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Abstract
The first part of the paper studies star-cycle factors of graphs. It characterizes star-

cycle factors of a graph G and proves upper bounds for the minimum number of

K1;2-components in a fK1;1;K1;2;Cn : n� 3g-factor of a graph G. Furthermore, it

shows where these components are located with respect to the Gallai–Edmonds

decomposition of G and it characterizes the edges which are not contained in any

fK1;1;K1;2;Cn : n� 3g-factor of G. The second part of the paper proves that every

edge-chromatic critical graph G has a fK1;1;K1;2;Cn : n� 3g-factor, and the number

of K1;2-components is bounded in terms of its fractional matching number. Fur-

thermore, it shows that for every edge e of G, there is a fK1;1;K1;2;Cn : n� 3g-
factor F with e 2 EðFÞ. Consequences of these results for Vizing’s critical graph

conjectures are discussed.

Keywords Factors in graphs � Fractional matchings � Star-cycle factors � Edge-
chromatic critical graphs � Vizing’s critical graph conjectures

1 Introduction and Motivation

We consider finite simple graphs. For a graph G, V(G) and E(G) denote the set of

vertices and the set of edges, respectively. For a vertex v of V(G), EGðvÞ denotes the
set of edges which are incident to v. The degree of v, denoted by dGðvÞ, is jEGðvÞj.
The maximum degree of a vertex of G is denoted by DðGÞ and the minimum degree
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of a vertex of G is denoted by dðGÞ. If DðGÞ ¼ dðGÞ ¼ k, then G is k-regular. If G is

a 2-regular graph then it is also called a cycle, and if G is a connected 2-regular

graph, then we also call G a circuit. For v 2 VðGÞ, the set of neighbors of v is

denoted by NGðvÞ. Clearly, dGðvÞ ¼ jEGðvÞj ¼ jNGðvÞj, for simple graphs. For a set

X � VðGÞ, the neighborhood of X is defined as NGðXÞ ¼
S

x2X NGðxÞ. For

S � VðGÞ, the set of edges with precisely one end in S is denoted by oGðSÞ. For
A;B � VðGÞ, the set of edges with one end in A and the other in B is denoted by

EGðA;BÞ. Hence, EGðS;VðGÞ � SÞ ¼ oGðSÞ. If there is no harm of confusion, then

we will omit the indices.

A set M (M � EðGÞ or M � VðGÞ) is independent, if no two elements of M are

adjacent. An independent set of edges is also called a matching of G. The maximum

cardinality of a matching of G is the matching number of G, which is denoted by

lðGÞ. A matching M with jMj ¼ lðGÞ is a maximum matching of G. The number of

vertices which are not incident to an edge of a maximum matching is the matching-

deficiency of G, and it is denoted by def ðGÞ. Clearly, def ðGÞ ¼ jVðGÞj � 2lðGÞ.
A fractional matching of G is a function f : EðGÞ ! ½0; 1� such thatP
e2EGðvÞ f ðeÞ� 1 for all v 2 VðGÞ. If f ðeÞ 2 f0; 1g for each edge, then f is the

characteristic function of a matching of G. The fractional matching number lf ðGÞ is
supf

P
e2EðGÞ f ðeÞ : f is a fractional matching of Gg. Clearly, lf ðGÞ� 1

2
jVðGÞj and

if lf ðGÞ ¼ 1
2
jVðGÞj, then f is a fractional perfect matching. For a fractional

matching f the set fe : e 2 EðGÞ and f ðeÞ 6¼ 0g is the support of f and it is denoted

by supp ðf Þ.

Theorem 1.1 ([14] (Theorem 2.1.5)) For any graph G, 2lf ðGÞ is an integer.

Moreover, there is a fractional matching f for which
P

e2EðGÞ f ðeÞ ¼ lf ðGÞ and

f ðeÞ 2 f0; 1
2
; 1g for every e 2 EðGÞ.

Let G be a graph and g; f : VðGÞ ! Z be two functions such that 0� gðvÞ� f ðvÞ
for all v 2 VðGÞ. A (g, f)-factor is a spanning subgraph F of G that satisfies

gðvÞ� dFðvÞ� f ðvÞ for all v 2 VðGÞ. If gðvÞ ¼ a and f ðvÞ ¼ b for all v 2 VðGÞ,
then F is a [a, b]-factor, and if a ¼ b ¼ k, then F is a k-factor of G. Clearly, if F is a

1-factor, then E(F) is a perfect matching of G. If F is a factor of a graph G, then a

path is F-alternating, if its edges are in F and EðGÞ � F alternately.

For a set S of connected graphs, a spanning subgraph F of G is called an S-factor
if each component of F is isomorphic to an element of S. If H 2 S, then a

component of F which is isomorphic to H is called an H-component of F. A
component is trivial if it consists of a single vertex and non-trivial otherwise. The

set of trivial components of G is denoted by Iso ðGÞ and iso ðGÞ denotes j Iso ðGÞj.
The complete bipartite graph with bipartition (A, B) and jAj ¼ r, jBj ¼ s is

denoted by Kr;s. In case of r ¼ 1, K1;s is called a star and the vertex of degree s is its
center vertex. For K1;1, either of the two vertices can be regarded as its center vertex.

A fK1;1; . . .;K1;t;Cm : m� 3g-factor of G is called a star-cycle factor.

For a set S of vertices let G[S] and G� S be the subgraphs of G induced by S and

VðGÞ � S, respectively. The following theorems characterize some component

factors of graphs.
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Theorem 1.2 [16] A graph G has a fK1;1;Cm : m� 3g-factor if and only if iso ðG�
SÞ� jSj for all S � VðGÞ.

In terms of fractional perfect matchings, Theorem 1.2 is equivalent to the

following formulation.

Theorem 1.3 [14] A graph G has a fractional perfect matching if and only if
iso ðG� SÞ� jSj for all S � VðGÞ.

The following theorems characterize graphs which satisfy relaxed conditions.

Theorem 1.4 [1] A graph G has a fK1;1;K1;2;Cm : m� 3g-factor if and only if
iso ðG� SÞ� 2jSj for all S � VðGÞ.

Theorem 1.5 [2, 10] Let n� 2 be an integer. A graph G has a fK1;1; . . .;K1;ng-
factor if and only if iso ðG� SÞ� njSj for all S � VðGÞ.

These results had been generalized by Berge and Las Vergnas [4] to star-cycle

factors.

Theorem 1.6 [4] Let G be a graph and f : VðGÞ ! f1; 2; 3. . .g be a function, and
let W ¼ fv : v 2 VðGÞ and f ðvÞ ¼ 1g. The graph G has a star-cycle factor F such
that

(i) dFðvÞ� f ðvÞ if v is the center vertex of a star component of F, and
(ii) VðCÞ � W for each circuit component C of F

if and only if iso ðG� SÞ�
P

v2S f ðvÞ for all S � VðGÞ.

For each finite graph G, if iso ðGÞ ¼ 0, then there is an integer n such that

iso ðG� SÞ� njSj for all S � VðGÞ. Consequently, the following statement is true.

Corollary 1.7 Every graph without trivial components has a star-cycle factor.

The paper is organized as follows. Section 2 studies general graphs while Sect. 3

studies edge-chromatic critical graphs. The edge-chromatic number v0ðGÞ of a graph
G is the minimum number k of matchings which are needed to cover the edge set of

G. In 1965, Vizing [18] proved that v0ðGÞ 2 fDðGÞ;DðGÞ þ 1g for a graph G. For
k� 2, a graph G is k-critical, if DðGÞ ¼ k, v0ðGÞ ¼ k þ 1 and v0ðHÞ� k for each

proper subgraph H of G. We often say that G is a critical graph, if there is a k, such
that G is a k-critical graph.

In Sect. 2 we characterize graphs with specific star-cycle factors in terms of their

fractional matching number. In particular, we give an upper bound for the size of a

star and for the number of star components which are different from K1;1, and we

locate the star components of a factor with respect to the Gallai–Edmonds

decomposition of G. We further address the question for which e 2 EðGÞ there is a
specific star-cycle factor F with e 2 EðFÞ.

In addition to these statements, the following theorems are the main results of this

section regarding the application to questions on factors of edge-chromatic critical

graphs. Let minðG;K1;2Þ denote the minimum number of K1;2-components in a

fK1;1;K1;2;Cm : m� 3g-factor of G.
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Theorem 2.10 If a graph G has a fK1;1;K1;2;Cm : m� 3g-factor, then

lf ðGÞ ¼ 1
2
ðjVðGÞj �minðG;K1;2ÞÞ.

Theorem 2.13 Let G be a graph that has a fK1;1;K1;2;Cm : m� 3g-factor. For
e 2 EðGÞ, say e ¼ uv, there is no fK1;1;K1;2;Cm : m� 3g-factor which contains e if
and only if there is a subset S of V(G) that satisfies

(i) u; v 2 S
(ii) 2jSj � 2� iso ðG� SÞ� 2jSj.

Furthermore, the inequalities of (ii) are tight.

In Sect. 3 we prove that every edge chromatic critical graph has

fK1;1;K1;2;Cm : m� 3g-factor. The following two theorems are the main results

of the paper. The maximum cardinality of an independent set of vertices is the

independence number of G which is denoted by aðGÞ.

Theorem 3.4 Let G be a critical graph. Then G has a fK1;1;K1;2;Cm : m� 3g-
factor with minðG;K1;2Þ ¼ jVðGÞj � 2lf ðGÞ. In particular, minðG;K1;2Þ� 1

5
jVðGÞj

and aðGÞ� 3
5
jVðGÞj for all DðGÞ� 2.

The statement aðGÞ� 3
5
jVðGÞj for all critical graphs was first proved by Woodall

[21].

Theorem 3.5 Let G be a critical graph. For every edge e there is a
fK1;1;K1;2;Cm : m� 3g-factor F with e 2 EðFÞ.

These results have some consequences for Vizing’s critical graph conjectures,

see [5].

Conjecture 1.8 [19] If G is a critical graph, then G has a 2-factor.

Conjecture 1.9 [17] If G is a critical graph, then aðGÞ� 1
2
jVðGÞj.

Both conjectures are open for a long time and our results on star-cycle-factors

can be seen as an approximation. Figure 1 shows the connection between these

conjectures, fractional matchings, component-factors and there applications on

critical graphs. The paper closes with the study of fractional matchings on critical

graphs.

2 Fractional Matching Number and Star-Cycle Factors

A graph G is factor-critical if G� v has a perfect matching for each v 2 VðGÞ.
Analogously, a matching is near perfect if it covers all vertices but one. Let D(G) be
the set of vertices of G which are missed by at least one maximum matching of G,
let AðGÞ ¼ NðDðGÞÞ � DðGÞ and CðGÞ ¼ VðGÞ � ðDðGÞ [ AðGÞÞ. We call the

triple (D(G), A(G), C(G)) a Gallai–Edmonds decomposition of G. If there is no

harm of confusion we shortly write (D, A, C) instead of (D(G), A(G), C(G)). We

will use the fundamental Gallai–Edmonds structure theorem.
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Theorem 2.1 [7, 8] Let G be a graph. If (D, A, C) is a Gallai–Edmonds
decomposition of G, then

1. every component of G[D] is factor-critical,
2. G[C] has a perfect matching,
3. every maximum matching consists of a near perfect matching on each

component of G[D], a perfect matching on G[C], and a matching which
matches every vertex of A to one distinct component of G[D], and

4. lðGÞ ¼ 1
2
ðjVðGÞj � cðG½D�Þ þ jAjÞ, where c(G[D]) is the number of compo-

nents of G[D].

Next we formulate a sharpening of this result in the context of fractional

matchings. Let M be a maximum matching of a graph G and nc ðMÞ be the number

of non-trivial components of G[D] that are not matched by an edge

e 2 M \ EðD;AÞ, and nc ðGÞ ¼ maxf nc ðMÞ : M is a maximum matching of Gg.

Theorem 2.2 Let G be a graph and n� 0 be an integer. If lf ðGÞ ¼ 1
2
ðjVðGÞj � nÞ,

then

1. n ¼ def ðGÞ � nc ðGÞ [11],
2. n ¼ maxf iso ðG� SÞ � jSj : S � VðGÞg [14, Theorem 2.2.6].

We call a set S with iso ðG� SÞ ¼ jSj þ n a witness for lf ðGÞ. A crucial point in

the proof of Theorem 2.2(1) is that every non-trivial component of G[D] has a

fractional perfect matching. The following theorem shows that they have even more

structural properties.

Fig. 1 Conjectures and theorems for edge-chromatic critical graphs
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Theorem 2.3 [6] Let G be a factor-critical graph with jVðGÞj[ 1. Then G has a

fractional perfect matching f with f ðeÞ 2 f0; 1
2
; 1g for every e 2 EðGÞ and the set

fe : e 2 EðGÞ and f ðeÞ ¼ 1
2
g forms exactly one odd circuit.

Furthermore, every maximum matching of a graph G is contained in the support

of a fractional matching with values in f0; 1
2
; 1g. Let M be a maximum matching

with nc ðMÞ ¼ nc ðGÞ. A maximum fractional matching f with M � supp ðf Þ is

called a canonical maximum fractional matching of G (with respect to M).

Theorem 2.2 shows that every graph has a canonical maximum fractional

matching. A look into the proof details of Theorem 2.2(1) yields that it is also

shown that A(G) contains a witness for lf ðGÞ. We will state this fact in a more

detailed manner in the following corollary.

Corollary 2.4 Let G be a graph, n� 0 be an integer, M be a maximum matching of

G and lf ðGÞ ¼ 1
2
ðjVðGÞj � nÞ. If f is a canonical maximum fractional matching

w.r.t. M, then Iso ðG½D�Þ contains two disjoint subsets Dþ and D� with

1. D� ¼ fv 2 Iso ðG½D�Þ : v is not matched byMgandjD�j ¼ n,
2. Dþ ¼ fw 2 Iso ðG½D�Þ : there is anM � alternating path from

w to some vertex of D�g,
3. M induces a perfect matching on Dþ [ NðDþ [ D�Þ; in particular,

jNðDþ [ D�Þj ¼ jDþj, and
4. NðDþ [ D�Þ is a witness for lf ðGÞ.

If F is a star-cycle factor of G, then let tFi denote the number of K1;i-components

of F and let lðGÞ ¼ minf
P1

i¼1ði� 1ÞtFi : F is a star-cycle factor of Gg. The next

theorem gives a detailed insight into the structure of graphs with respect to their

fractional matching number.

Theorem 2.5 Let G be a connected graph, n� 0 be an integer and k be the
minimum integer such that iso ðG� SÞ� kjSj for all S � VðGÞ. If

lf ðGÞ ¼ 1
2
ðjVðGÞj � nÞ, then k�d n

dðGÞe þ 1 and G has a

fK1;1; . . .;K1;k;Cm : m� 3g-factor F, such that lðGÞ ¼
Pk

i¼1ði� 1ÞtFi ¼ n. Further-
more, the K1;j-components are induced subgraphs of G, and for j� 2, their center

vertices are in NðDþ [ D�Þð� AÞ and their leaves are in Dþ [ D�.

Proof Let f be a canonical maximum fractional matching w.r.t. M. For n ¼ 0 we

have D� ¼ ; and for n� 1 let D� ¼ fd1; . . .; dng. Let V0 ¼ VðGÞ � D�, and for

k 2 f1; . . .; ng let Vk ¼ V0 [ fd1; . . .; dkg. Further let Gk ¼ G½Vk�, for

k 2 f0; . . .; ng. Clearly, Gk is a subgraph of G and f is a canonical maximum

fractional matching of Gk w.r.t. M with lf ðGkÞ ¼ 1
2
ðjVðGkÞj � kÞ.

We construct a sequence of subgraphs F0; . . .;Fn of G, where the subgraph Fk is

the desired fK1;1; . . .;K1;tk ;Cm : m� 3g-factor on Gk, with tk � k, lðGkÞ ¼ k and

Gn ¼ G.
If k ¼ 0, then G½V0� has a perfect fractional matching, iso ðG0 � SÞ� jSj for all

S � VðG0Þ by Theorem 1.3 and the statement follows with Theorem 1.2, that is,
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tF0

i ¼ 0 for each i� 2 and therefore, lðG0Þ ¼ 0 and t0 ¼ 1� k.
Suppose that Fk has been constructed in Gk for k, with k� n� 1. We will

construct Fkþ1 in Gkþ1.

Case A: There is a vertex a 2 NGðdkþ1Þ with a 62 Nðfd1; . . .; dkgÞ or dFk
ðaÞ\k.

Then Fk [ fdkþ1ag is a fK1;1; . . .;K1;tkþ1
;Cm : m� 3g-factor of Gkþ1. The factor

Fkþ1 is obtained from Fk by extending a K1;j-component, with j\k, to a K1;jþ1-

component. Hence, tFk
j � 1 ¼ tFkþ1

j and tFk

jþ1 þ 1 ¼ tFkþ1

jþ1 . Furthermore,

tkþ1 � tk þ 1� k. Thus,

lðGkþ1Þ ¼
Pk

i¼1ði� 1ÞtFkþ1

i ¼
Pk

i¼1ði� 1ÞtFk
i � ðj� 1Þ þ j ¼ k þ 1.

Case B: For all a 2 NGðdkþ1Þ: dFk
ðaÞ ¼ k. Let P be the set of all vertices of

AðGÞ [ DðGÞ for which there is an Fk-alternating path with initial vertex dkþ1,

TD ¼ P \ DðGÞ and TA ¼ P \ AðGÞ. Note that TD � Iso ðG½D�Þ, since f is a

canonical maximum fractional matching w.r.t. M and M is a maximum matching

with nc ðMÞ ¼ nc ðGÞ.
If dFk

ðaÞ ¼ k for all a 2 TA, then, by the definition of TA and TD, it follows that
TD is a set of isolated vertices in G� TA. But jTDj ¼ kjTAj þ 1, a contradiction to

the choice of k.
Hence, there is a a0 2 TA with dFk

ða0Þ\k. Let p ¼ dkþ1; a
1; d1; . . .; at; dt; a0 be a

minimal Fk-alternating path (di 2 DðGÞ and ai 2 AðGÞ) with end vertices dkþ1 and

a0. Note that dFk
ðaiÞ ¼ k, dFk

ðdiÞ ¼ 1, aidi 2 EðFkÞ and dkþ1a
1; diaiþ1; dta0 62 EðFkÞ.

Let Fkþ1 be obtained from Fk by interchanging the edges of Fk and EðpÞ � EðFkÞ in
p. Hence, Fkþ1 is a fK1;1; . . .;K1;k;Cm : m� 3g-factor of Gkþ1. As in Case A it

follows that
Pk

i¼1ði� 1ÞtFkþ1

i ¼ k þ 1 and tkþ1 � k.
Let F ¼ Fn. Then F is a fK1;1; . . .;K1;k;Cm : m� 3g-factor of G and

Pk
i¼1ði� 1ÞtFi ¼ n. We cannot do better since f 0 : EðGÞ ! ½0; 1� with f 0ðeÞ ¼ 1

i if

e is an edge of a K1;i-component of F, f 0ðeÞ ¼ 1
2
, if e is an edge of a circuit of F, and

f 0ðeÞ ¼ 0 otherwise, is a fractional matching of G and
P

e2EðGÞ f
0ðeÞ ¼ 1

2
ðjVðGÞj � nÞ.

It remains to show that k�d n
dðGÞe þ 1. Without loss of generality we may assume

that dGðd1Þ� . . .� dGðdnÞ. Let F ¼ Fn be the fK1;1; . . .;K1;t;Cm : m� 3g-factor as
constructed above and t ¼ tn. Clearly, k� t. For k� n� 1, Fkþ1 is obtained from Fk

either by applying the construction of Case A or the construction of Case B. In Case

A, vertex a can be chosen such that dFk
ðaÞ ¼ minfdFk

ðxÞ : x 2 NGðdkþ1Þg. Thus,
tkþ1 ¼ tk if dFk

ðaÞ\tk and tkþ1 ¼ tk þ 1� k otherwise. In case B, we have

tk ¼ tkþ1ð¼ kÞ. Since Case B only applies if Case A does not, it follows that

t�d n
dðGÞe þ 1. Therefore, iso ðG� SÞ� ðd n

dðGÞe þ 1ÞjSj for all S � VðGÞ. Since k is

minimum, the statement follows. h

Corollary 2.6 For each graph G, lðGÞ ¼ def ðGÞ � nc ðGÞ ¼ maxf iso ðG� SÞ �
jSj : S � VðGÞg ¼ jVðGÞj � 2lf ðGÞ and G has a fK1;1; . . .;K1;k;Cm : m� 3g-factor
with nc ðGÞ circuits.

Proof The first statement follows directly from Theorems 2.2 and 2.5. The second

statement follows from Theorems 2.3 and 2.5. h
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Corollary 2.7 Let G be a graph. Then

aðGÞ� 1

2
jVðGÞj þ lðGÞ � nc ðGÞð Þ:

Proof By Corollary 2.6 G has a fK1;1; . . .;K1;k;Cm : m� 3g-factor with nc ðGÞ odd
circuits and l(G) vertices extend K1;1-components to K1;j-components, 1\j� k.
Therefore, aðGÞ� 1

2
ðjVðGÞj � lðGÞÞ � 1

2
nc ðGÞ þ lðGÞ. h

Theorem 2.8 Let G be a graph and e0 2 EðGÞ. If there is a maximum fractional
matching f of G with f ðe0Þ 6¼ 0, then there is a maximum fractional matching f 0 with

f 0ðeÞ 2 f0; 1
2
; 1g for all e 2 EðGÞ and f 0ðe0Þ 6¼ 0, and the components of supp ðf 0Þ

are K1;1’s or odd circuits.

Proof Let f be a maximum fractional matching and e0 2 EðGÞ with f ðe0Þ 6¼ 0. By

Theorem 1.1 we have that
P

e2EðGÞ f ðeÞ ¼ lf ðGÞ ¼ 1
2
ðjVðGÞj � nÞ for an integer

n� 0. Let f0 be a maximum fractional matching with f0ðe0Þ 6¼ 0 and jfe : e 2
EðGÞ and f0ðeÞ ¼ 0gj maximal, and let H ¼ G½ supp ðf0Þ�. We will prove the

statement by induction on n.
n ¼ 0 : In this case, f and f0 are fractional perfect matchings of G, and our proof

of the statements closely follows the line of the proof of Theorem 1.1 given in [14].

If H contains an edge e0 ¼ vw with dHðvÞ ¼ 1, then f0ðe0Þ ¼ 1 and e0 is the edge
of a K1;1-component of H. Hence, f0ðeÞ ¼ 0 for all e 2 ðEðvÞ [ EðwÞÞnfe0g. In
particular, e0 62 ðEðvÞ [ EðwÞÞnfe0g.

Claim 1 H does not contain an even circuit.

Suppose to the contrary that it contains an even circuit C. Let EðCÞ ¼
fe1; . . .; e2kg and if e0 2 EðCÞ, then let e0 ¼ e1. Let m ¼ minff0ðe2iÞ : 1� i� kg.
Define g : EðGÞ ! f�1; 0; 1g, with gðeÞ ¼ 0 if e 2 EðGÞ � EðCÞ and for i; j 2
f1; . . .; kg let gðe2i�1Þ ¼ 1 and gðe2jÞ ¼ �1. Then f1 ¼ f0 þ mg is a maximum

fractional matching with f1ðe0Þ 6¼ 0 and which assigns 0 to at least one more edge

than f0, a contradiction.

Claim 2 If H contains an odd circuit C1, then C1 is a circuit component of H.

Suppose that C1 contains a vertex v with dHðvÞ[ 2. Let P be a path which starts

in v with an edge which is not an edge of C1. This path cannot return to C1, since

then H would contain an even circuit. It can also not have an end vertex x of degree
1, since then f0ðeÞ ¼ 1 for the edge which is incident to x in H. Hence, it ends at a
vertex w with NðwÞ � VðPÞ. Thus, H contains a graph B which consists of two odd

circuits C1 and C2 which are connected by a path (possibly of length 0). Let

g : EðHÞ ! f�1;� 1
2
; 0; 1

2
; 1g be a function with gðeÞ ¼ 0 if e 62 EðBÞ and 	1

alternately on the path which connects the two odd circuits of B and 	 1
2
alternately

around the circuits such that
P

e2EðvÞ gðeÞ ¼ 0 for each v 2 VðBÞ. If e0 2 EðBÞ, then
choose g such that gðe0Þ[ 0. Let m be the smallest number such that there is an
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edge e 2 EðBÞ with f1ðeÞ ¼ ðf0 þ mgÞðeÞ ¼ 0. Then f1 is fractional perfect matching

of G which assigns the value 0 to more edges that f0. Furthermore, the value 0 can

only achieved on an edge e with gðeÞ\0. Hence, f1ðe0Þ 6¼ 0 and we obtain a

contradiction to the definition of f0. Thus, the claim is proved.

Hence, the components of H are odd circuits or K1;1’s. The function f 0 : EðGÞ !
f0; 1

2
; 1g with f 0ðeÞ ¼ 1

2
, if e is an edge of a circuit component of H, f 0ðeÞ ¼ 1, if e is

an edge of a K1;1 component of H and f 0ðeÞ ¼ 0, if e 62 EðHÞ is the desired fractional
perfect matching of G with f 0ðe0Þ 6¼ 0.

n� 1 : For v 2 VðGÞ let df ðvÞ ¼ 1�
P

e2EðvÞ f ðeÞ. Let fv1; . . .; vtg be the set of

vertices v of G with df ðvÞ[ 0. Add a vertex x and edges xvi for i 2 f1; . . .; tg to G to

obtain a new graph Gx. Note that jVðGxÞj ¼ jVðGÞj þ 1.

Extend f to a function h : EðGxÞ ! ½0; 1� with hðeÞ ¼ f ðeÞ if e 2 EðGÞ and for the
edges xv1; . . .; xvt, choose hðxviÞ appropriately such that 0� hðxviÞ� df ðviÞ and
Pt

i¼1 hðxviÞ ¼ 1. The function h is a fractional matching on Gx. It holds that
P

e2EðGxÞ hðeÞ ¼ 1þ
P

e2EðGÞ f ðeÞ ¼ 1þ 1
2
ðjVðGÞj � nÞ ¼ 1

2
ðjVðGxÞj � ðn� 1ÞÞ.

Claim 3 h is a maximum fractional matching of Gx.

If n ¼ 1, then h is a fractional perfect matching of Gx and therefore, it is

maximum.

For n� 2 we suppose to the contrary that the graph Gx has a fractional matching

h0 with
P

e2EðGxÞ h0ðeÞ ¼
1
2
ðjVðGxÞj � mÞ and m\n� 1. It follows that

P
e2EðGÞ h0ðeÞ � ð

P
e2EðGxÞ h0ðeÞÞ � 1 ¼ 1

2
ðjVðGxÞj � mÞ � 1[ 1

2
ðjVðGÞj � nÞ ¼

lf ðGÞ, a contradiction and the claim is proved.

By definition, hðe0Þ ¼ f ðe0Þ 6¼ 0 and therefore, h is a maximum fractional

matching on Gx with hðe0Þ 6¼ 0 and
P

e2EðGxÞ hðeÞ ¼
1
2
ðjVðGxÞj � ðn� 1ÞÞ.

By induction hypothesis, there is a maximum fractional matching h0 of Gx with

h0ðeÞ 2 f0; 1
2
; 1g for all e 2 EðGÞ and h0ðe0Þ 6¼ 0. Since

P
e2EðGxÞ h

0ðeÞ ¼
1þ

P
e2EðGÞ f ðeÞ it follows that

P
e2EðxÞ h

0ðeÞ ¼
Pt

i¼1 h
0ðxviÞ ¼ 1. Suppose to the

contrary that x is a vertex of a circuit component C of Gx½ supp ðh0Þ�. Since C is an

odd circuit, C � x has a perfect matching. Thus, lf ðGÞ[
P

e2EðGÞ f ðeÞ, a

contradiction. Hence, x is a vertex of a K1;1-component of Gx½ supp ðh0Þ�, and f 0 :

EðGÞ ! f0; 1
2
; 1g with f 0ðeÞ ¼ h0ðeÞ for all e 2 EðGÞ is the desired maximum

fractional matching of G. h

A star-cycle factor F is minimal if
P1

i¼1ði� 1ÞtFi ¼ lðGÞ.

Corollary 2.9 Let G be a graph and e0 2 EðGÞ. There is a maximum fractional
matching f of G with f ðe0Þ 6¼ 0 if and only if e0 is an edge of a minimal star-cycle
factor of G.

Proof ()) Let lf ðGÞ ¼ 1
2
ðjVðGÞj � nÞ for an integer n� 0. By Theorem 2.8 there

is a maximum fractional matching f 0 with f 0ðeÞ 2 f0; 1
2
; 1g for all e 2 EðGÞ and

f 0ðe0Þ 6¼ 0. Hence, e0 is an edge of a circuit or a K1;1-component of G½ supp ðf 0Þ�.
Furthermore, there are precisely n vertices v1; . . .; vn with

P
e2EðviÞ f

0ðeÞ ¼ 0. Let
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x 2 NðviÞ. Then
P

e2EðxÞ f
0ðeÞ ¼ 1. If x is a vertex of a circuit component C of

G½ supp ðf 0Þ�, then, since C is of odd order, we easily deduce a contradiction to the

maximality of f 0. Hence, x 2 NðviÞ is a vertex of a K1;1-component of G½ supp ðf 0Þ�.
Furthermore, at most one end vertex of a K1;1-component can be in

Sn
i¼1 NðviÞ,

since for otherwise we again can deduce a contradiction to the maximality of f 0.
Extending G½ supp ðf 0Þ� by connecting each vi to one of its neighbors yields the

desired fK1;1; . . .;K1;t;Cm : m� 3g-factor of G. The other direction of the statement

is trivial. h

If iso ðG� SÞ� kjSj, with kminimal, then the star-cycle factor F in Corollary 2.9

is not necessarily a fK1;1; . . .K1;t;Cm : m� 3g-factor with t� k. Recall that

minðG;K1;2Þ ¼ minftF2 : F is a fK1;1;K1;2;Cm : m� 3g-factor of Gg. The follow-

ing theorem will be used in Sect. 3.

Theorem 2.10 If a graph G has a fK1;1;K1;2;Cm : m� 3g-factor, then

lf ðGÞ ¼ 1
2
ðjVðGÞj �minðG;K1;2ÞÞ.

Proof The result follows directly from Theorem 2.5 and Corollary 2.6. h

Theorem 1.2 is the special case m ¼ n of the following corollary.

Corollary 2.11 Let G be a graph and let n, m be integers with 0\n�m� 2n. If
iso ðG� SÞ� m

n jSj for all subsets S � VðGÞ, then

(i) minðG;K1;2Þ� m�n
mþn jVðGÞj,

(ii) aðGÞ� m
mþn jVðGÞj.

Proof

(i) Since 1� m
n � 2 it follows with Theorem 1.4 that G has a

fK1;1;K1;2;Cm : m� 3g-factor. Furthermore, for all S � VðGÞ:

iso ðG� SÞ� m

n
jSj ¼ 2m

2n
jSj

, 2n

mþ n
iso ðG� SÞ� 2m

mþ n
jSj

, iso ðG� SÞ � m� n

mþ n
iso ðG� SÞ� jSj þ m� n

mþ n
jSj

, iso ðG� SÞ� jSj þ m� n

mþ n
iso ðG� SÞ þ jSjð Þ:

Since iso ðG� SÞ þ jSj � jVðGÞj for all S � VðGÞ it follows that

iso ðG� SÞ� jSj þ m� n

mþ n
jVðGÞj:

Now, the result follows with Theorem 2.10 and Corollary 2.6.
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(ii) By (i), G has as a fK1;1;K1;2;Cm : m� 3g-factor F with

minðG;K1;2Þ� m�n
mþn jVðGÞj. Then, for all S � VðGÞ we have

iso ðG� SÞ� iso ðF � SÞ� 2
m� n

mþ n
jVðGÞj þ 1

2
jVðGÞj � 3

m� n

mþ n
jVðGÞj

� �

� m� n

2ðmþ nÞ jVðGÞj þ
1

2
jVðGÞj ¼ m

mþ n
jVðGÞj

h

In the following we will apply Lovász’ (g, f)-factor Theorem, which is on

multigraphs.

Theorem 2.12 [12] Let G be a multigraph and let g; f : VðGÞ ! Z be functions
such that gðvÞ� f ðvÞ for all v 2 VðGÞ. Then G has a (g, f)-factor if and only if for
all disjoint subsets S and T of V(G),

cðS; TÞ ¼
X

v2S
f ðvÞ þ

X

v2T
dGðvÞ � gðvÞð Þ � jEGðS; TÞj � qHðS; TÞ

¼
X

v2S
f ðvÞ þ

X

v2T
dG�SðvÞ � gðvÞð Þ � qHðS;TÞ� 0;

where qHðS; TÞ denotes the number of components C of G� ðS [ TÞ such that
gðvÞ ¼ f ðvÞ for all v 2 VðCÞ and

X

v2VðCÞ
f ðvÞ þ jEGðC; TÞj 
 1 mod 2:

Notice that qHðS; TÞ ¼ 0 for all disjoint subsets S and T of V(G), if gðvÞ\f ðvÞ for
all v 2 VðGÞ.

The following theorem extends a result of Berge and Las Vergnas (Theorem 7 in

[4]) from [1, 2]-factors to fK1;1;K1;2;Cm : m� 3g-factors of a graph.

Theorem 2.13 Let G be a graph that has a fK1;1;K1;2;Cm : m� 3g-factor. For
e 2 EðGÞ, say e ¼ uv, there is no fK1;1;K1;2;Cm : m� 3g-factor which contains e if
and only if there is a subset S of V(G) that satisfies

(i) u; v 2 S
(ii) 2jSj � 2� iso ðG� SÞ� 2jSj.

Furthermore, the inequalities of (ii) are tight.

Proof The condition iso ðG� SÞ� 2jSj in (ii) is satisfied, since G has a

fK1;1;K1;2;Cm : m� 3g-factor. Therefore, it remains to prove that

2jSj � 2� iso ðG� SÞ. We first consider the graph G0 which is obtained from G
by contracting e, that is VðG0Þ ¼ ðVðGÞnfu; vgÞ [ fwg and EðG0Þ is obtained from

EðG½VðGÞnfu; vg�Þ [ fxw : xu 2 EðGÞ or xv 2 EðGÞg. Notice that G0 is not nec-

essarily a simple graph. Let S be a subset of V(G) and S0 a subset of VðG0Þ. Then we
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call the sets S and S0 corresponding sets, if Snfu; vg ¼ S0nfwg, and u; v 2 S if and

only if w 2 S0.

Claim 4 G has a fK1;1;K1;2;Cm : m� 3g-factor F with e 2 F if and only if G0 has a
ðg0; f 0Þ-factor with g0ðxÞ ¼ 1, f 0ðxÞ ¼ 2 for all x 2 VðG0Þnfwg, g0ðwÞ ¼ 0 and
f 0ðwÞ ¼ 1.

If G has a fK1;1;K1;2;Cm : m� 3g-factor F with e 2 F and e is contained in a Cm-

component, then decompose this component into K1;1 and K1;2-components. So e is
either contained in a K1;1-component or in a K1;2-component. Contract e, and the

remaining edges of F in G0 obviously form a ðg0; f 0Þ-factor of G0.
If G0 has a ðg0; f 0Þ-factor F0, then g0ðwÞ 2 f0; 1g. If g0ðwÞ ¼ 0, then let

F ¼ F0 [ fu; vg � w. Otherwise, assume w0 2 NF0 ðwÞ and vw0 2 EðGÞ and let

F ¼ F0nfww0g [ fuv; vw0g. Then F is a [1, 2]-factor of G and in any case, e is an

end edge of a path.

If we decompose all paths of length at least three into paths of length one or two,

then we get a fK1;1;K1;2;Cm : m� 3g-factor F00 of G with e 2 F00, and the claim is

proved.

,, ( ‘‘: Let S be a set of V(G) with u; v 2 S and 2jSj � 2� iso ðG� SÞ. Let S0 be
the corresponding set of S. Since u; v 2 S, we have w 2 S0. Further jSj ¼ jS0j þ 1,

iso ðG� SÞ ¼ iso ðG0 � S0Þ and 2jS0j � iso ðG0 � S0Þ.
Let T 0 :¼ Iso ðG0 � S0Þ and let f 0, g0 be the same as in Claim 4. Then it follows

X

x2S0
f 0ðxÞ þ

X

x2T 0
ðdG0�S0 ðxÞ � g0ðxÞÞ ¼ 2jS0j � 1� jT 0j � � 1:

By Theorem 2.12, G0 has no ðg0; f 0Þ-factor and by Claim 4 G has no

fK1;1;K1;2;Cm : m� 3g-factor that contains e.
,, ) ‘‘: Let e be an edge of E(G), say e ¼ uv, that is not contained in any

fK1;1;K1;2;Cm : m� 3g-factor of G.
Since G has a fK1;1;K1;2;Cm : m� 3g-factor, G also has a (g, f)-factor with

gðxÞ ¼ 1 and f ðxÞ ¼ 2 for all x 2 VðGÞ and by Theorem 2.12 for all disjoint subsets

X and Y of V(G) we have

cðX; YÞ ¼
X

x2X
f ðxÞ þ

X

y2Y
ðdG�XðyÞ � gðyÞÞ� 0: ð1Þ

Since e is not contained in any fK1;1;K1;2;Cm : m� 3g-factor of G, by Claim 4 and

Theorem 2.12, there are two disjoint subsets X0 and Y 0 of VðG0Þ with cðX0; Y 0Þ\0

(with respect to g0 and f 0). Let S0 and T 0 be two subsets of VðG0Þ satisfying

cðS0; T 0Þ\0.

Case 1: w 62 S0 [ T 0. We have

cðS0; T 0Þ ¼
X

x2S0
f 0ðxÞ þ

X

x2T 0
ðdG0�S0 ðxÞ � g0ðxÞÞ ¼

X

x2S
f ðxÞ þ

X

x2T
ðdG�SðxÞ � gðxÞÞ ¼ cðS; TÞ:

This is a contradiction, since by inequality (1) it follows that cðS0; T 0Þ � 0.

Case 2: w 2 T 0. We have
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cðS0; T 0Þ ¼
X

x2S0
f 0ðxÞ þ

X

x2T 0
ðdG0�S0 ðxÞ � g0ðxÞÞ

¼
X

x2S0
f 0ðxÞ þ

X

x2T 0nw
ðdG0�S0 ðxÞ � g0ðxÞÞ þ dG0�S0 ðwÞ � g0ðwÞ

¼
X

x2S
f ðxÞ þ

X

x2Tnfu;vg
ðdG�SðxÞ � gðxÞÞ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
� 0

þ dG0�S0 ðwÞ � 0� 0;

again a contradiction.

Case 3: w 2 S0. We have

cðS0; T 0Þ ¼
X

x2S0
f 0ðxÞ þ

X

x2T 0
ðdG0�S0 ðxÞ � g0ðxÞÞ

¼ 2jS0j � 1� jT 0j þ
X

x2T 0
dG0�S0 ðxÞ\0

and, since cðS0; T 0Þ is a natural number, it follows, that

X

x2T 0
dG0�S0 ðxÞ� jT 0j � 2jS0j: ð2Þ

Since
P

x2T 0 dG0�S0 ðxÞ� 0, we have jT 0j � 2jS0j.
Suppose iso ðG0 � S0Þ\2jS0j. It follows that

P
x2T 0 dG0�S0 ðxÞ� jT 0j � 2jS0j þ 1, a

contradiction by the right side of inequality (2). Therefore, iso ðG0 � S0Þ � 2jS0j.
We have jSj ¼ jS0j þ 1 and iso ðG� SÞ ¼ iso ðG0 � S0Þ. Therefore, there is a

subset S of V(G) with u; v 2 S and 2jSj � 2� iso ðG� SÞ, if there is no

fK1;1;K1;2;Cm : m� 3g-factor that contains e.
We give some examples to show that the inequalities of (ii) are tight.

• For the given graph there is no fK1;1;K1;2;Cm : m� 3g-factor that contains the
edge e ¼ uv and for S ¼ fu; vg we have iso ðG� SÞ ¼ 2jSj

vu

• For the given graph there is no fK1;1;K1;2;Cm : m� 3g-factor that contains the
edge e ¼ uv and for S ¼ fu; vg we have iso ðG� SÞ ¼ 2jSj � 1
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vu

• For the given graph there is no fK1;1;K1;2;Cm : m� 3g-factor that contains the
edge e ¼ uv and for S ¼ fu; v; v1; v2g we have jSj ¼ 4, iso ðG� SÞ ¼ 6. Thus,

iso ðG� SÞ ¼ 2jSj � 2

v2vuv1

h

Corollary 2.14 Let G be a graph that has a fK1;1;K1;2;Cm : m� 3g-factor and
e 2 EðGÞ. If e is not contained in any fK1;1;K1;2;Cm : m� 3g-factor, then f ðeÞ ¼ 0

for every maximum fractional matching f of G.

Proof By Theorem 1.4 we have iso ðG� SÞ� 2jSj for all S � VðGÞ. Hence, G has

a maximum fK1;1;K1;2;Cm : m� 3g-factor by Theorem 2.5. In particular, e is not an
edge of any maximum fK1;1;K1;2;Cm : m� 3g-factor and it follows with Corollary

2.9 that f ðeÞ ¼ 0 for every maximum fractional matching of G. h

3 Component Factors of Edge-Chromatic Critical Graphs

Woodall [21] proved that aðGÞ� 3
5
jVðGÞj for a critical graph G. Using his proof

approach we generalize some of his results to deduce that every critical graph has a

[1, 2]-factor. The components of [1, 2]-factors are paths and circuits. A path with an

odd (even) number of vertices is called an odd (even) path. The length of a path is

the number of edges appearing in it. Clearly, every [1, 2]-factor can be decomposed

into a fK1;1;K1;2;Cm : m� 3g-factor. We will use this fact to prove an upper bound

for minðG;K1;2Þ, for critical graphs. As a reminder,

minðG;K1;2Þ ¼ minftF2 : F is a fK1;1;K1;2;Cm : m� 3g-factor of Gg, where tF2 is

the number of K1;2 components of a fK1;1;K1;2;Cm : m� 3g-factor F. Every odd

path of length n can be decomposed into n
2
� 1 K1;1-components and one K1;2-

component and every even path of length m can be decomposed into dm
2
e K1;1-
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components. Therefore, the minimal number of odd paths of a [1, 2]-factor equals

minðG;K1;2Þ.

Lemma 3.1 (Vizing’s Adjacency Lemma [18]) Let G be a critical graph. If
e ¼ xy 2 EðGÞ, then at least DðGÞ � dGðyÞ þ 1 vertices in NðxÞnfyg have degree
DðGÞ.

Let G be a critical graph. If vw is an edge of G, then we denote by rðv;wÞ the
number of vertices in NðwÞnfvg that have degree at least

2DðGÞ � dGðvÞ � dGðwÞ þ 2. We have 2DðGÞ � dGðvÞ � dGðwÞ þ 2�DðGÞ, since
in a critical graph G, dGðvÞ þ dGðwÞ�DðGÞ þ 2. Further, we have

rðv;wÞ�DðGÞ � dGðvÞ þ 1; ð3Þ

since by Lemma 3.1, w has at least DðGÞ � dGðvÞ þ 1 neighbors different from v
with degree DðGÞ.

Lemma 3.2 [20] Let G be a critical graph and v 2 VðGÞ and let

pmin :¼ min
w2NðvÞ

rðv;wÞ � DðGÞ þ dGðvÞ � 1 and p :¼ min pmin;
1

2
dGðvÞ

� �

� 1

� �

:

ð4Þ

Then v has at least dGðvÞ � p� 1 neighbors w for which rðv;wÞ�DðGÞ � p� 1.

Theorem 3.3 Let G be a critical graph and let S be an arbitrary subset of V(G).
Then

iso ðG� SÞ\ 3

2
� 1

DðGÞ

� �

jSj:

Proof Let G be a critical graph, S be an arbitrary subset of V(G) and

T ¼ Iso ðG� SÞ. Further let T� ¼ ft 2 T : 2� dGðtÞ\ 1
2
DðGÞg,

Tþ ¼ ft 2 T : 1
2
DðGÞ� dGðtÞ\DðGÞg, and Tþþ ¼ ft 2 T : dGðtÞ ¼ DðGÞg. In a

critical graph there are no vertices of degree less than 2, so T ¼ T� [ Tþ [ Tþþ.
We define two functions fi : T ! R with fiðtÞ ¼ giðdGðtÞÞ for all vertices t 2 T

and i 2 f1; 2g, where gi : N ! R and

g1ðkÞ :¼
2ðDðGÞ � kÞ

k
and g2ðkÞ :¼

DðGÞ � 2

k � 1
:

The functions g1 and g2 are both decreasing functions of k.

Claim 5 For all t 2 Tþ, f1ðtÞ� f2ðtÞ.

Proof Let t be a vertex of Tþ and k :¼ dGðtÞ. Then
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f2ðtÞ � f1ðtÞ ¼ g2ðkÞ � g1ðkÞ ¼
ðDðGÞ � 2Þk � 2ðDðGÞ � kÞðk � 1Þ

kðk � 1Þ

¼ ð2k � DðGÞÞðk � 2Þ
kðk � 1Þ � 0

since k� 1
2
DðGÞ and k� 2. Thus, the claim is proved.

We now define three charge functions Mi, i 2 f0; 1; 2g on V(G) as follows:

Mi : VðGÞ ! N with

M0ðtÞ ¼ 0;

M0ðsÞ ¼ 3DðGÞ � 2;

M0ðvÞ ¼ 0;

We will prove that the functions M1 and M2 satisfy

(i)
P

v2VðGÞ M1ðvÞ\ð3DðGÞ � 2ÞjSj,
(ii)

P
v2VðGÞ M2ðvÞ�

P
v2VðGÞ M1ðvÞ.

This will imply

2DðGÞjTj ¼
X

v2VðGÞ
M2ðvÞ�

X

v2VðGÞ
M1ðvÞ\ð3DðGÞ � 2ÞjSj

and therefore,

iso ðG� SÞ ¼ jT j\ 3

2
� 1

DðGÞ

� �

jSj;

which is the required result.

Proof of (i) Starting with the distribution M0, let each vertex in T receive charge 2

from each of its neighbors in S. Let the resulting charge distribution be called MH

0 .

We have MH

0 ðtÞ ¼ 2dGðtÞ for all t 2 T and for all s 2 S,

MH

0 ðsÞ ¼ 3DðGÞ � 2� 2jNðsÞ \ T j �DðGÞ � 2. So MH

0 ðvÞ�M1ðvÞ for all

v 2 VðGÞ, with strict inequality if s is a vertex of S with fewer than DðGÞ
neighbors in T. There exists such a vertex s, since either s has a neighbor in

VðGÞnðS [ TÞ or S [ T ¼ VðGÞ and S is not an independent set, since a critical

graph cannot be bipartite. Thus,
P

v2VðGÞ M1ðvÞ\
P

v2VðGÞ M
H

0 ðvÞ ¼
P

v2VðGÞ M0ðvÞ ¼ ð3DðGÞ � 2ÞjSj. This proves

(i). h

Proof of (ii) Starting with the distribution M1, we will redistribute charge according

to the following discharging rule:

• Step 1: Each vertex s 2 S gives charge f1ðtÞ to each vertex t 2 NðsÞ \ Tþ.
• Step 2: Each vertex s 2 S distributes its remaining charge equally among all

vertices (if any) in NðsÞ \ T�.
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The resulting charge distribution we denote by MH

1 .

Claim 6 MH

1 ðsÞ� 0 ¼ M2ðsÞ for all s 2 S.

Proof We compare the above discharging rule, the actual discharging rule, with the

equitable discharging rule in which each vertex s 2 S distributes its charge of

M1ðsÞ ¼ DðGÞ � 2 equally among all its neighbors (if any) in T� [ Tþ. Let s 2 S
and let d be the minimum degree of the neighbors of s. By Lemma 3.1 the vertex s
has at least DðGÞ � dþ 1 neighbors of degree DðGÞ, and hence, at most d� 1

neighbors in T� [ Tþ. Thus, under the equitable discharging rule, each vertex

t 2 NðsÞ \ Tþ receives from s at least

DðGÞ � 2

d� 1
� DðGÞ � 2

dGðtÞ � 1
¼ f2ðtÞ� f1ðtÞ;

by Claim 5. Hence, every vertex of NðsÞ \ Tþ receives no more charge from s in
Step 1 of the actual discharging rule than it would receive under the equitable dis-

charging rule. Thus, MH

1 ðsÞ� 0 ¼ M2ðsÞ for all s 2 S. h

It remains to show that MH

1 ðtÞ� 2DðGÞ ¼ M2ðtÞ for all t 2 T . For all t 2 Tþþ,

MH

1 ðtÞ ¼ 2DðGÞ ¼ M2ðtÞ. Further, for all t 2 Tþ,

MH

1 ðtÞ ¼ 2dGðtÞ þ dGðtÞf1ðtÞ ¼ 2DðGÞ ¼ M2ðtÞ. It remains to consider vertices in

T�.
We fix a vertex t 2 T� and denote by k the degree of t, so k ¼ dGðtÞ. Further we

define a function h with h : N�N0 ! R by

hðk; lÞ ¼ 1

k � l� 1
DðGÞ � 2� lg1ðDðGÞ � k þ 2Þð Þ

¼ 1

k � l� 1
DðGÞ � 2� l

2ðk � 2Þ
DðGÞ � k þ 2

� �

:

Claim 7 If l is a nonnegative integer and a vertex s 2 S is a neighbor of t such that
rðt; sÞ�DðGÞ � k þ lþ 1, then s gives t at least charge h(k, l) in Step 2.

Proof By definition of rðt; sÞ, vertex s has rðt; sÞ neighbors with degree at least

2DðGÞ � k � dGðsÞ þ 2. Since dGðsÞ�DðGÞ and t 2 T� and therefore, k\ 1
2
DðGÞ,

2DðGÞ � k � dGðsÞ þ 2�DðGÞ � k þ 2[
1

2
DðGÞ:

By Lemma 3.1, vertex s has at least DðGÞ � k þ 1 neighbors with degree DðGÞ. Let
Lþþ be a set of DðGÞ � k þ 1 neighbors of s with degree DðGÞ, and let Lþ be a set,

disjoint from Lþþ, of l neighbors of s with degree at least DðGÞ � k þ 2, which

exists since rðt; sÞ�DðGÞ � k þ lþ 1 by hypothesis. So Lþþ � Tþþ [ S [
VðGÞnðS [ TÞð Þ and Lþ � Tþþ [ Tþ [ S [ VðGÞnðS [ TÞð Þ.
Applying the actual discharging rule, vertex s gives nothing to any vertex in Lþþ

and in Step 1 s gives each vertex in Lþ at most charge g1ðDðGÞ � k þ 2Þ, since g1 is
a decreasing function and the degree of any vertex in Lþ is at least DðGÞ � k þ 2. So
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the remaining charge of s is at least DðGÞ � 2� lg1ðDðGÞ � k þ 2Þ and there are

dGðsÞ � ðDðGÞ � k þ lþ 1Þ� k � l� 1 remaining neighbors of s.
For each vertex v 2 Tþ

DðGÞ � 2

k � 1
[

DðGÞ � 2

dGðvÞ � 1
� g2ðdGðvÞÞ� g1ðdGðvÞÞ;

since dGðvÞ[ k and hence,

hðk; lÞ�
DðGÞ � 2� l DðGÞ�2

k�1

k � l� 1
¼ ðDðGÞ � 2Þðk � l� 1Þ

ðk � 1Þðk � l� 1Þ � g1ðdGðvÞÞ ¼ f1ðvÞ:

Therefore, any vertex in T� gets as least as much of it as any other neighbor of s and
therefore, at least h(k, l). Thus, the claim is proved.

We now prove that vertex t gets at least 2ðDðGÞ � kÞ charge in Step 2. This

implies that MH

1 ðtÞ�M1ðtÞ þ 2ðDðGÞ � kÞ ¼ 2DðGÞ ¼ M2ðtÞ.
We define p as in (4) of Lemma 3.2. It follows that t has at least k � p� 1

neighbors s 2 S with rðt; sÞ�DðGÞ � p� 1. Let NþðtÞ be a set of k � ðpþ 1Þ such
neighbors and let N�ðtÞ ¼ NðtÞnNþðtÞ. The set N�ðtÞ contains pþ 1 neighbors s of
t, each with rðt; sÞ�DðGÞ � k þ pþ 1, by the definition of p. Applying Claim 7 to

the vertices N�ðtÞ with l ¼ p for the vertices in N�ðtÞ and l ¼ k � p� 2 for the

vertices in NþðtÞ, we see that t receives charge of at least Mþðk; pÞ in Step 2, where

Mþðk; pÞ :¼ ðpþ 1Þhðk; pÞ þ ðk � ðpþ 1ÞÞhðk; k � p� 2Þ:

It remains to show that Mþðk; pÞ� 2ðDðGÞ � kÞ. Let r ¼ pþ 1, so that 1� r� 1
2
k,

since 0� p� 1
2
k � 1 by (3) and (4). Setting

b :¼ 2ðk � 2Þ
DðGÞ � k þ 2

and a :¼ DðGÞ � 2þ b

we can write

Mþðk; pÞ ¼ rða� brÞ
k � r

þ ðk � rÞða� bðk � rÞÞ
r

:

The derivative of this with respect to r is

ak � bk2 þ bðk � rÞ2

ðk � rÞ2
� ak � bk2 þ br2

r2
¼ ak � bk2

ðk � rÞ2
� ak � bk2

r2
:

This is zero if and only if r ¼ 1
2
k (unless ak � bk2 ¼ 0, ifMþðk; pÞ is independent of

p); thus, Mþðk; pÞ, regarded as a function of p, has only one stationary point (for

positive p), when pþ 1 ¼ 1
2
k. Substituting this value of p gives
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Mþ k;
1

2
k � 1

� �

¼ 2 DðGÞ � 2� ðk � 2Þ2

DðGÞ � k þ 2

 !

� 2ðDðGÞ � kÞ;

where the inequality holds because k\ 1
2
DðGÞ and so

ðk � 2Þ2

DðGÞ � k þ 2
� k � 2:

To complete the proof, we must consider also the other extreme value of p, p ¼ 0,

and show that Mþðk; 0Þ� 2ðDðGÞ � kÞ, so we have to show that

DðGÞ � 2

k � 1
þ ðk � 1Þ DðGÞ � 2� 2ðk � 2Þ2

DðGÞ � k þ 2

 !

� 2ðDðGÞ � kÞ: ð5Þ

This evidently holds with equality if k ¼ 2; so we may assume that k� 3. Since

k\ 1
2
DðGÞ, we can write DðGÞ ¼ 2k þ q, where q� 1. Ignoring the first term of (5),

and dividing through by k � 1 and rearranging, it suffices to show that

2k þ q� 2� 2ðk þ qÞ
k � 1

� 2ðk � 2Þ2

k þ qþ 2
� 0: ð6Þ

Since the left side of (6) is clearly an increasing function of q, it suffices to verify

inequality (6) for q ¼ 1, when the left side becomes

2k � 1� 2ðk þ 1Þ
k � 1

� 2k2 � 8k þ 8

k þ 3
¼ 2k � 1� 2� 4

k � 1
� 2k þ 14� 50

k þ 3

¼ 11� 4

k � 1
� 50

k þ 3
;

which is positive since k� 3.

This completes the proof of (ii) and also of Theorem 3.3. h

Theorem 3.4 Let G be a critical graph. Then G has a fK1;1;K1;2;Cm : m� 3g-
factor with minðG;K1;2Þ ¼ jVðGÞj � 2lf ðGÞ. In particular, minðG;K1;2Þ� 1

5
jVðGÞj

and aðGÞ� 3
5
jVðGÞj for all DðGÞ� 2.

Proof Let G be a critical graph and let S be an arbitrary subset of V(G). By

Theorem 3.3, iso ðG� SÞ\ 3
2
� 1

DðGÞ

	 

jSj\ 3

2
jSj, and the statement follows by

Theorem 2.10 and Corollary 2.11. h

Furthermore, we have:

Theorem 3.5 Let G be a critical graph. For every edge e there is a
fK1;1;K1;2;Cm : m� 3g-factor F with e 2 EðFÞ.

Proof Let G be a critical graph and let e ¼ vw. Suppose to the contrary that there is

no fK1;1;K1;2;Cm : m� 3g-factor that contains e. By Theorems 3.3 and 2.13 there is
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a subset S of V(G) with u; v 2 S and 2jSj � 2� iso ðG� SÞ\ 3
2
� 1

DðGÞ

	 

jSj\ 3

2
jSj.

Since u; v 2 S, we have jSj � 2 and hence, DðGÞ� 3.

If DðGÞ ¼ 3, then 2jSj � 2\ 3
2
� 1

3

� �
jSj ¼ 7

6
jSj , 5

6
jSj\2 , jSj\ 12

5
.

Since jSj and iso ðG� SÞ are integers, jSj ¼ 2 and iso ðG� SÞ ¼ 2. Let v1; v2 be
the isolated vertices of G� S. Since G is critical and jSj ¼ 2, dðviÞ ¼ 2 and

NGðviÞ ¼ S, i 2 f1; 2g. This is a contradiction, since in a critical graph vertices of

degree two have no common neighbor.

If DðGÞ� 4, then 2jSj � 2\ 3
2
jSj , 1

2
jSj\2 , jSj\4.

Since jSj and iso ðG� SÞ are integers, there are the following two possibilities. If

jSj ¼ 2, then iso ðG� SÞ ¼ 2.Again a contradiction. If jSj ¼ 3, then iso ðG� SÞ ¼ 4.

Since in a critical graph, there are no vertices of degree less than 2, the number of edges

inEGðS; Iso ðG� SÞÞ� 8. Since the degree of a vertex in iso ðG� SÞ is atmost 3, with

Lemma 3.1 a vertex of S has a least DðGÞ � 2 vertices of degree DðGÞ (DðGÞ� 4).

Therefore, EGðS; Iso ðG� SÞÞ� 6. A contradiction. h

4 Fractional Matchings on Edge-Chromatic Critical Graphs

The study of fractional matchings of critical graphs gives insight into the structure

of critical graphs. Our studies of component factors of critical graphs use the

concept of fractional matchings. We propose the following conjecture.

Conjecture 4.1 If G is a critical graph, then G has a fractional perfect matching.

Conjecture 4.1 is in between Conjectures 1.8 and 1.9. We have: Conjecture 1.8

implies Conjecture 4.1, which implies Conjecture 1.9. Clearly, Conjecture 4.1 is

true for 2-critical graphs.

For a graph G with DðGÞ ¼ k, the k-deficiency of G is kjVðGÞj � 2jEðGÞj and it

is denoted by s(G). The function f with f ðeÞ ¼ 1
k for each e 2 EðGÞ is a fractional

matching on G. Hence, we obtain the following corollary.

Corollary 4.2 If G is a k-critical graph, then lf ðGÞ� 1
2
ðjVðGÞj � bsðGÞk cÞ, and

therefore, minðG;K1;2Þ� bsðGÞk c, and aðGÞ� 1
2
ðjVðGÞj þ bsðGÞk cÞ.

Let k� 2 be an integer and G be a graph with DðGÞ ¼ k. Let v 2 VðGÞ with

dGðvÞ ¼ d and let NGðvÞ ¼ fv1; v2; . . .; vdg. Let u1; . . .; uk be vertices of degree

k � 1 in a complete bipartite graph Kk;k�1. Graph G0 is a Meredith extension [13] of

G (applied on v), if it is obtained from G� v and Kk;k�1 by adding edges viui for
each i 2 f1; . . .; dg. The copy of Kk;k�1 which replaces v is denoted by Kv

k;k�1. In [9]

it is proved that G is critical if and only if G0 is critical. Similar to the proofs of the

corresponding statements for Conjectures 1.8 and 1.9 [3, 15] we can apply Meredith

extension to prove the following statement.

Theorem 4.3 The following two statements are equivalent for each k� 3:

1. Every k-critical graph G has a fractional perfect matching.
2. Every k-critical graph G with dðGÞ ¼ k � 1 has a fractional perfect matching.
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Proof Let G be a k-critical graph. Apply Meredith extension to all vertices v of G
with dGðvÞ\k � 1. The resulting graph H has dðHÞ ¼ k � 1 and it has a fractional

perfect matching if G has one.

If H has a fractional perfect matching, then, by Theorem 1.1, there is one, say f,

such that f ðeÞ 2 f0; 1
2
; 1g for all e 2 EðHÞ. If u is a vertex of G to which Meredith

extension was applied on, then j supp ðf Þ \ oHðVðKu
k;k�1ÞÞj 2 f1; 2g. In both cases it

is easy to see that the contraction of the Kk;k�1 yields a critical graph which has a

fractional perfect matching. So eventually G has one. h

Let G be a graph with Gallai–Edmonds decomposition (D, A, C). Liu and Liu

[11] proved that lf ðGÞ ¼ lðGÞ if and only if D is an independent set. In particular,

lf ðGÞ ¼ lðGÞ if G has a 1-factor. Furthermore, if G has a 1- or a 2-factor, then G

has a fractional perfect matching. In [9] it is shown that for all k� 3 there are k-
critical graphs of even order which have no 1-factor, and that there are k-critical
graphs G of odd order and G� v does not have a 1-factor, where dGðvÞ ¼ dðGÞ. We

propose a conjecture which is unsolved even for critical graphs which have a near

perfect matching. However, it is true if Conjecture 4.1 is true.

Conjecture 4.4 Let k� 3 and G be a k-critical graph. If G does not have a 1-factor,
then lf ðGÞ[ lðGÞ.
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9. Grünewald, S., Steffen, E.: Chromatic-index-critical graphs of even order. J. Graph Theory 30(1),
27–36 (1999)

10. Las Vergnas, M.: An extension of Tutte’s 1-factor theorem. Discrete Math. 23(3), 241–255 (1978)

11. Liu, Y., Liu, G.: The fractional matching numbers of graphs. Networks 40(4), 228–231 (2002)

12. Lovász, L.: Subgraphs with prescribed valencies. J. Combin. Theory 8, 391–416 (1970)

13. Meredith, G.H.J.: Regular n-valent n-connected non-Hamiltonian non-n-edge-colorable graphs.

J. Combin. Theory Ser. B 14, 55–60 (1973)

14. Scheinerman, E.R., Ullman, D.H.: Fractional Graph Theory. Dover Publications, Inc., Mineola, NY

(2011). A rational approach to the theory of graphs, With a foreword by Claude Berge, Reprint of the

1997 original

15. Steffen, E.: Approximating Vizing’s independence number conjecture. Australas. J. Combin. 71,
153–160 (2018)

16. Tutte, W.T.: The 1-factors of oriented graphs. Proc. Am. Math. Soc. 4, 922–931 (1953)

17. Vizing, V.G.: The chromatic class of a multigraph. Kibernetika (Kiev) 1965(3), 29–39 (1965)

18. Vizing, V.G.: Critical graphs with given chromatic class. Diskret. Analiz No. 5, 9–17 (1965)

19. Vizing, V.G.: Some unsolved problems in graph theory. Uspehi Mat. Nauk 23(6(144)), 117–134
(1968)

20. Woodall, D.R.: The average degree of an edge-chromatic critical graph. II. J. Graph Theory 56(3),
194–218 (2007)

21. Woodall, D.R.: The independence number of an edge-chromatic critical graph. J. Graph Theory

66(2), 98–103 (2011)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps

and institutional affiliations.

123

580 Graphs and Combinatorics (2021) 37:559–580


	Fractional Matchings, Component-Factors and Edge-Chromatic Critical Graphs
	Abstract
	Introduction and Motivation
	Fractional Matching Number and Star-Cycle Factors
	Component Factors of Edge-Chromatic Critical Graphs
	Fractional Matchings on Edge-Chromatic Critical Graphs
	Open Access
	References




