ, and for the

sharpness, a cycle is our desired digraph. The upper bound and its sharpness hold by

(2) and Lemma 4.4.

If D is not equal to
$
K n then dþðDÞ� n� 2 and by (3) we observe that

kkðDÞ� dþðDÞ� n� 2. Therefore, by Lemma 4.4, the upper bound holds if and

only if D ffi $
K n, where k 62 f4; 6g, or, k 2 f4; 6g and k\n.
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Shiloach [11] proved the following:

Theorem 4.6 [11] A digraph D is weakly k-linked if and only if D is k-arc-strong.

Using Shiloach’s Theorem, we will prove the following lower bound for kkðDÞ:
Such a bound does not hold for jkðDÞ since it was shown in [13] using Thomassen’s

result in [14] that for every ‘ there are digraphs D with jðDÞ ¼ ‘ and j2ðDÞ ¼ 1.

Proposition 4.7 Let k� ‘ ¼ kðDÞ. We have kkðDÞ� b‘=kc.

Proof Choose an arbitrary vertex set S ¼ fs1; . . .; skg of D and let t ¼ b‘=kc. By
Theorem 4.6, there is a weak kt-linkage L from x1; x2; . . .; xkt to y1; y2; . . .; ykt, where
xi ¼ si mod k and yi ¼ si mod kþ1 and skþ1 ¼ s1. Note that the paths of L form t arc-
disjoint strong subgraphs of D containing S. h

For a digraph D ¼ ðVðDÞ;AðDÞÞ, the complement digraph, denoted by Dc, is a

digraph with vertex set VðDcÞ ¼ VðDÞ such that xy 2 AðDcÞ if and only if

xy 62 AðDÞ.
Given a graph parameter f(G), the Nordhaus-Gaddum Problem is to determine

sharp bounds for (a) f ðGÞ þ f ðGcÞ and (b) f ðGÞf ðGcÞ, and characterize the extremal

graphs. The Nordhaus-Gaddum type relations have received wide attention; see a

recent survey paper [1] by Aouchiche and Hansen. Theorem 4.9 concerns such type

of a problem for the parameter kk. To prove the theorem, we will need the

following:

Proposition 4.8 A digraph D with order n is strong if and only if kkðDÞ� 1, where
2� k� n.

Proof If D is strong, then for every vertex set S of size k, D has a strong subgraph

containing S. If kkðDÞ� 1, for each vertex set S of size k construct DS; a strong

subgraph of D containing S. The union of all DS is a strong subgraph of D as there

are sets S1; S2; . . .; Sp such that the union of S1; S2; . . .; Sp is V(D) and for each

i 2 ½p� 1�; DSi and DSiþ1
share a common vertex. h

Theorem 4.9 For a digraph D with order n, the following assertions hold:

(i) 0� kkðDÞ þ kkðDcÞ� n� 1. Moreover, both bounds are sharp. In partic-

ular, the lower bound holds if and only if kðDÞ ¼ kðDcÞ ¼ 0.

(ii) 0� kkðDÞkkðDcÞ� n�1
2

� �2
. Moreover, both bounds are sharp. In particular,

the lower bound holds if and only if kðDÞ ¼ 0 or kðDcÞ ¼ 0.

Proof We first prove (i). Since D [ Dc ¼ $
K n, by definition of kk,

kkðDÞ þ kkðDcÞ� kkð
$
K nÞ. Thus, by Lemma 4.4, the upper bound for the sum

kkðDÞ þ kkðDcÞ holds. Let H ffi $
K n. When k 62 f4; 6g, or, k 2 f4; 6g and k\n, by

Lemma 4.4, we have kkðHÞ ¼ n� 1 and we clearly have kkðHcÞ ¼ 0, so the upper

bound is sharp.

The lower bound is clear. Clearly, the lower bound holds, if and only if

kkðDÞ ¼ kkðDcÞ ¼ 0, if and only if kðDÞ ¼ kðDcÞ ¼ 0 by Proposition 4.8.

We now prove (ii). The lower bound is clear, and it holds, if and only if kkðDÞ ¼
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0 or kkðDcÞ ¼ 0, if and only if kðDÞ ¼ 0 or kðDcÞ ¼ 0 by Proposition 4.8. For the

upper bound, we have

kkðDÞkkðDcÞ� kkðDÞ þ kkðDcÞ
2

� �2

� n� 1

2

� �2

:

Let H ffi $
K n with n ¼ 2hþ 1� 7. By Theorem 2.2, H contains 2h arc-disjoint

Hamiltonian cycles: H1; . . .;H2h. Let D1 be the union of the former h cycles, and D2

be the union of the remaining h cycles. Clearly, Dc
1 ¼ D2 and knðDiÞ� h and so

kkðDiÞ� h for 1� i� 2; 2� k� n by (1). Furthermore, Di is h-regular, so kkðDiÞ� h
by (3). Hence, kkðDiÞ ¼ h for 1� i� 2; 2� k� n. Now kkðD1ÞkkðDc

1Þ ¼
kkðD1ÞkkðD2Þ ¼ h2 ¼ n�1

2

� �2
, so the upper bound is sharp. h

5 Minimally Strong Subgraph ðk,‘)-(arc-)connected Digraphs

In this section, we will first study the minimally strong subgraph ðk; ‘Þ-connected
digraphs. By the definition of a minimally strong subgraph ðk; ‘Þ-connected digraph,

we can get the following observation.

Proposition 5.1 A digraph D is minimally strong subgraph ðk; ‘Þ-connected if and
only if jkðDÞ ¼ ‘ and jkðD� eÞ ¼ ‘� 1 for any arc e 2 AðDÞ.

Proof The direction ‘‘if’’ is clear by definition, and we only need to prove the

direction ‘‘only if’’. Let D be a minimally strong subgraph ðk; ‘Þ-connected digraph.

By definition, we have jkðDÞ� ‘ and jkðD� eÞ� ‘� 1 for any arc e 2 AðDÞ. Then
for any set S � VðDÞ with jSj ¼ k, there is a set D of ‘ internally disjoint S-strong
subgraphs. As e must belong to one and only one element of D, we are done. h

A digraph D is minimally strong if D is strong but D� e is not for every arc e of
D.

Proposition 5.2 The following assertions hold:

(i) A digraph D is minimally strong subgraph (k, 1)-connected if and only if

D is a minimally strong digraph;

(ii) For k 6¼ 4; 6, a digraph D is minimally strong subgraph ðk; n� 1Þ-
connected if and only if D ffi $

K n.

Proof To prove (i), it suffices to show that a digraph D is strong if and only if

jkðDÞ� 1: If D is strong, then for every vertex set S of size k, D has an S-strong
subgraph. If jkðDÞ� 1, for each vertex set S of size k construct DS; an S-strong
subgraph of D. The union of all Dk is a strong subgraph of D as there are sets

S1; S2; . . .; Sp such that the union of S1; S2; . . .; Sp is V(D) and for each i 2 ½p� 1�;
DSi and DSiþ1

share a common vertex.

Part (ii) follows from Theorem 4.1. h

The following result characterizes minimally strong subgraph ð2; n� 2Þ-
connected digraphs.
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Theorem 5.3 A digraph D is minimally strong subgraph ð2; n� 2Þ-connected if

and only if D is a digraph obtained from the complete digraph
$
K n by deleting an

arc set M such that
$
K n½M� is a 3-cycle or a union of bn=2c vertex-disjoint 2-cycles.

In particular, we have f ðn; 2; n� 2Þ ¼ nðn� 1Þ � 2bn=2c, Fðn; 2; n� 2Þ ¼
nðn� 1Þ � 3.

Proof Let D ffi $
K n �M be a digraph obtained from the complete digraph

$
K n by

deleting an arc set M. Let VðDÞ ¼ fui j 1� i� ng.
Firstly, we will consider the case that

$
K n½M� is a 3-cycle u1u2u3u1. We now

prove that j2ðDÞ ¼ n� 2. By (3), we have j2ðDÞ� minfdþðDÞ; d�ðDÞg ¼ n� 2.

Let S ¼ fu; vg � VðDÞ; we just consider the case that u ¼ u1; v ¼ u2 since the other
cases are similar. Let D1 be a subgraph of D with VðD1Þ ¼ fu1; u2; u3g and

AðD1Þ ¼ fu1u3; u3u2; u2u1g; for 2� i� n� 2, let Di be a subgraph of D with

VðDiÞ ¼ fu1; u2; uiþ2g and AðDiÞ ¼ fu1uiþ2; u2uiþ2; uiþ2u1; uiþ2u2g. Clearly, fDi j
1� i� n� 2g is a set of n� 2 internally disjoint S-strong subgraphs, so

jSðDÞ� n� 2 and j2ðDÞ� n� 2. Hence, j2ðDÞ ¼ n� 2.

For any e 2 AðDÞ, without loss of generality, one of the two digraphs in Fig. 3 is

a subgraph of
$
K n½M [ feg�, so if the following claim holds, then we must have

j2ðD� eÞ� j2ðD0Þ � n� 3 by Proposition 4.3, and so D is minimally strong

subgraph ð2; n� 2Þ-connected. Now it suffices to prove the following claim. h

Claim 1 If
$
K n½M0� is isomorphic to one of two graphs in Fig. 3, then

j2ðD0Þ � n� 3, where D0 ¼ $
K n �M0.

Proof of Claim 1 We first show that j2ðD0Þ � n� 3 if M0 is the digraph of Fig. 3a.

Let S ¼ fu2; u4g; we will prove that jSðD0Þ � n� 3, and then we are done. Suppose

that jSðD0Þ � n� 2, then there exists a set of n� 2 internally disjoint S-strong
subgraphs, say fDi j 1� i� n� 2g. If both of the two arcs u2u4 and u4u2 belong to

the same Di, say D1, then for 2� i� n� 2, each Di contains at least one vertex and

at most two vertices of fui j 1� i� n; i 6¼ 2; 4g. Furthermore, there is at most one

Di, say D2, contains (exactly) two vertices of fui j 1� i� n; i 6¼ 2; 4g. We just

consider the case that u1; u3 2 VðD2Þ since the other cases are similar. In this case,

we must have that each vertex of fui j 5� i� ng belongs to exactly one digraph

from fDi j 3� i� n� 2g and vice versa. However, this is impossible since the

vertex set fu2; u4; u5g cannot induce an S-strong subgraph of D0, a contradiction.

So we now assume that each Di contains at most one of u2u4 and u4u2. Without

(a) (b)

Fig. 3 Two graphs for Claim 1
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loss of generality, we may assume that u2u4 2 AðD1Þ and u4u2 2 AðD2Þ. In this case,
we must have that each vertex of fui j 1� i� n; i 6¼ 2; 4g belongs to exactly one

digraph from fDi j 1� i� n� 2g and vice versa. However, this is also impossible

since the vertex set fu2; u4; u5g cannot induce an S-strong subgraph of D0, a

contradiction.

Hence, we have j2ðD0Þ � n� 3 in this case. For the case that M0 is the digraph of

Fig. 3b, we can choose S ¼ fu2; u3g and prove that jSðD0Þ � n� 3 with a similar

argument, and so j2ðD0Þ � n� 3 in this case. This completes the proof of the claim.

Secondly, we consider the case that
$
K n½M� is a union of bn=2c vertex-disjoint 2-

cycles. Without loss of generality, we may assume that

M ¼ fu2i�1u2i; u2iu2i�1 j 1� i�bn=2cg. We just consider the case that S ¼
fu1; u3g since the other cases are similar. In this case, let D1 be the subgraph of

D with VðD1Þ ¼ fu1; u3g and AðD1Þ ¼ fu1u3; u3u1g; let D2 be the subgraph of D
with VðD2Þ ¼ fu1; u2; u3; u4g and AðD2Þ ¼ fu1u4; u4u1; u2u4; u4u2; u2u3; u3u2g; for
3� i� n� 2, let Di be the subgraph of D with VðDiÞ ¼ fu1; u2; uiþ2g and

AðDiÞ ¼ fu1uiþ2; u3uiþ2; uiþ2u1; uiþ2u3g. Clearly, fDi j 1� i� n� 2g is a set of n�
2 internally disjoint S-strong subgraphs, so jSðDÞ� n� 2 and then j2ðDÞ� n� 2.

By (3), we have j2ðDÞ� minfdþðDÞ; d�ðDÞg ¼ n� 2. Hence, j2ðDÞ ¼ n� 2. Let

e 2 AðDÞ; clearly e must be incident with at least one vertex of

fui j 1� i� 2bn=2cg. Then we have that j2ðD� eÞ� minfdþðD� eÞ; d�ðD�
eÞg ¼ n� 3 by (3). Hence, D is minimally strong subgraph ð2; n� 2Þ-connected.

Now let D be minimally strong subgraph ð2; n� 2Þ-connected. By Theorem 4.1,

we have that D 6ffi $
K n, that is, D can be obtained from a complete digraph

$
K n by

deleting a nonempty arc set M. To end our argument, we need the following three

claims. Let us start from a simple yet useful observation.

Proposition 5.4 No pair of arcs in M has a common head or tail.

Proof of Proposition 5.4. By (3) no pair of arcs in M has a common head or tail,

as otherwise we would have j2ðDÞ� n� 3.

Claim 2 jMj � 3.

Proof of Claim 2 Let jMj � 2. We may assume that jMj ¼ 2 as the case of jMj ¼ 1

can be considered in a similar and simpler way.

Let the arcs of M have no common vertices; without loss of generality,

M ¼ fu1u2; u3u4g. Then j2ðD� u2u1Þ ¼ n� 2 as D� u2u1 is a supergraph of
$
K n

without a union of bn=2c vertex-disjoint 2-cycles including the cycles u1u2u1 and

u3u4u3. Thus, D is not minimally strong subgraph ð2; n� 2Þ-connected. Let the arcs
of M have no common vertex. By Proposition 5.4, without loss of generality,

M ¼ fu1u2; u2u3g. Then j2ðD� u3u1Þ ¼ n� 2 as we showed in the beginning of

the proof of this theorem. Thus, D is not minimally strong subgraph ð2; n� 2Þ-
connected. Now let the arcs of M have the same vertices, i.e., without loss of

generality, M ¼ fu1u2; u2u1g. As above, j2ðD� u2u1Þ ¼ n� 2 and D is not

minimally strong subgraph ð2; n� 2Þ-connected.

Claim 3 If jMj ¼ 3, then
$
K n½M� is a 3-cycle.
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Proof of Claim 3 Suppose that D is minimally strong subgraph ð2; n� 2Þ-
connected, but

$
K n½M� is not a 3-cycle. By Proposition 5.4, no pair of arcs inM has a

common head or tail. Thus,
$
K n½M� must be isomorphic to one of graphs in Figs. 3

and 4. If
$
K n½M� is isomorphic to one of graphs in Fig. 3, then j2ðDÞ� n� 3 by

Claim 1 and so D is not minimally strong subgraph ð2; n� 2Þ-connected, a

contradiction. For an arc setM0 such that
$
K n½M0� is a union of bn=2c vertex-disjoint

2-cycles, by the argument before, we know that
$
K n �M0 is minimally strong

subgraph ð2; n� 2Þ-connected. For the case that$K n½M� is isomorphic to (a) or (b) in

Fig. 4, we have that
$
K n �M0 is a proper subgraph of

$
K n �M, so D ¼ $

K n �M
must not be minimally strong subgraph ð2; n� 2Þ-connected, this also produces a

contradiction. Hence, the claim holds.

Claim 4 If jMj[ 3, then
$
K n½M� is a union of bn=2c vertex-disjoint 2-cycles.

Proof of Claim 4 Suppose that D is minimally strong subgraph ð2; n� 2Þ-
connected, but

$
K n½M� is not a union of bn=2c vertex-disjoint 2-cycles.

By Claim 1 and Proposition 4.3, we have that
$
K n½M� does not contain graphs in

Fig. 3 as a subgraph. Then
$
K n½M� does not contain a path of length at least three.

Hence, the underlying undirected graph of M has at least two connectivity

components. By the fact that if M is a 3-cycle, then
$
K n �M is minimally strong

subgraph ð2; n� 2Þ-connected, we conclude that $K n½M� does not contain a cycle of

length three. By Claim 1,
$
K n½M� does not contain a path of length two. By

Proposition 5.4, no pair of arcs in M has a common head or tail. Hence, each

connectivity component of
$
K n½M� must be a 2-cycle or an arc. Since D is minimally

strong subgraph ð2; n� 2Þ-connected, no connectivity component of
$
K n½M� is an

arc. We have arrived at a contradiction, proving Claim 4.

Hence, if a digraph D is minimally strong subgraph ð2; n� 2Þ-connected, then
D ffi $

K n �M, where
$
K n½M� is a cycle of order three or a union of bn=2c vertex-

disjoint 2-cycles.

Now the claimed values of Fðn; 2; n� 2Þ and f ðn; 2; n� 2Þ can easily be verified.

Let Fðn; k; ‘Þ be the set of all minimally strong subgraph ðk; ‘Þ-connected
digraphs with order n. We define

(a) (b)

Fig. 4 Two graphs for Claim 3
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Fðn; k; ‘Þ ¼ maxfjAðDÞj j D 2 Fðn; k; ‘Þg

and

f ðn; k; ‘Þ ¼ minfjAðDÞj j D 2 Fðn; k; ‘Þg:

We further define

Exðn; k; ‘Þ ¼ fD j D 2 Fðn; k; ‘Þ; jAðDÞj ¼ Fðn; k; ‘Þg

and

exðn; k; ‘Þ ¼ fD j D 2 Fðn; k; ‘Þ; jAðDÞj ¼ f ðn; k; ‘Þg:

Note that Theorem 5.3 implies that Exðn; 2; n� 2Þ ¼ f$Kn �Mg where M is an arc

set such that
$
K n½M� is a directed 3-cycle, and exðn; 2; n� 1Þ ¼ f$Kn �Mg where M

is an arc set such that
$
K n½M� is a union of bn=2c vertex-disjoint directed 2-cycles.

The following result concerns a sharp lower bound for the parameter f ðn; k; ‘Þ.

Theorem 5.5 For 2� k� n, we have

f ðn; k; ‘Þ� n‘:

Moreover, the following assertions hold: (i) If ‘ ¼ 1, then f ðn; k; ‘Þ ¼ n; (ii) If

2� ‘� n� 1, then f ðn; n; ‘Þ ¼ n‘ for k ¼ n 62 f4; 6g; (iii) If n is even and

‘ ¼ n� 2, then f ðn; 2; ‘Þ ¼ n‘:

Proof By (3), for all digraphs D and k� 2 we have jkðDÞ� dþðDÞ and

jkðDÞ� d�ðDÞ. Hence for each D with jkðDÞ ¼ ‘, we have that

dþðDÞ; d�ðDÞ� ‘, so jAðDÞj � n‘ and then f ðn; k; ‘Þ� n‘:

For the case that ‘ ¼ 1, let D be a dicycle Cn
�!

. Clearly, D is minimally strong

subgraph (k, 1)-connected, and we know jAðDÞj ¼ n, so f ðn; k; 1Þ ¼ n.

For the case that k ¼ n 62 f4; 6g and 2� ‘� n� 1, let D ffi $
Kn . By Theorem 2.2,

D can be decomposed into n� 1 Hamiltonian cycles Hið1� i� n� 1Þ. Let D‘ be

the spanning subgraph of D with arc sets AðD‘Þ ¼
S

1� i� ‘ AðHiÞ. Clearly, we have
jnðD‘Þ� ‘ for 2� ‘� n� 1. Furthermore, by (3), we have jnðD‘Þ� ‘ since the in-

degree and out-degree of each vertex in D‘ are both ‘. Hence, jnðD‘Þ ¼ ‘ for

2� ‘� n� 1. For any e 2 AðD‘Þ, we have dþðD‘ � eÞ ¼ d�ðD‘ � eÞ ¼ ‘� 1, so

jnðD‘ � eÞ� ‘� 1 by (3). Thus, D‘ is minimally strong subgraph ðn; ‘Þ-connected.
As jAðD‘Þj ¼ n‘, we have f ðn; n; ‘Þ� n‘. From the lower bound that f ðn; k; ‘Þ� n‘,
we have f ðn; n; ‘Þ ¼ n‘ for the case that 2� ‘� n� 1; n 62 f4; 6g.

Part (iii) follows directly from Theorem 5.3. h

To prove two upper bounds on the number of arcs in a minimally strong subgraph

ðk; ‘Þ-connected digraph, we will use the following result from [2].

Theorem 5.6 Every strong digraph D on n vertices has a strong spanning subgraph
H with at most 2n� 2 arcs and equality holds only if H is a symmetric digraph
whose underlying undirected graph is a tree.
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Proposition 5.7 We have (i) Fðn; n; ‘Þ� 2‘ðn� 1Þ; (ii) For every k ð2� k� nÞ,
Fðn; k; 1Þ ¼ 2ðn� 1Þ and Ex(n, k, 1) consists of symmetric digraphs whose
underlying undirected graphs are trees.

Proof (i) Let D ¼ ðV ;AÞ be a minimally strong subgraph ðn; ‘Þ-connected digraph,

and let D1; . . .;D‘ be arc-disjoint strong spanning subgraphs of D. Since D is

minimally strong subgraph ðn; ‘Þ-connected and D1; . . .;D‘ are pairwise arc-disjoint,

jAj ¼
P‘

i¼1 jAðDiÞj: Thus, by Theorem 5.6, jAj � 2‘ðn� 1Þ:
(ii) In the proof of Proposition 5.2 we showed that a digraph D is strong if and

only if jkðDÞ� 1: Now let jkðDÞ� 1 and a digraph D has a minimal number of arcs.

By Theorem 5.6, we have that jAðDÞj � 2ðn� 1Þ and if D 2 Exðn; k; 1Þ then

jAðDÞj ¼ 2ðn� 1Þ and D is a symmetric digraph whose underlying undirected graph

is a tree. h

We now study the minimally strong subgraph ðk; ‘Þ-arc-connected digraphs. By

Proposition 4.8 and Theorem 4.5, we have the following result.

Proposition 5.8 The following assertions hold:

(i) A digraph D is minimally strong subgraph

(k, 1) -arc-connected if and only if D is minimally strong digraph;

(ii) Let 2� k� n. If k 62 f4; 6g, or, k 2 f4; 6g and k\n, then a digraph D is

minimally strong subgraph ðk; n� 1Þ-arc-connected if and only if D ffi $
K n.

The following result characterizes minimally strong subgraph ð2; n� 2Þ-arc-
connected digraphs. This characterization is different from the characterization of

minimally strong subgraph ð2; n� 2Þ-connected digraphs obtained in Theorem 5.3.

Theorem 5.9 A digraph D is minimally strong subgraph ð2; n� 2Þ-arc-connected if
and only if D is a digraph obtained from the complete digraph

$
K n by deleting an

arc set M such that
$
K n½M� is a union of vertex-disjoint cycles which cover all but at

most one vertex of
$
K n.

Proof Let D be a digraph obtained from the complete digraph
$
K n by deleting an

arc set M such that
$
K n½M� is a union of vertex-disjoint cycles which cover all but at

most one vertex of
$
K n. To prove the theorem it suffices to show that (a) D is

minimally strong subgraph ð2; n� 2Þ-arc-connected, that is, k2ðDÞ� n� 2 but for

any arc e 2 AðDÞ, k2ðD� eÞ� n� 3, and (b) if a digraph H minimally strong

subgraph ð2; n� 2Þ-arc-connected then it must be constructed from
$
K n as the

digraph D above. Thus, the remainder of the proof has two parts.

Part (a).We just consider the case that
$
K n½M� is a union of vertex-disjoint cycles

which cover all vertices of
$
K n, since the argument for the other case is similar. For

any e 2 Að$K nÞ nM, we know e must be adjacent to at least one element of M, so

k2ðD� eÞ� minfdþðD� eÞ; d�ðD� eÞg ¼ n� 3 by (3). Hence, it suffices to show

that k2ðDÞ ¼ n� 2 in the following. We clearly have that k2ðDÞ� n� 2 by (3), so
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we will show that for S ¼ fx; yg � VðDÞ, there are at least n� 2 arc-disjoint S-
strong subgraphs in D.

Case 1. x and y belong to distinct cycles of
$
K n½M�. We just consider the case that

the lengths of these two cycles are both at least three, since the arguments for the

other cases are similar. Assume that u1x; xu2 belong to one cycle, and u3y; yu4
belong to the other cycle. Note that u1u2; u3u4 2 AðDÞ since the lengths of these two
cycles are both at least three.

Let D1 be the 2-cycle xyx; let D2 be the subgraph of D with vertex set

fx; y; u1; u2g and arc set fxu1; u1u2; u2x; yu2; u2yg; let D3 be the subgraph of D with

vertex set fx; y; u3; u4g and arc set fyu3; u3u4; u4y; xu3; u3xg; let D4 be the subgraph

of D with vertex set fx; y; u1; u4g and arc set fxu4; u4x; yu1; u1y; u1u4; u4u1g; for each
vertex u 2 VðDÞ n fx; y; u1; u2; u3; u4g, let Du be a subgraph of D with vertex set

fu; x; yg and arc set fux; xu; uy; yug. It is not hard to check that these n� 2 S-strong
subgraphs are arc-disjoint.

Case 2. x and y belong to the same cycle, say u1u2 � � � utu1, of
$
K n½M�. We just

consider the case that the length of this cycle is at least three, since the argument for

the remaining case is simpler.

Subcase 2.1. x and y are adjacent in the cycle. Without loss of generality, let

x ¼ u1; y ¼ u2. Let D1 be the subgraph of D with vertex set fx; y; u3g and arc set

fyx; xu3; u3yg; let D2 be the subgraph of D with vertex set fx; y; u3; utg and arc set

fu3x; xut; utu3; uty; yutg; for each vertex u 2 VðDÞ n fx; y; u3; utg, let Du be a

subgraph of D with vertex set fu; x; yg and arc set fux; xu; uy; yug. It is not hard to

check that these n� 2 S-strong subgraphs are arc-disjoint.

Subcase 2.2. x and y are nonadjacent in the cycle. Without loss of generality, let

x ¼ u1; y ¼ u3. Let D1 be the 2-cycle xyx; let D2 be the subgraph of D with vertex

set fx; y; u2; utg and arc set fyu2; u2x; xut; utyg; for each vertex

u 2 VðDÞ n fx; y; u2; utg, let Du be a subgraph of D with vertex set fu; x; yg and

arc set fux; xu; uy; yug. It is not hard to check that these n� 2 S-strong subgraphs

are arc-disjoint.

Part (b). Let H be minimally strong subgraph ð2; n� 2Þ-arc-connected. By

Lemma 4.4, we have that H 6ffi $
K n, that is, H can be obtained from a complete

digraph
$
K n by deleting a nonempty arc set M. To end our argument, we need the

following claim. Let us start from a simple yet useful observation, which follows by

Inequality (3) h

Proposition 5.10 No pair of arcs in M has a common head or tail.

Thus,
$
K n½M� must be a union of vertex-disjoint cycles or paths, otherwise, there

are two arcs of M such that they have a common head or tail, a contradiction with

Proposition 5.10.

Claim 1
$
K n½M� does not contain a path of order at least two.

Proof of Claim 1 Let M0 	 M be a set of arcs obtained from M by adding some arcs

from
$
K n such that the digraph

$
K n½M0� contains no path of order at least two. Note

123

968 Graphs and Combinatorics (2021) 37:951–970



that
$
K n½M0� is a supergraph of

$
K n½M� and is a union of vertex-disjoint cycles which

cover all but at most one vertex of
$
K n. By Part (a), we have that

k2ð
$
K n½M0�Þ ¼ n� 2, so

$
K n½M� is not minimally strong subgraph ð2; n� 2Þ-arc-

connected, a contradiction.

It follows from Claim 1 and its proof that
$
K n½M� must be a union of vertex-

disjoint cycles which cover all but at most one vertex of
$
K n, which completes the

proof of Part (b).

6 Discussion

Corollaries 3.5 and 3.7 shed some light on the complexity of deciding, for fixed

k; ‘� 2, whether kkðDÞ� ‘ for semicomplete and symmetric digraphs D. However,
it is unclear what is the complexity above for every fixed k; ‘� 2. If Conjecture 1 is

correct, then the kkðDÞ� ‘ problem can be solved in polynomial time for

semicomplete digraphs. However, Conjecture 1 seems to be very difficult. It was

proved in [13] that for fixed k; ‘� 2 the problem of deciding whether jkðDÞ� ‘ is
polynomial-time solvable for both semicomplete and symmetric digraphs, but it

appears that the approaches to prove the two results cannot be used for kkðDÞ. Some

well-known results such as the fact that the hamiltonicity problem is NP-complete

for undirected 3-regular graphs, indicate that the kkðDÞ� ‘ problem for symmetric

digraphs may be NP-complete, too.

One of the most interesting results of this paper is the characterization of

minimally strong subgraph ð2; n� 2Þ-connected digraphs. As a simple consequence

of the characterization, we can determine the values of f ðn; 2; n� 2Þ and

Fðn; 2; n� 2Þ. It would be interesting to determine f ðn; k; n� 2Þ and Fðn; k; n�
2Þ for every value of k� 3. (Obtaining characterizations of all ðk; n� 2Þ-connected
digraphs for k� 3 seems a very difficult problem.) It would also be interesting to

find a sharp upper bound for Fðn; k; ‘Þ for all k� 2 and ‘� 2.
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