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Abstract
In this paper we establish conditions for a permutation group generated by a single
permutation to be an automorphism group of a graph. This solves the so called concrete
version of König’s problem for the case of cyclic groups. We establish also similar
conditions for the symmetry groups of other related structures: digraphs, supergraphs,
and boolean functions.

Keywords Graph automorphism · Automorphism group · Permutation group ·
Cyclic group

1 Introduction

Frucht’s theorem, conjectured by Dénes König states that every abstract finite group is
isomorphic to the automorphism group of a graph [30]. On the other hand it is known
that not every permutation group is an automorphism group of a graph. For example,
there is no graph on n vertices whose automorphism group is the cyclic group Cn

generated by an n-element cycle. The problem asking which permutation groups can
be represented as automorphism groups of graphs is known as the concrete version of
König’s problem [29].

This problem turned out much harder and was studied first for regular permuta-
tion groups as the problem of Graphical Regular Representation. There were many
partial results (see for instance [15–17,22–24,26–28]) until the full characterization
was obtained by Godsil [6] in 1979. In [2], Babai uses the result of Godsil to prove a
similar characterization in the case of directed graphs.

In [20,21], Mohanty et al., consider permutation groups generated by a single
permutation (they call them cyclic permutation groups) whose order is a prime or a
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power of a prime. In [21, Theorem 3], they described those cyclic permutation groups
of prime power order greater than 5 that are automorphism groups of graphs. However,
the results contained some gaps. The authors made a false claim that there are no such
groups of prime order 3 or 5. Also the proof of the main result contained a gap. All this
has been corrected in [9]. Our aim is to generalize these results to cyclic permutation
groups of arbitrary order.

When comparing the results in [7,8,10,14,25] one may observe that usually formu-
lations of theorems concerning graphical representability are more natural and nicer
when the problems are considered for edge-colored graphs rather than for simple
graphs. In [13] we provide a relatively simple characterization of those cyclic permu-
tation groups that are automorphism groups of edge-colored graphs. We also prove
that each such permutation group is an automorphism group of a 3-colored graph.

In fact, the problem for edge-colored graphs has been considered already by
H.Wielandt in [29]. Permutation groups that are automorphismgroups of edge-colored
digraphs were called 2-closed, and those that are automorphism groups of colored
graphs were named 2∗-closed. In [18], A. Kisielewicz introduced the so-called graph-
ical complexity of permutation groups. ByGR(k)wedenote the class of automorphism
groups of k-colored graphs, by which we mean the graphs whose edges are colored
with at most k colors. By GR we denote the union of all classes GR(k), which is the
class of 2∗-closed groups. Moreover, we put GR∗(k) = GR(k)\GR(k − 1), and for
a permutation group A, we say that A has a graphical complexity k if A ∈ GR∗(k).
Then, GR(2) is the class of automorphism groups of simple graphs.

In this paper we fully characterize those cyclic permutation groups that are auto-
morphism groups of simple graphs. In the last section we consider the same problem
for other structures: digraphs, supergraphs, and boolean functions.

In Sect. 2, we recall some definitions concerning edge-colored graphs and permu-
tation groups. We recall two results from [10], and prove their generalizations we
need in the sequel. In Sect. 3, we recall results concerning cyclic permutation groups
of prime order. In Sect. 4, we present some minimal (in a sense) permutation groups
that do not belong to GR(2), while in Sect. 5, we present minimal cyclic permutation
groups which do belong to GR(2). These will be used in the proof of the main results.
In Sect. 6, we prove another auxiliary result which we call the extension lemma. The
main results of the paper are given in Sect. 7. They include the results of [13]. Our
approach is a little different than that in [13], and therefore we obtain, by the way,
another proof of the results of [13]. The last section presents the corresponding results
for digraphs, supergraphs, and boolean functions.

2 Definitions and Basic Facts

We assume that the reader has the basic knowledge in the areas of graphs and permu-
tation groups. In fact, the terminology is standard and the reader is referred to [1,30].
The permutation groups are considered up to permutation isomorphism.

We need to refer to some results on the automorphism groups of k-colored graphs,
so we recall here related terminology. A k-colored graph (or more precisely k-edge-
colored graph) is a pair G = (V , E), where V is the set of vertices, and E is an
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edge-color function from the set P2(V ) of two elements subsets of V into the set of
colors {0, . . . , k − 1} (in other words, G is a complete simple graph with each edge
colored by one of k colors). In some situations it is helpful to treat the edges colored 0
as missing. In particular, the 2-colored graph can be treated as a usual graph. Also, if
no confusion can arise, we omit the adjective “colored”. By a (sub)graph ofG spanned
on a subset W ⊆ V we mean G ′ = (W , E ′) with E ′({v,w}) = E({v,w}), for all
v,w ∈ W .

Let v,w ∈ V and i ∈ {0, . . . , k − 1}. If E({v,w}) = i , then we say that v and
w are i-neighbors. Moreover, for a set X ⊆ {0, . . . , k − 1}, we say that a vertex w

is a X -neighbor of a vertex v if there is a color i ∈ X such that w is i-neighbor of
v. By di (v) (i-degree of a vertex v) we denote the number of i-neighbors of v. For
X ⊆ {0, . . . , k−1}, we say thatG is X -connected, if for every v,w ∈ V there is a path
v = v0, v1, . . . , vn = w in G such that the color of each edge {vi , vi+1} belongs to X .
Obviously, for a k-colored graph G = (V , E), and for the sets X ,Y ⊆ {0, . . . , k − 1}
such that X∪Y = {0, . . . , k−1},G is either X -connected orY -connected. In particular,
there is always a color p such that G is ({0, . . . , k − 1}\{p})-connected.

An automorphism of a colored graph G is a permutation σ of the set V preserving
the edge function: (E({v,w}) = E({σ(v), σ (w)}), for all v,w ∈ V ). The group of
automorphisms of G will be denoted by Aut(G), and considered as a permutation
group (Aut(G), V ) acting on the set of the vertices V .

Permutation groups are treated up to permutation isomorphism. Generally, a per-
mutation group A acting on a set V is denoted (A, V ) or just A, if the set V is clear or
not important. By Sn , we denote the symmetric group on n elements, and by In the one
element group acting on n elements (consisting of the identity only, which in all the
cases is denoted by id). ByCn we denote a regular action ofZn . In particular, S2 = C2.
By Dn we mean the group of symmetries of n-cycle i.e., the group of automorphisms
of a graph G = (V , E) with V = {v0, . . . , vn−1}, E({vi , v(i+1 mod n)) = 1 for all
i , and E(vi , v j ) = 0, otherwise. This is clear that Cn < Dn with index two. Every
element of Dn\Cn has order two and is called a reflection. If n is odd, every reflection
fixes exactly one point; if n is even, the half of reflections fix two points, and the other
half fix no point.

Let W be a subset of V that is preserved by (A, V ). By a restriction of A to the
set W , we mean a permutation group (B,W ) that is permutation isomorphic with the
quotient group A/KerW (A) acting naturally on the set W , where KerW (A) = {a
∈ A; a(w) = w for every w ∈ W }.

The permutation groups considered in this paper are cyclic as abstract groups, i.e.,
generated by a single permutation: A = 〈σ 〉. If σ has a decomposition c1 · · · cn on
cycles with disjoint notions, then A has n orbits O1, . . . , On such that |Oi | = |ci |,
and A restricted to the orbit Oi is equal to C|Oi |. A restriction of A to the set W
= Oi1 ∪ · · · ∪ Oim is a permutation group generated by a permutation τ = ci1 · · · cim .
We say also that τ is a restriction of σ to the set W .

Later, we will use two kinds of products of permutation groups:
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Direct sum. For permutation groups (A, V ), (B,W ), by a direct sum of A and B we
mean a permutation group (A ⊕ B, V ∪ W ) with the action given by

(a, b)(x) =
{
a(x) for x ∈ V ,

b(x) for x ∈ W .

Parallel product. For a permutation group (A, V ), the parallel product A\\n is a per-
mutation group (A, V × {1, . . . , n}) with the following natural action.

a((v1, k)) = (a(v1), k).

Thus, A\\n ≈ A × In .
Now, we recall two theorems which are proved in [10] and will be used later.

Theorem 2.1 [10, Corollary 3.5] Let A = A1 ⊕ A2 be a directed sum. Then, A ∈ GR
if and only if each of A1 and A2 belongs to GR or A is equal to I2 = I1 ⊕ I1.

Theorem 2.2 [10, Lemma 3.1 and Theorem 4.1] Let A1, A2 ∈ GR(k), for some
k ≥ 2. Then,

(1) A1 ⊕ A2 ∈ GR(k + 1).
(2) If A1 �= A2, then A1 ⊕ A2 ∈ GR(k).
(3) A1 ⊕ In ∈ GR(k) ∪ {I2}.

Later on, we will need one more lemma.

Lemma 2.3 Let k ≥ 1 and B /∈ GR(k) be a permutation group such that for
every k-colored graph G, with the property B ⊆ Aut(G), there is a permutation
f ∈ Aut(G)\B preserves all the orbits of B. Then, B ⊕ C /∈ GR(k) for every
permutation group C.

Proof Let B = (B, V ) and G ′ be a k-colored graph such that B ⊕ C ⊆ Aut(G ′).
Then, obviously, the graph G, spanned on the set V , has the mentioned property. Let
f ∈ Aut(G)\B be a permutation which preserves all the orbits of B. By f ′ we denote
a permutation which acts as f on V and fixes all other vertices of G ′. Obviously,
f ′ /∈ B ⊕ C . We show that f ′ ∈ Aut(G ′).
We have to show that the colors of the edges of the graph G ′ are preserved by f ′.

If an edge e is contained in the graph G, then f ′(e) = f (e) and E( f ′(e)) = E( f (e))
= E(e) as required. If neither of the ends of e belongs to V , then f ′(e) = e and the
statement is still true. The only nontrivial case is the edges of the form e = {v,w},
where v ∈ V and w /∈ V . Then, f ′(e) = { f (v), w}. Since f preserves all orbits of
B, there exists b ∈ B such that f (v) = b(v). Consequently, f ′(e) = b′(e), where
b′ = (b, I d) ∈ B ⊕C . Hence E( f ′(e)) = E(b′(e)) = E(e), as required. This shows
that f ′ ∈ Aut(G ′) and completes the proof of lemma. �

This iswell known (see [10], for instance) that I1 ∈ GR(0), I2 /∈ GR, In ∈ GR∗(3),
for n ∈ {3, 4, 5}, and In ∈ GR(2), otherwise. This completes the case of permutation
group of order one (which, as we see, is not quite trivial). In future consideration, we
assume that the order of a cyclic permutation group is at least two.
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3 Earlier Results

In this section we recall the results completing the description of the graphical com-
plexity of cyclic permutation groups of prime order started in [20,21]. Those groups
have the form Cp

\\r ⊕ Iq . The result from [20] can be written as follows.

Theorem 3.1 [20, Theorem 3] Every permutation group of order two belongs to
GR(2).

Theorem 3.2 [20, Theorem 2] Let p > 5 be a prime. Then, Cp
\\r ∈ GR(2) if and only

if r ≥ 2.

Our complete results are the following.

Theorem 3.3 Let p be a prime, r ≥ 1, q ≥ 0 and A = Cp
\\r ⊕ Iq . Then,

(1) A /∈ GR, for r = 1 and p �= 2,
(2) A ∈ GR∗(3), for r = 2 and p ∈ {3, 5},
(3) A ∈ GR(2), otherwise.

Theorem 3.4 Let A be a cyclic permutation group of order pn. Let ki , i ∈ {1, . . . , n}
denotes the number of orbits of A of cardinality pi . If p �= 2, then

(1) if
∑n

i=1 ki = 1, then A /∈ GR,
(2) if

∑n
i=1 ki = 2, then

• A ∈ GR∗(3), for k1 ∈ {1, 2} and p ∈ {3, 5},
• A ∈ GR(2), otherwise,

(3) if
∑n

i=1 ki > 2, then A ∈ GR(2).

A situation is a little different when p = 2.

Theorem 3.5 Let A be a cyclic permutation group of order 2n. Let ki , i ∈ {1, . . . , n}
denotes the number of orbits of A of cardinality 2i . Then,

(1) if
∑n

i=2 ki = 1, then A /∈ GR,
(2) if

∑n
i=2 ki = 2, k1 = 0 and k2 ∈ {1, 2}, then A ∈ GR∗(3),

(3) A ∈ GR(2), otherwise.

4 Permutation Groups OutsideGR(2)

In this section, we show a few one-generated permutation groups that have a small
number of orbits, and are not automorphism groups of a 2-colored graph. In the general
case, for every one-generated permutation group (A, V ), there is a subsetW ⊆ V such
that A restricted to W is one of the permutation groups of this form.

As it was mentioned before, for n > 2 and for every k-colored graph G, if Aut(G)

⊇ Cn , then Aut(G) ⊇ Dn . Hence, Cn /∈ GR, for n > 2. We prove the similar
statement for some other cases.
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Theorem 4.1 Let A be a one-generated permutation group with two orbits O1 and O2
such that gcd(|O1|, |O2|) ∈ {3, 4, 5}. Then, A /∈ GR(2).

Proof Let (A, O1 ∪ O2) = 〈σ 〉, O1 = {v0, . . . , v|O1|−1}, O2 = {w0, . . . , w|O2|−1},
σ (vi ) = v(i+1 mod |O1|), and σ (wi ) = w(i+1 mod |O2|). We consider the action of A
on the set of edges. There are three types of orbits in this action. Type one is when
the orbits consist of some edges {v,w}, where {v,w} ⊆ O1. Type two is when the
orbits consist of some edges {v,w}, where {v,w} ⊆ O2. Type three is when the orbits
consist of some edges {v,w}, where v ∈ O1 and w ∈ O2. As it was mentioned above,
it is not any matter what are the colors of the edges of the orbits of the type one and
two. The group of automorphisms of a graph spanned on Oi , i ∈ {1, 2} will contain
D|Oi |. This can change when we color the orbits of the type three. However, such a
situation does not take place.

If gcd(|O1|, |O2|) = x , then there are exactly x orbits of the type three. For x = 3,
there are two kinds of coloring:

(a) all orbits are colored in one color,
(b) one orbit is colored in some color and two orbits in another.

In the case (a), the group of automorphisms of the graph contains D|O1| ⊕ D|O2|. In
the case (b), we may exchange the names of the vertices (in a cyclic way) such that a
reflection

f1 = (v1, v|O1|−1)(v2, v|O1|−2) · · · (v�(|O1|−1)/2�, v�(|O1|+1)/2�) ◦
◦(w1, w|O2|−1)(w2, v|O2|−2) · · · (w�(|O2|−1)/2�, w�(|O2|+1)/2�)

will be an automorphism of the graph.
For x = 4 and x = 5 we have four kinds of coloring:

(a) all orbits are colored in one color,
(b) one orbit is colored in different color than the rest of the orbits,
(c) the orbits which contain the edges {v0, w0} and {v0, w2} are colored in one color

and the rest of the orbits are colored in the second color,
(d) the orbits which contain the edges {v0, w0} and {v0, w1} are colored in one color

and the rest of the orbits are colored in the second color.

In the case (a), we have the same situation as in the case (a) for x = 3. For x = 5,
in the remaining cases, we have the same situation as in the case (b) for x = 3. The
same is true in cases (b) and (c) for x = 4. In the case (d) for x = 4, the situation is a
little different. There is no automorphism that acts as a fixing point reflection on every
orbit but still there is an automorphism that acts as a reflection on every orbit. After
exchanging the names of the vertices (in a cyclic way) the permutation

f2 = (v1, v|O1|−1)(v2, v|O1|−2) · · · (v|O1|/2−1, v|O1|/2+1) ◦
◦(w0, w|O2|−1)(w1, v|O2|−2) · · · (w|O2|/2−1, w|O2|/2)

is an automorphism of the graph. This permutation fixes two points in the orbit O1;
v0 and v|O1|/2 but fixes no point in the orbit O2. This is clear that we may also find
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and automorphism of the graph that fixes two point in the orbit O2 and fixes no point
in the orbit O1.

Since in every case, we have an automorphism of a graph that does not belong to
A, we have A /∈ GR(2). �
We note that in the case, where gcd(|O1|, |O2|) ∈ {3, 5}, and for every graph G, if
Aut(G) ⊇ A, then Aut(G) contains a permutation that acts as a fixing point reflection
on each orbit. Observe also that if |Oi | is divided by 2 for some i ∈ {1, 2}, then there
is an automorphism f3 of a graph that acts as no fixing point reflection of the orbit Oi

and as a fixing point reflection on the other orbit.
Using Theorem 4.1, and observations from the proof, we prove the following three

theorems.

Theorem 4.2 Let A be an one-generated permutation group with three orbits O1, O2
and O3 such that gcd(|O1|, |O2|) ∈ {3, 4, 5}, gcd(|O1|, |O3|) ∈ {3, 4, 5}, and
gcd(|O2|, |O3|) = 1 . Then, A /∈ GR(2).

Proof Let (A, O1∪O2∪O3) = 〈σ 〉,O1 = {v0, . . . , v|O1|−1}O2 = {w0, . . . , w|O2|−1},
O3 = {u0, . . . , u|O3|−1}, σ (vi ) = v(i+1 mod |O1|), σ (wi ) = w(i+1 mod |O2|), and
σ (ui ) = u(i+1 mod |O3|). We consider the action of A on the set of edges. There are
few types of orbits in this action. We color these orbits to obtain a graph such that
Aut(G) ⊇ A. Any such coloring of the orbits consisting of some edges {v,w}, where
{v,w} ⊆ Oi permits to an action of every permutation that acts on Oi as an ele-
ment of D|Oi |. Any such coloring of the orbits consisting of some edges {v,w}, where
v ∈ Oi , w ∈ Oi+1, is like in the proof of Theorem4.1, and permits to an action of every
permutation that acts on Oi and Oi+1 either as f1 of as f3 for gcd(|O1|, |O3|) ∈ {3, 5}
and either as f1 of as f2 for gcd(|O1|, |O3|) = 4. There is still and orbit consisting
of all edges {v,w}, where v ∈ O1, w ∈ O3. Any coloring of this orbit permits to an
action of every permutation that preserves the orbits O1 and O2.

This shows that if gcd(|O1|, |O2|) ∈ {3, 5} and gcd(|O2|, |O3|) ∈ {3, 5}, then, after
exchanging the names of the vertices, the permutation

(v1, v|O1|−1)(v2, v|O1|−2) · · · (v�(|O1|−1)/2�, v�(|O1|+1)/2�) ◦
◦(w1, w|O2|−1)(w2, v|O2|−2) · · · (w�(|O2|−1)/2�, w�(|O2|+1)/2�) ◦
◦(u1, u|O3|−1)(u2, u|O3|−2) · · · (u�(|O3|−1)/2�, u�(|O3|+1)/2�)

belongs to Aut(G)\A. If gcd(|O1|, |O2|) ∈ 4 and gcd(|O2|, |O3|) ∈ {3, 5}, then, after
exchanging the names of the vertices, the permutation

(v1, v|O1|−1)(v2, v|O1|−2) · · · (v|O1|/2−1, v|O1|/2+1) ◦
◦(w0, w|O2|−1)(w1, v|O2|−2) · · · (w|O2|/2−1, w|O2|/2)
◦(u1, u|O3|−1)(u2, u|O3|−2) · · · (u(|O3|−1)/2, u(|O3|+1)/2)

belongs to Aut(G)\A. This completes the proof. �
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Theorem 4.3 Let A be an one-generated permutation group with four orbits
O1, O2, O3 and O4 such that gcd(|O1|, |O2|) ∈ {3, 4, 5}, gcd(|O2|, |O3|) ∈
{3, 4, 5}, gcd(|O3|, |O4|) ∈ {3, 4, 5}, and gcd(|O1|, |O3|) = gcd(|O1|, |O4|)
= gcd(|O2|, |O4|) = 1. Then, A /∈ GR(2).

Theorem 4.4 Let A be an one-generated permutation group with four orbits O1, O2,
O3, O4 that gcd(|O1|, |O2|) = 4, gcd(|O1|, |O3|) = 3 and gcd(|O1|, |O4|) = 5.
Moreover, gcd(|O2|, |O3|) = 1, gcd(|O3|, |O4|) = 1, and gcd(|O2|, |O4|) = 1.
Then, A /∈ GR(2).

Proof of Theorems 4.3 and 4.4. The same proof works in both cases and is similar to
the previous one. Let (A, O1 ∪ O2 ∪ O3 ∪ O4) = 〈σ 〉, where O1 = {v0, . . . , v|O1|−1},
O2 = {w0, . . . , w|O2|−1}, O3 = {u0, . . . , u|O3|−1}, and O4 = {t0, . . . , t|O4|−1}.More-
over, σ (vi ) = v(i+1 mod |O1|), σ (wi ) = w(i+1 mod |O2|), σ (ui ) = u(i+1 mod |O3|),
and σ (ti ) = t(i+1 mod |O4|). All the possibilities that occur in Theorem 4.3 are sim-
ilar. Therefore, we may assume gcd(|O1|, |O2|) = 4, gcd(|O2|, |O3|) = 3, and
gcd(|O3|, |O4|) = 5 in this case.

Any coloring of the graph G, such that Aut(G) ⊇ A, permits to an action of a
permutation that, after exchanging the names of the vertices, is equal either to

(v1, v|O1|−1)(v2, v|O1|−2) · · · (v|O1|/2−1, v|O1|/2+1) ◦
◦(w1, w|O2|−1)(w2, v|O2|−2) · · · (w|O2|/2−1, w|O2|/2+1) ◦
◦(u1, u|O3|−1)(u2, u|O3|−2) · · · (u(|O3|−1)/2, u(|O3|+1)/2)

◦(t1, t|O4|−1)(t2, t|O4|−2) · · · (t(|O4|−1)/2, t(|O4|+1)/2)

or to

(v1, v|O1|−1)(v2, v|O1|−2) · · · (v|O1|/2−1, v|O1|/2+1) ◦
◦(w0, w|O2|−1)(w1, v|O2|−2) · · · (w|O2|/2−1, w|O2|/2)
◦(u1, u|O3|−1)(u2, u|O3|−2) · · · (u(|O3|−1)/2, u(|O3|+1)/2)

◦(t1, t|O4|−1)(t2, t|O4|−2) · · · (t(|O4|−1)/2, t(|O4|+1)/2)

None of these permutations belong to A. This completes the proof. �
A little more complicated proof is in the situation, where A has three orbits such

that 3 divides |O1| and |O2| but not |O3|, 5 divides |O2| and |O3| but not |O1|, and 2
divides |O1| and |O3| but not |O2|. However, the statement is the same.

Theorem 4.5 Let A be an one-generated permutation group with three orbits O1, O2,
O3 such that gcd(|O1|, |O2|) = 3, gcd(|O2|, |O3|) = 5 and gcd(|O1|, |O3|) ∈ {2, 4}.
Then, A /∈ GR(2).

Proof There are four cases depending on if 4 divides |O1| and if 4 divides |O3|. At
the beginning, we consider the three cases where 4 divides at most one of |O1| and
|O3|. Similarly as in the proof of Theorem 4.2 (case gcd(|O1|, |O2|) ∈ {3, 5} and
gcd(|O1|, |O3|) ∈ {3, 5}), it is not any matter how we color the edges which are not of
the form {v,w}, where v ∈ O1 and w ∈ O3. In every coloring, there is a permutation
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σ which acts as a fixing point reflection on every of three orbits. Consider the orbits
of the group A (in action on the set of edges) consisting of some edges {v,w}, where
v ∈ O1 and w ∈ O3. There are only two such orbits. Those orbits are preserved by
σ . Hence, the group of automorphisms of the graph is not equal to A. Moreover, it
contains a permutation that acts as a fixing point reflection on every of the three orbits.

The remaining case is where 4 divides both |O1| and |O3|. We consider the restric-
tion of A to the set O2 ∪ O3 (we denote it B = 〈τ 〉). By Theorem 4.1, for every
graph G such that Aut(G) ⊇ B, there exists a permutation σ that acts as a fixing point
reflection on both orbits O2 and O3.We consider the action of the group A on the set of
the edges. Let R = {{v,w} : v ∈ O1, w ∈ O2} and T = {{v,w} : v ∈ O1, w ∈ O3}.
Then, A has three orbits which are contained in R and four orbits which are contained
in S. The only three nontrivial colorings of those orbits (up to symmetries) are when
we color one orbit which is contained in R in color 1 and other two in color 0 and we
color either one or two orbits which are contained in T in color 1 and other in color 0
(as in Theorem 4.1 in case x = 4). It is easy to verify that in all those three cases there
is an automorphism of a graph which acts as reflection on O1 and as τ nσ on the set
O2 ∪ O3, for some n. Hence, the group of automorphisms of the graph is not equal to
A. �

5 The First Step of Induction

In this section we study one-generated permutation groups (A, V ) ∈ GR(k) such that
whenever we remove one of the orbits (say O), then a restriction of A to the set V \O
does not belong to GR(k).

In [21], it is proved the following.

Theorem 5.1 [21, Theorem 1] Let A be a one-generated permutation group with two
orbits O1, O2 with the property |O1| > 5 and |O1| divides |O2|. Then, A ∈ GR(2).

At first we generalize this theorem and prove the following.

Lemma 5.2 Let A be a one-generated permutation group with two orbits O1, O2 such
that gcd(|O1|, |O2|) > 5. Then, A ∈ GR(2).

Proof Let (A, V ) = 〈σ 〉. Let gcd(|O1|, |O2|) = x , |O1| = xy and |O2| = xz.Wemay
assume O1 = {v0, . . . , vxy−1}, O2 = {w0, . . . , wxz−1}, where σ(vi ) = v(i+1 mod xy)

and σ(wi ) = w(i+1 mod xz). By σi , we denote the restriction of σ to the set Oi . Then,

A ⊆ 〈σ1〉 ⊕ 〈σ2〉 and A = {σ i
1σ

j
2 : such that i ≡ j mod x}.

We consider the case when either y �= 1 or z �= 1. By C(xy, xz) we denote the
graph G = (V , E) defined as follows. V = O1 ∪ O2,

E({v,w}) =

⎧⎪⎪⎨
⎪⎪⎩

1 for v = vi , w = v j and j ≡ i + 1 mod xy
1 for v = wi , w = w j and j ≡ i + 1 mod xz,
1 for v = vi , w = w j and (i − j mod x) ∈ {0, 1, 3},
0 otherwise.

This is easy to verify that A preserves the colors of the edges of C(xy, xz) and
therefore, A ⊆ Aut(C(xy, xz)). We prove the opposite inclusion. The 1-degree of a
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vertex which belongs to O1 is equal to 3z+2. The 1-degree of a vertex which belongs
to O2 is equal to 3y + 2. Since y �= z, every automorphism of C(xy, xz) preserves
the partition of V on O1 and O2. Consequently, Aut(C(xy, xz)) ⊆ Dxy ⊕ Dxz .

We show that reflections are forbidden. Since A is transitive on O1 and on O2, and
moreover, A ⊆ Aut(C(xy, xz)), it is enough to exclude one reflection on O1 and one
reflection on O2. We show that an element ab ∈ Dxy ⊕ Dxz , where b ∈ Dxz and

a = (v1, vxy−1)(v2, vxy−2) · · ·
(
v� xy−1

2 �, v� xy+1
2 �

)
,

does not belong to Aut(C(xy, xz)). For v ∈ V , by N (v), we denote the set of
1-neighbors of v in the opposite orbit. Then,

N (v0) = {wi : (i mod x) ∈ {0, x − 1, x − 3}},
N (v1) = {wi : (i mod x) ∈ {0, 1, x − 2}},
N (v3) = {wi : (i mod x) ∈ {0, 1, 3}},

N (vxy−1) = {wi : (i mod x) ∈ {x − 1, x − 2, x − 4}},
N (vxy−3) = {wi : (i mod x) ∈ {x − 3, x − 4, x − 6}}.

Since a(v0) = v0, a(v1) = vxy−1, a(v3) = vxy−3, we have a(w0) ∈ N (v0)

∩N (vxy−1) ∩ N (vxy−3). Since x > 5, this intersection is empty. In the similar way,
one may exclude a reflection on O2. Hence, Aut(C(xy, xz)) ⊆ Cxy ⊕ Cxz .

We show that if ab ∈ Aut(C(xy, xz)), where a = id and b ∈ Cxz , then b = σ xl
2

for some l. We know that ab fixes v0, v1 and v3. Hence, the image of w0 has to
belong to the intersection N (v0) ∩ N (v1) ∩ N (v3) which is equal to {wi : i ≡ 0
mod x}. Consequently, b = σ xl

2 , as required. In similar way one may show that if
ab ∈ Aut(C(xy, xz)), where b = id and a ∈ Cxy , then a = σ xl

1 for some l. Since
A ⊆ Aut(C(xy, xz)), this implies the inclusion Aut(C(xy, xz)) ⊆ A.

Now, let y = z = 1. Then, by C(x, x), we denote the graph G = (V , E) defined
as follows. V = O1 ∪ O2,

E({v,w}) =
⎧⎨
⎩
1 for v = vi , w = v j and j ≡ i + 1 mod x,
1 for v = vi , w = w j and (i − j mod x) ∈ {0, 1, 3},
0 otherwise,

Again, it is easy to verify that A preserves the colors of the edges of C(x, x).
Hence, we have A ⊆ Aut(C(x, x)). We prove the opposite inclusion. The 1-degree
of a vertex which belongs to O1 is equal to 5. The 1-degree of a vertex which belongs
to O2 is equal to 3. Hence, every automorphism of C(x, x) preserves the partition of
the set V on the orbits O1 and O2. The graph spanned on O1 is isomorphic with a
x-cycle. This implies that Aut(C(x, x)), restricted to the set O1, is contained in Dx .
Let a ∈ Aut(C(x, x)) be a permutation such that a(v0) = (v0). We consider the
possibilities on a(w0). We obtain that a(w0) ∈ N (v0) = {w0, wx−1, wx−3}.

Assume first that a does not act trivially on O1. Then, for i > 1, we
have a(vi ) = vx−i . Since w0 ∈ N (v0) ∩ N (v1) ∩ N (v3), we know that
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a(w0) ∈ N (v0)∩ N (vx−1)∩ N (vx−3). However, the set N (v0)∩ N (vx−1)∩ N (vx−3)

is empty. Consequently, if a ∈ Aut(C(x, x)) and it fixes v0, then it fixes every vertex
which belongs to O1. This implies that a(w0) ∈ N (v0) ∩ N (v1) ∩ N (v3) = {w0}.
Hence, a fixes w0. Since C(x, x) is preserved by σ , we have immediately that a fixes
every vertex in O2. Hence a is a trivial permutation. Consequently, Aut(C(x, x)) = A.

�
Now, we consider the cases where gcd(|O1|, |O2|) ∈ {3, 4, 5}. We prove the fol-

lowing two lemmas.

Lemma 5.3 Let A be a one-generated permutation group with two orbits O1 and O2
such that gcd(|O1|, |O2|) ∈ {3, 4, 5}. Then, A ∈ GR(3).

Proof In the case y = z = 1, this is a consequence of Lemma 3.3 in [9]. We have also
defined the graph C(x, x) there. In the other cases, we use the same symbols as in the
proof of Lemma 5.2. We define C(xy, xz) as follows. G = O1 ∪ O2.

E({v,w}) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 for v = vi , w = v j and j ≡ i + 1 mod xy,
1 for v = wi , w = w j and j ≡ i + 1 mod xz,
1 for v = vi , w = w j and i ≡ j mod x,
2 for v = vi , w = w j and i ≡ j + 1 mod x,
0 otherwise.

From the definition of C(xy, xz), we have immediately that A preserves the
colors of the edges of C(xy, xz). Hence, A ⊆ Aut(C(xy, xz)). We prove that
Aut(C(xy, xz)) preserves the sets O1 and O2. Indeed, the 1-degree of a vertex, which
belongs to O1 is equal to z+2. The 1-degree of a vertex, which belongs to O2 is equal
to y + 2. These numbers are different.

The remaining part of the proof is similar to the appropriate part of the proof of
Lemma 5.2. By N1(v), we denote the set of 1-neighbors of the vertex v in the set
O2, and by N2(v), the set of 2-neighbors of the vertex v in the set O2. We show that
permutations that acts as reflections on someof the setsO1 orO2 are forbidden.We take
a ∈ Aut(C(xy, xz)) that fixes v0. Observe that N2(v0) = N1(v1). Moreover, since
x > 2, N2(v0)∩N1(vxy−1) = ∅. Therefore, a fixes v1. Since a subgraph ofC(xy, xz)
spanned on O1 is a |O1-cycle a acts trivially on O1. Since A ⊆ Aut(C(xy, xz)), no
reflection on O1 is possible. Since the role of O1 and O2 are symmetric, the same is
true for O2.

We have to show that if a ∈ Aut(C(xy, xz)) fixes v0, then a acts as σ xl
2 on O2 for

some l. We have N1(v0) = {wxl; l ∈ {0, . . . , z − 1}}. Therefore, a(w0) = wxl for
some l. Since the subgraph of (C(xy, xz)) spanned on O2 is a |O2|-cycle, we have
that a acts as σ xl

2 on O2. Again the role of O1 and O2 are symmetric, therefore, the
same is true for O1 (a permutation that fixes w0 acts as σ xl

1 on O1 for some l. Thus,
A = Aut(C(xy, xz)). �
Lemma 5.4 Let A be a one-generated permutation group with three orbits O1, O2 and
O3 such that gcd(|O1|, |O2|, |O3|) ∈ {3, 4, 5}. Then, A ∈ GR(2).
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Proof We denote x = gcd(|O1|, |O2|, |O3|) ∈ {3, 4, 5}. Moreover, |O1| = xy,
|O2| = xzt2, |O3| = xzt3, where y, z, t2, t3 are positive integers such that
gcd(y, zt2) = 1, gcd(y, zt3) = 1 and gcd(t2, t3) = 1. We may assume that either
t2 = t3 = 1 or t2 < t3. By changing the names of orbits we may exclude the situation
when y = 1, z = 1, t2 = 1 and t3 > 1. Let (A, V ) = 〈σ 〉 and Oi = {vi0, . . . , v1|Oi |−1}.
We may assume that σ(vij ) = vi( j+1 mod |Oi |). Let σi be the restriction of σ to the

set Oi . Then, A = {σ n
1 σm

2 σ k
3 , where n ≡ m mod x , n ≡ k mod x and m ≡ k

mod xz}.
By C(xy, xzt2, xzt3), we denote the graph G = (V , E) defined as follows. V

= O1 ∪ O2 ∪ O3.

E({v,w}) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1 for v = v1i , w = v1j and ( j − i mod x) ∈ M,

1 for v = vli , w = vlj , ( j − i mod x) ∈ Nl and l ∈ {2, 3},
1 for v = v1i , w = v2j and ( j − i mod x) ∈ {0, 1},
1 for v = v1i , w = v3j and i ≡ j mod x,
1 for v = v2i , w = v3j and i ≡ j mod xz,
0 otherwise,

where M = {1, xz − 1}, if neither y = (2z − 1)t2 + zt3 nor
y = zt1 + (z−1)

2 t2 and M = {2, . . . , xz − 2}, otherwise, Nl = ∅, if
y = z = t1 = t2 = 1 and Nl = {1, |Ol | − 1}, otherwise. In addition, we put
N2 = ∅ if y = 3, z = 1, t2 = 1, t3 = 6.

From the definition ofG, we have immediately Aut(G) ⊆ A.We prove the opposite
inclusion. At the beginning, we show that Aut(G) preserves the partition of V on
the sets O1, O2 and O3. We count the 1-degrees of the elements which belong to
these orbits. By di , we denote here the 1-degree of the vertices that belong to Oi . If
y = z = t1 = t2 = 1, then d1 = 5, d2 = 3 and d3 = 2. This implies that the partition
is preserved by Aut(G). Similarly, if y = 3, z = 2, t2 = 1, t3 = 2, then we have
d1 = 10, d2 = 8, d3 = 5.

Otherwise,d2 = 2+2y+t3,d3 = 2+y+t2.Moreover, if neither y = (2z−1)t2+zt3
nor y = zt1 + (z−1)

2 t2, then d1 is equal to D1 = 2 + 2zt2 + zt3 and d1 is equal to
y − 2 + 2zt2 + zt3, otherwise. Since t2 ≤ t3, we have d2 > d3. If d1 = D1, then
obviously, d1 /∈ {d2, d3}. If y = (2z − 1)t2 + zt3, then d1 = (4z − 1)t2 + 2zt3 − 2,
d2 = (4z−2)t2+ (2z+1)t3+2 and d3 = 2zt2+ zt3+2. Since t2 < t3, these numbers
are different.

If y = zt1 + z−1
2 t2, then d1 = 3zt2 + z+1

2 t3 − 2, d2 = 2zt2 + zt3 + 2 and
d3 = (z + 1)t2 + z−1

2 t3 + 2. Assume that d1 = d2. Then, zt2 + zt3
2 = 4. This is

possible only if either y = 3, z = 2, t2 = 1 and t3 = 2 or y = 1, z = 1, t2 = 1 and
t3 = 6. The former case was considered earlier. The other case, we have excluded.

Now, let d1 = d3. Then, (2z − 1)t2 + t3 = 4. This is possible
only if y = 1, z = 1, t2 = 1, t3 = 3. This case was also excluded. As a conse-
quence we have that, in every case, Aut(G) preserves the partition of the set V on the
sets O1, O2 and O3.

We show that Aut(G) = A. When G = C(3x, 2x, 4x), one may check it directly.
However, the fact that, when A has the orbits of cardinality 3x, 2x, 4x respectively,
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is immediate consequence of Lemmas 5.2 and 6.1. In proofs of those two lemmas,
we do not use Lemma 5.4. We consider the case when G = C(x, x, x). This is easy
to verify that A ⊆ Aut(C(x, x, x)). We have to prove the opposite inclusion. The
graph spanned on O1 is a |O1|-cycle. Moreover, every vertex, which belongs to O3
has exactly one 1-neighbor in the set O1 and every vertex, which belongs to O2 has
exactly one 1-neighbor in the set O3. This implies that Aut(C(x, x, x)) is equal either
to A or to Dx

\\3.We have to exclude the second case. Assume that a ∈ Aut(C(x, x, x))
fixes v10. Then, a fixes v20. The vertex v20 has only one 1-neighbor that belong O1 and
is not v10. This is the vertex v1x−1. This implies that a fixes v1x−1. Hence, a = id and
A = Aut(C(x, x, x)).

We consider the remaining cases. The graphs spanned on the sets Oi , i ∈ {1, 2, 3},
are either |Oi |-cycles or their complements. This implies that Aut(G) ⊆ D|O1|
⊕D|O2| ⊕ D|O3|. We have to exclude the reflections and unwanted elements of
C|O1| ⊕ C|O2| ⊕ C|O3|. By Ni (v), we denote here the set of 1-neighbors of the vertex
v in the set Oi .

Assume that a ∈ Aut(G) fixes v10. We have

N2(v
1
0) = {v2i : i mod x ∈ {0, 1}},

N3(v
1
0) = {v3i : i ≡ 0 mod x},

N2(v
3
i ) = {v2j : j ≡ i mod xz}.

This implies that a(v20) = v2i , for i ≡ 0 mod x , and moreover, a(v30) = v3j , for j ≡ 0

mod x . Assume that the action of a on O1 is nontrivial. We have v20 ∈ N2(v
1
xy−1).

Obviously, a(v1xy−1) = v11. Hence, a(v20) ∈ N (v11). Since N (v11) ∩ {v2i : i ≡ 0
mod x} = ∅, this is impossible. Consequently, there is no element in Aut(G) that acts
on O1 as a reflection. Moreover, if σ n

1 σm
2 σ k

3 , then n,m, k satisfy demanded properties.
Similarly, this implies immediately that there is no element in Aut(G) that acts as a
reflection on O3. Finally, in the same way, there is no element in Aut(G) that acts as
a reflection on O2. Hence, Aut(G) = A. �

In the remaining part of the paper, we will use not only the statements of Lem-
mas 5.2, 5.3 and 5.4 but also the constructions of the graphs C(n,m) and C(n,m, k).

On the end of this section, we write one more theorem.

Theorem 5.5 Let A be a one-generated permutation group with three orbits O1, O2
and O3 such that gcd(|O1|, |O2|) = 4 and |O3| = 2. Then, A ∈ GR(2).

Proof Theorem 5.5 is an immediate consequence ofmore general Lemma 6.4. In proof
of Lemma 6.4, we do not use Theorem 5.5. �

6 Extension Lemmas

We prove here the extension lemmas that we will use in a proof of general case.

Lemma 6.1 Let (B, V ) = 〈τ 〉 acts without fix points. Let O be one of the orbits of B
with following properties.
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• There is an orbit O ′ �= O such that gcd(|O ′|, |O|) �= 1. Moreover, if |O| > 2,
then gcd(|O ′|, |O|) > 2.

• If |O| = 2l, with l > 1, then there is no orbit of cardinality 2.
• A restriction of B to the set V \O, belongs to GR(k).

Then, B ∈ GR(k).

Proof Obviously, k ≥ 2. Let C be a restriction of B to the set V \O . Let
O1, O2, . . . , Os be a list of those orbits of C that gcd(|O|, |Oi |) > 1 for
every i ∈ {1, . . . , s}. Let c0 = |O|, and ci = |Oi | for i ∈ {1, . . . , s}.
We denote O = {v00, . . . , v0c0−1} and Oi = {vi0, . . . , vici−1}. We may assume

that τ(vij ) = vi( j+1 mod ci )
. Moreover, we denote xi = gcd(c0, ci ). We assume that,

for i < j , we have xi ≤ x j . This implies that if xi = 2, for some i , then x1 = 2 and
c0 = 2.

Let G = (V \O, E) be a k-colored graph such that Aut(G) = C . We construct
a finite number of graphs G∗ = (V , E∗), G∗∗ = (V , E∗∗), G0 = (V , E0), G1
= (V , E1), . . .. For one of the graphs Gi , with i ≥ 0, we will have Aut(Gi ) = B.

Let G∗ = (V , E∗), where

E∗({v,w}) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

E({v,w}) if {v,w} ⊆ V \O,

1 if v = vi , w = v j and
(i − j mod c0) ∈ {1, c0 − 1},

1 if v = v0i , w = vhj , (i mod xh) = ( j mod xh),
and h = 1 or xh �= 2,

0 otherwise.

Let G∗ = (V , E∗∗), where

E∗∗({v,w}) =
{
E∗({v,w}) + 1 mod 2 if v ∈ O, w ∈ Oh and c0 > ch,

E∗({v,w}) otherwise.

We define E0 = E∗∗, for s = 1 and for c0 /∈ {2, 4}. For s = 1 and c0 ∈ {2, 4}, we
define

E0({v,w}) =
{

(E∗({v,w}) + 1 mod 2) if {v,w} ⊆ O,

E∗({v,w}) otherwise.
.

Assume now that we have constructed a graph Gk , for k ≥ 0. Since O is the orbit
in V , every element of O has the same 1-degree (say mk) in Gk . By Pk we denote
the set of those elements of V \O that have 1-degree (in Gk) which is equal to mk .
Obviously, Pk is a union of orbits of the group C .

Wewill construct a graphGk+1 in the situation when either |Pk | > |O| or Oi ⊆ Pk ,
for some i ∈ {1, . . . , s}. In the other cases Gk is the final step of our construction.

If |Pk | > |O| and no set Oi is a subset of Pk , then we put

Ek+1({v,w}) =
{

1 if v ∈ O and w ∈ Pk,
Ek({v,w}) otherwise.
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The 1-degree of the elements which belong to O ∪ Pk is increased. The 1-degree
of remaining elements does not change. Obviously, after this change, the 1-degree of
the elements which belong to O is larger than of the 1-degree of those elements which
belong to Pk .

Let i ∈ {1, . . . , s} be such that Oi ⊆ Pk . We consider three situations.
Case 1. s = 1 and c1 = c0. Then,C = D⊕Cc1 . By Theorem 2.1,C ∈ GR(k), implies
c1 = 2. Then, by assumption c0 = 2. Consequently, C = D ⊕ C2

\\2 ∈ GR(k).
Case 2. Either s = 1, c1 �= c0 and c0 > 2 or s > 1 and x1 �= 2. We put

Ek+1({v,w}) =
{

(Ek({v,w}) + 1 mod 2) if v ∈ O and w ∈ O(i mod s)+1,

Ek({v,w}) otherwise.

Since x1 �= 2, in every case, the 1-degree of the elements that belong to O is increased.
The 1-degree of the elements that belong Oi is increased at most as 1-degree of the
elements that belong to O . Remaining elements have the same 1-degree as before. In
particular, 1-degree of the elements which belong to O is larger than the 1-degree of
those elements which belong to Pk .
Case 3. Either s = 1, c0 = 2 and c1 > 2 or s > 1 and x1 = 2. Obviously, c0 /∈ {3, 5}.
We Put

Ek+1({v,w}) =
⎧⎨
⎩

(Ek({v,w}) + 1 mod 2) if v ∈ O, w ∈ Oi+1 and i �= s,
(Ek({v,w}) + 1 mod 2) if v,w ⊆ O and i = s,

Ek({v,w}) otherwise.

If i = s, then since c0 /∈ {3, 5}, the 1-degree of the elements which belong to O is
increased. Remaining elements have the same 1-degree as before. If i < s, then the
1-degree of the elements which belong to O is increased. The 1-degree of the elements
which belong to Oi+1 is increased at most as 1-degree of the elements which belong to
O . Remaining elements have the same 1-degree as before. In both cases, the 1-degree
of the elements which belong to O is larger than the 1-degree of those elements which
belong to Pk .

Since the groupC has a finite number of orbits, the procedurewill finish after a finite
number of steps. If k is the final step, then |Pk | ≤ |O| and there is no i ∈ {1, . . . , s}
such that Oi ⊆ Pk . We show that Aut(Gk) = B.

First, we prove that every a ∈ Aut(Gk) stabilizes O . By the construction of the
graph Gk , if there is a vertex v ∈ V \O with the same 1-degree as the elements
which belong to O , then |O| /∈ {2, 4}. This implies that the graph spanned on O is
1-connected. We know that every vertex v ∈ V \O with the same 1-degree as the
elements of O is a 0-neighbor of every vertex that belong to O . Moreover, the number
of those elements is not greater than |O|. Hence, if some vertex that belongs to O is
moved out of O , then it is true for all elements which belong to O . This implies that
the graph spanned on the set a(O) has to be either O-cycle or its complement. Since
a(O) consists of at least two orbits of B, this is impossible. Consequently, the set O
is stabilized by every a ∈ Aut(Gk).

The graph spanned on the set V \O is equal to G. Hence, the group Aut(Gk),
restricted to V \O , is equal to C . The graph spanned on the set O is equal either to
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|O|-cycle or to the complement of |O|-cycle. Hence, the group Aut(Gk), restricted
to O , is equal either to Cc0 or to Dc0 . For c0 > 2, there is an orbit O ′ such that
gcd(|O|, |O ′|) > 2. In similar way as in proof of Lemma 5.2, a reflection on O
implies a reflection on O ′. Hence, the second case is excluded.

This is immediately from the definition of G∗ that τ preserves the colors of G∗.
Moreover, this is clear that the changes which are done in the graphs G∗∗, G0, . . . ,Gk

do not break it down. Consequently, every b ∈ B preserves the colors of the edges of
Gk . Hence, B ⊆ Aut(Gk).

Let S be the set of elements f ∈ Aut(Gk) which acts on the set V \O as τ . Since
B ⊆ Aut(Gk), such elements exist (τ is one of them). Since f acts on V \O as τ ,
the group generated by f , restricted to the set V \O , is equal to C . This implies that
|Aut(Gk)| = |C ||S|. We check the possible actions of f on the set O . For i > 0, we
have f (vij ) = vi( j+1 mod ci )

. By definition of the graph Gk , all the 1-neighbors (or

alternatively all 0-neighbors) of vi0 in the set O are vertices v0h , where h ≡ 0 mod xi .
All the 1-neighbors (or alternatively all 0-neighbors) of vi1 in the set O are vertices
v0g , where g ≡ 1 mod xi . This implies that f (v0j ) = v0( j+1 mod xi )

. Consequently,

f (v0j ) = v0( j+1 mod gcd(|C|,|O|)). Hence, the set S has at most |O|/ gcd(|C |, |O|)
elements. We have |Aut(Gk)| = |C ||S| ≤ |C ||O|/ gcd(|C |, |O|) = |B|. Since B
⊆ Aut(Gk), we have B = Aut(Gk). �

Lemma 6.2 Let (B, V ) = 〈τ 〉 acts without fix points. Let O1 and O2 be orbits of B
with the following properties.

• gcd(|O1|, |O2|) > 2.
• There is an orbit O /∈ {O1, O2} such that |O| > 2, gcd(|O|, |O1|) = 2 and
gcd(|O|, |O2|) ≤ 2 ,

• For every orbit O ′ /∈ {O1, O2}, we have gcd(|O ′|, |Oi |) ≤ 2, for i ∈ {1, 2},
• A restriction of B to the set V \(O1 ∪ O2) belongs to GR(k).

Then, B ∈ GR(l), where l = k, forgcd(|O1|, |O2|) > 5and l = max{3, k}, otherwise.

Proof Obviously, k ≥ 2. Let C be a restriction of the group B to the set
V \(O1 ∪ O2). We may denote x = gcd(|O1|, |O2|), |O1| = xy, |O2| = xz,
|O| = t , O1 = {v0, . . . , vxy−1}, O2 = {w1, . . . , wxz−1}, O = {u0, . . . , ut−1} and
τ(vi ) = v(i+1 mod xy), τ(wi ) = w(i+1 mod xz), τ(ui ) = u(i+1 mod t). Since C
∈ GR(k), there is at least one orbit different from O1, O2, and O .

Let G1 = (V \(O1 ∪ O2), E1) be a k-colored graph such that Aut(G1) = C . Since
k ≥ 2, without loss of generality wemay assume that, for a vertex v ∈ O , the 1-degree
of the vertex v (in a graphG1) is greater than 0. LetG2 = (O1∪O2, E2) = C(xy, xz).
We define a graph G = (V , E) as follows.

E({v,w}) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

E1({v,w}) if {v,w} ⊆ V \(O1 ∪ O2),

E2({v,w}) if {v,w} ⊆ O1 ∪ O2,

1 when v = vi , w = u j and i ≡ j mod 2,
1 when v ∈ O1 and w ∈ V \(O1 ∪ O2 ∪ O),

0 otherwise.
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We show that Aut(G) = B. The inclusion B ⊆ Aut(G) is an immediate consequence
of the definition of the graph G.

We prove the opposite inclusion. We show that Aut(G) preserves the set O1 ∪ O2.
We count the 1-degree of the vertices which belong to V . If v ∈ O2, then according to
the constructions of C(xy, xz) in Lemmas 5.2 and 5.3, d1(v) ≤ 3y+2 for x > 5, and
d1(v) ≤ y+2, otherwise. If v ∈ O , then since the 1-degree of the vertex v (in the graph
G1) is greater than 0, we have d1(v) > xy/2. If v /∈ O1 ∪ O2 ∪ O , then d1(v) > xy.
In the case when x > 6, we have 3y + 2 < xy/2. If x = 5, then y + 2 < xy/2. In
these two cases, the only vertices which have the same 1-degree as the vertices which
belong to O2, could be those which belong to O1. If this situation take place, then
obviously O1 ∪ O2 is preserved by Aut(G). Otherwise, O2 is preserved by Aut(G)

and O1 is a set consisting of all those vertices which have at least one 1-neighbor in
O2. Hence, O1 is preserved by Aut(G).

If x = 6, then 3y + 2 < xy. If x ∈ {3, 4}, then y + 2 < xy In both this cases
the vertices which belong to O2 have smaller 1-degree than the vertices which belong
to V \(O1 ∪ O2 ∪ O). If, in addition, the vertices which belong to O2 have different
1-degree than those which belongs to O , then we have the same situation as above.
Assume that this is not true. The vertices which belong to O2 and the vertices which
belong to O have the same 1-degree (say d). We have to consider two cases according
to 1-degree of the vertices which belong to O1. Assume v ∈ O1. If d1(v) = d, then
O2 consists of all these vertices of 1-degree equal to d which do not have 1-neighbor
outside O1 ∪ O2 ∪ O . Hence, O2 is preserved by Aut(G). As above, this implies
that O1 is preserved by Aut(G). If d1(v) �= d, then O2 ∪ O is preserved by Aut(G).
Moreover, there is no edge in color 1 between O2 and O . The graph spanned on O2 is
1-connected. The graph spanned on O is either 1-connected or has no edge in color 1.
This implies that, if for v ∈ O2 and a ∈ Aut(G), we have a(v) ∈ O , then a(O2) ⊆ O
and a(O) ⊆ O2. Since |O2| �= |O|, this is not possible. Hence, the set O2 is preserved
by Aut(G). Once again, this implies that O1 is preserved by Aut(G).

We have: the set O1 ∪ O2 is preserved by Aut(G), the graph spanned on O1
∪O2 is equal to G2 and the graph spanned on V \(O1 ∪ O2) is equal to G1. Hence,
Aut(G) ⊆ C ⊕ Aut(C(xy, xz)). Moreover, since for every orbit O ′ /∈ {O1, O2}, we
have gcd(|O ′|, |Oi |) ≤ 2 for i ∈ {1, 2}, and gcd(|O|, |O1|) = 2, the group B has
index 2 in C ⊕ Aut(C(xy, xz)). Since the vertices v0 and v1 have the different sets
of 1-neighbors in V \(O1 ∪ O2), the group Aut(G) has index at least 2 in the group
C ⊕ Aut(C(xy, xz)). Consequently, since B ⊆ Aut(B), we have B = Aut(G). �
Lemma 6.3 Let (B, V ) = 〈τ 〉 acts without fix points. Let O1, O2, O3 be orbits of B
with following properties.

• gcd(|O1|, |O2|, |O3|) = gcd(|O1|, |O2|) = gcd(|O1|, |O3|) ∈ {3, 4, 5},
• there is an orbit O /∈ {O1, O2, O3} such that |O| > 2, gcd(|O|, |O1|) = 2,
gcd(|O|, |O2|) ≤ 2 and gcd(|O|, |O3|) ≤ 2,

• for every orbit O ′ /∈ {O1, O2, O3}, we have gcd(|O ′|, |Oi |) ≤ 2, for i ∈ {1, 2, 3},
• a restriction of B to the set V \(O1 ∪ O2 ∪ O3) belongs to GR(k).

Then, B ∈ GR(k).
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Proof Obviously, k ≥ 2. Let C be a restriction of the group B to the set V \(O1 ∪ O2
∪O3). We denote x = gcd(|O1|, |O2|, |O3|), |O1| = xy, |O2| = xzt2, |O3| = xzt3,
where y, z, t2, t3 are positive integers such that zt2 and zt3 are not divided by 2.
Moreover, gcd(y, zt2) = 1, gcd(y, zt3) = 1 and gcd(t2, t3) = 1. In the same way as
in proof of Lemma 5.4, we assume that either t2 = t3 = 1 or t2 < t3, and as there, by
changing the names of the orbits, we exclude the situation when y = 1, z = 1, t2 = 1
and t3 > 1. Let Oi = {vi0, . . . , v1|Oi |−1}, i ∈ {1, 2, 3}, O = {w0, . . . , wt−1}. We may

assume that σ(vij ) = vi(i+1 mod |Oi |), i ∈ {1, 2, 3} and τ(wi ) = w(i+1 mod t). By A,
we denote the restriction of B to the set O1 ∪ O2 ∪ O3.

We consider the case |O1| = 3x, |O2| = 2x, |O3| = 4x . In proof of Lemma 5.4,
we have remained the proof that Aut(C(3x, 2x, 4x)) = A to the reader. In this case
we prove that B ∈ GR(k) in another way than in other cases. By Lemma 6.2, the
group B restricted to the set V \O1 belongs to GR(k). Consequently, by Lemma 6.1,
B ∈ GR(k).

Further, we consider those cases for which we have proved in Lemma 5.4 (with-
out using this lemma) that Aut(C(xy, xzt2, xzt3)) = A. Let G1 = (V \(O1 ∪ O2 ∪
O3), E1)

be a k-colored graph such that Aut(G1) = C . Let G2 = (O1 ∪ O2 ∪ O3, E2) =
C(xy, xzt2, xzt3). We define a graph G = (V , E) as follows.

E({v,w}) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

E1({v,w}) if {v,w} ⊆ V \(O1 ∪ O2 ∪ O3),

E2({v,w}) if {v,w} ⊆ O1 ∪ O2 ∪ O3,

1 when v = v1i , w = u j and i ≡ j mod 2,
1 when v ∈ O1 and w ∈ V \(O1 ∪ O2 ∪ O3 ∪ O),

1 when v ∈ O2 and w ∈ V \(O1 ∪ O2 ∪ O3),

0 otherwise.

We show that Aut(G) = B. The inclusion B ⊆ Aut(G) is an immediate consequence
of the definition of the graph G.

We prove the opposite inclusion. We show that Aut(G) preserves the set O1 ∪ O2
∪O3. We count the 1-degree of the vertices which belong to V . If v ∈ O3, then
according to the constructions ofC(xy, xzt2, xzt3) in Lemma 5.4, d1(v) ≤ y+ t2+2.
If v ∈ O2, then d1(v) > y + t3 + 2. If v ∈ O , then d1(v) ≥ xy/2 + xzt2. If
v /∈ O1 ∪ O2 ∪ O3 ∪ O , then d1(v) ≥ xy + xzt2. The number y + t2 + 2 is the
smallest of them. The only vertices, which have the same 1-degree as the vertices
that belong to O3 could be those that belong to O1. If the situation take place, then
obviously O1 ∪ O3 is preserved by Aut(G). If xy = xzt3, then for v ∈ O1, we have
d1(v) > y + zt2 + 2, and this is not this case. Otherwise, the vertices which belong
to O1 and the vertices which belong to O3 have different numbers of 1-neighbors in
the set O1 ∪ O3. Hence, O3 is preserved by Aut(G). If there is no vertices outside O3
with 1-degree equal to y + zt2 + 2, then this is also true. The set O1 ∪ O2 consists of
all the vertices which have at least one 1-neighbor in the set O3. This implies that the
set O1 ∪ O2 is preserved by Aut(G).

As in the previous lemma Aut(G) ⊆ A⊕C and the group B has an index 2 in A⊕C .
Since v10 and v11 have the different sets of 1-neighbors in V \(O1,∪O2∪O3), the group
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Aut(G) has index at least 2 in the group A ⊕ C . Consequently, since B ⊆ Aut(G),
we have B = Aut(G). �
Lemma 6.4 Let (B, V ) = 〈τ 〉 acts without fix point. Let O1, O2 be orbits of B with
the following properties.

• gcd(|O1|, |O2|) = 4,
• there is an orbit O /∈ {O1, O2} such that gcd(|O|, |O1|) = 2, and moreover,
gcd(|O|, |O2|) = 2,

• gcd(|O ′|, |O1|) ≤ 2 and gcd(|O ′|, |O2|) ≤ 2 for every orbit O ′ /∈ {O1, O2},
• a restriction C of the group B to the set V \(O1 ∪ O2) belongs to GR(k),
• there is a graph G such that Aut(G) = C and its subgraph spanned on the orbit

O is colored by two colors.

Then, B ∈ GR(k).

Proof Let |O1| = 4x, |O2| = 4y, |O| = 2z. We may assume that either x = y = 1
or x < y. Let O1 = {v0, . . . , v4x−1}, O2 = {w0, . . . , w4y−1}, O = {u0, . . . , u2z−1},
and break τ(vi ) = v(i+1 mod 4x), τ(wi ) = w(i+1 mod 4y), τ(ui ) = u(i+1 mod 2z). Let
G = (V \(O1 ∪ O2), E) be a graph as in the assumption. Let t be the number of
1-neighbors of u0 in O . Since |O| is even, we may assume (eventually exchanging the
colors of G) that z and t have a different parity. We define the graphs G j = (V , E j )

inductively.

E0({v,w}) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

E({v,w}) if {v,w} ∈ V \(O1 ∪ O2),

1 if v = vi and w = v(i+1 mod 4x),

1 if v = wi , w = w j and i − j ∈ M,

1 if v = vi , w = wi and (i − j mod 4) ∈ {0, 1},
1 if v = ui , w ∈ {v j , w j } and i ≡ j mod 2,
0 otherwise,

where M = {1, 4y − 1}, if y > x and M = ∅, if y = x .
For a vertex v ∈ V , by dGi (v) we denote here the number of 1-neighbors of v is

the graph Gi . Obviously, dG0(v0) > dG0(w0). We will construct the graph G j+1 in
the case when there exists a vertex v′ /∈ O1 ∪ O2 ∪ O such that dG j (v

′) = dG j (w0).
Assume that we have constructed a graph G j and there exists such a vertex v′. Then,
v′ belongs to the orbit O ′ /∈ {O1, O2, O}. We construct a graph G j+1 by modifying
the graph G j .

E j+1({v,w}) =
{

1 if v ∈ O1 and w ∈ O ′,
E j ({v,w}) otherwise.

We do not change the 1-degree of the vertices which belong to O2 and we increase
the 1-degree of v′. This is easy to see that in every graph G j , we have dG j (v0) >

dG j (w0).Moreover, if v /∈ O1∪O2∪O and E j ({v, v0}) = 1, then dG j (v) > dG j (w0).
Hence,the procedure will finish after a finite number of steps. Let Gk be the last graph
in our construction. We show that Aut(Gk) = B. The inclusion B ⊆ Aut(Gk) is an
immediate consequence of the definition.
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We prove the opposite inclusion. First, we show that O1 and O2 are preserved
by Aut(Gk). We have dGk (v) �= dGk (w0), for every v /∈ O1 ∪ O . Assume that
dGk (w0) �= dGk (u0). Then, O2 is preserved by Aut(Gk). The set O1 ∪ O consists
of all the vertices outside O2 which have at least one 1-neighbor in O2. Moreover,
there are z + 2 vertices in O1 ∪ O which are 1-neighbors of v0 and there are 2x + t
vertices in O1 ∪ O which are 1-neighbors of u0. Since z and t have a different parity,
these numbers are different. Hence, O1 is preserved by Aut(Gk). In the case, when
dGk (u0) = dGk (w0), we have that the set O2∪O is preserved by Aut(Gk). Moreover,
there are either z+2 or z vertices in O2∪O which are 1-neighbors ofw0 and there are
2x + t vertices in O2 ∪ O which are 1-neighbors of u0. Since z and t have a different
parity, these numbers are different. Hence, O2 is preserved by Aut(Gk). Now the set
O1 consists of all the vertices outside O2 ∪ O which have at least one 1-neighbor in
O2. Hence O1 is preserved by Aut(Gk).

We show that there is no reflection on O1. Let σ ∈ Aut(Gk) fixes v0. The set
{ui : i ≡ 0 mod 2} consists of all 1-neighbors of v0 that belong to O . Hence,
σ (u0) = ui , where i ≡ 0 mod 2. Moreover, the set {wi : (i mod 4) ∈ {0, 1}}
consists of all 1-neighbors of v0 that belong to O2, and the set {w j : i ≡ j mod 2}
consists of all 1-neighbors of ui that belong to O2. This implies that σ (w0) = wl ,
where l ≡ 0 mod 4. Since w0 and σ (w0) are 1-neighbors of the vertex v4x−1 and
are not 1-neighbors of the vertex v1, we obtain that σ fixes every vertex in O1. In the
same way one can show that every σ ∈ Aut(Gk) which fixes w0, fixes every vertex
in O2, too.

Hence, Aut(Gk) ⊆ C ⊕ D, where D is a restriction of the group B to the set
O1 ∪ O2. Moreover, the group B has index 2 in C ⊕ D. Since v0 and v1 have different
sets of 1-neighbors in O , the group Aut(Gk) has index at least 2 in the group C ⊕ D.
Consequently, since B ⊆ Aut(Gk), we have B = Aut(Gk). �

Let NC be the set of cyclic permutation groups consisting of Cn, n ≥ 3, groups
with two orbits O1 and O2 such that gcd(|O1|, |O2|) ∈ {3, 5}, groups with three orbits
O1, O2, O3 such that gcd(|O1|, |O2|) = 3, gcd(|O2|, |O3|) = 5, gcd(|O1|, |O2|) ≤ 2.
By Theorems 4.1, 4.2, and 4.5, if A ∈ NC and G is a graph such that A ⊆ Aut(G),
then there exists a permutation σ ∈ Aut(G) such that σ acts as a fixing point reflection
on each of orbits of A.

Now, we prove a negative extension lemma.

Lemma 6.5 Let (B, V ) = 〈τ 〉 acts without fix points. Let O1, . . . , Ot , t ≥ 1, be orbits
of B with following properties.

• The group B restricted to the set
⋃t

i=1 Oi belongs to NC,
• there are orbits O ∈ ⋃t

i=1 Oi and O ′ /∈ ⋃t
i=1 Oi such that gcd(|O|, |O ′|) = 2,

• for every pair of orbits O, O ′ such that O ∈ ⋃t
i=1 Oi and O ′ /∈ ⋃t

i=1 Oi , we
have gcd(|O|, |O ′|) ≤ 2.

Then, B /∈ GR(2).

Proof Assume to the contrary that B ∈ GR(2). ByC we denote the permutation group
B restricted to the set

⋃t
i=1 Oi . LetG = (V , E) be a graph such that Aut(G) = B. Let

O ′
1, . . . , O

′
s be the remainingorbits of B.Without loss of generality,we can assume that
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gcd(|O1|, |O ′
1|) = 2. We denote Oi = {vi0, . . . , vi|Oi |−1} and τ(vi ) = v(i+1 mod |Oi |)

and O ′
i = {wi

0, . . . , w
i
|Oi |−1} and τ(wi ) = w(i+1 mod |O ′

i |). We show that a per-
mutation α, which acts as a reflection on every orbit Oi , i ∈ {1, . . . , t} and fixes
every vertex in all O ′

i , i ∈ {1, . . . , s}, belongs to Aut(G). (α(vij ) = vi(|Oi |− j mod |Oi |)
, α(wi

j ) = wi
j .) Obviously, α /∈ B, which completes the proof in this case.

Let {v,w} ⊆ V be the edge of G. We show that E({α(v), α(w)}) = E({v,w}). If
{v,w} ⊆ ⋃s

i=1 O
′
i , then α(v) = v and α(w) = w, and the equality holds trivially. If

{v,w} ⊆ ⋃t
i=1 Oi , then by Lemmas 4.1, 4.2 and 4.5, for every graph G1 such that

Aut(G) ⊇ C , we know that α, restricted to the set
⋃t

i=1 Oi , belongs to Aut(G1).
Consequently, in this case the equality also holds. In the last case, we assume that
v ∈ Oi and w ∈ O ′

j . If gcd(|Oi |, |O ′
j |) = 1, then all the edges {v1, w1}, where

v1 ∈ Oi and w1 ∈ O ′
j , have the same color, and the equality holds. Finally, if

gcd(|Oi |, |O ′
j |) = 2, then both orbits have an even number of elements and the group

B, with action on edges of G, acts transitively on the set {{vik, w j
l } : k ≡ l ≡ 0

mod 2}. Hence, all the edges which belong to this set have the same color. The same
is true for the set {{vik, w j

l } : k ≡ l ≡ 1 mod 2}. Since α preserves these sets,
the equality holds. Consequently, α preserves the colors of the edges of G. Hence,
α ∈ Aut(G)\B. This is in a contradiction with the assumption Aut(G) = B. Hence,
B /∈ GR(2). �
Corollary 6.6 Let (B, V ) = 〈τ 〉 acts without fix points. Let O be an orbit such that
|O| > 2, and gcd(|O|, |O ′|) ≤ 2 for every orbit O ′ �= O. Then, B /∈ GR.

Proof No matter how many of colors we use to color the edge with both ends in O ,
if the group of automorphisms of the subgraph spanned on O contains C|O|, then it
contains D|O|. Thus, it is enough to use two colors. Moreover, there are only two orbits
consisting of the edges with one end in O and the second in V \O . We may use at
most two colors to color these edges. Hence, exactly the same proof as above works
here. �

7 Main Results

In this section, we prove the theorems that characterize the graphical complexity of
one-generated permutation groups. First we give an alternate proof of the result of
[13].

Theorem 7.1 Let (A, V ) be a one-generated permutation group. Then, A belongs to
GR if and only if for every orbit O of A such that |O| > 2, there exists another orbit
O ′ of A such that gcd(|O|, |O ′|) > 2.

Proof We prove the „only if” part. If A = Ct for t ≥ 3, then A /∈ GR. We consider
the case with at least two orbits. We assume that there exists an orbit O such that
|O| > 2 and for every other orbit O ′, we have gcd(|O|, |O ′|) ≤ 2. In the case where
gcd(|O|, |O ′|) = 1, for every orbit O ′ �= O , we denote by (B, V \O) a restriction
of A to the set V \O . Then, A = B ⊕ C|O|. By the fact that C|O| /∈ GR and by
Theorem 2.1, we obtain A /∈ GR.
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The remaining case is when there exists an orbit O ′ �= O such that gcd(|O|, |O ′|)
= 2. By Corollary 6.6, we immediately have A /∈ GR. This completes the proof of
the „only if” part.

The „if” part, we prove by induction on the number of orbits. By Lemma 2.3, we
may restrict our proof to the case where there is no orbit of cardinality one. If there
are the only two orbits, then the statement holds by Lemmas 5.2 and 5.3. Now, we
assume that the statement holds in all the cases where there are less than k orbits,
k > 2. We prove that this implies that the statement holds for k orbits. We choose
an orbit O with the property that the number s(O) of those orbits O ′ �= O such that
gcd(|O|, |O ′|) > 2 is the least possible.We consider a one generated group (B, V \O)

which is a restriction of A to the set V \O . If s(O) = 0, then O has two elements and
the orbits of B satisfy the conditions. By assumption, B ∈ GR. By Lemma 6.1, we
have A ∈ GR.

Let, s(O) = 1. If the orbits of B satisfy the conditions, then we have the same as
in the case above. If the orbits of B do not satisfy the conditions, then there exists
an orbit O ′ such that gcd(|O|, |O ′|) > 2 and gcd(|O ′|, |O ′′|) ≤ 2 for every orbit
O ′′ /∈ {O, O ′}. Let (C, V \(O ∪ O ′)) be a restriction of A to the set V \(O ∪ O ′).
Let (D, O ∪ O ′) be a restriction of A to the set O ∪ O ′. Then, the orbits of C and
D satisfy the conditions. Hence, C ∈ GR and D ∈ GR. If gcd(|O|, |O ′′|) = 1
and gcd(|O ′|, |O ′′|) = 1 for every orbit O ′′ /∈ {O, O ′}, then A = C ⊕ D and by
Theorem 2.2, we have A ∈ GR. Otherwise, the conclusion holds by Lemma 6.2.

The remaining cases are when s(O) > 1. In those cases the orbits of B satisfy the
conditions and we have the same as in the first case. �

Since in this paper, there is no place where we have used more than three colors
(the step of induction preserves the number of colors), we have

Corollary 7.2 Let A be a one-generated permutation group. Then, A ∈ GR(3) if and
only if A ∈ GR.

Whenwewant to describe one-generated permutation groups that belong toGR(2),
the theorem becomes more complicated. We may give a number of conditions that
each orbit has to satisfy. However, it will be clearer if we write it in another way.

Let A be a one-generated permutation group of order n. We introduce now a graph
Graph(A) with loops which gives an information how the „prime powers parts” of
A are joined.

• The vertices of Graph(A) are those primes that divide n.
• The prime 2 is not a vertex. Instead of this we put a vertex 4, if |A| is divided by 4.
• A set {p, q}, p �= q, is an edge in Graph(A) if and only if there exists an orbit O
of A such that |O| is divided by pq.

• For p > 5, a set {p} is a loop in Graph(A) if and only if there are at least two
orbits whose cardinality is divided by p.

• For p ∈ {3, 4, 5}, a set {p} is a loop in Graph(A) if either there are at least two
orbits whose cardinality is divided by pq, for some q > 1 or if there are at least
three orbits whose cardinality is divided by p.

• Moreover, for p = 4 if there are at least three orbits with an even cardinality and 4
divides the cardinality of two of them, then also there is a loop {4} in Graph(A).
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Observe, that if the order of A is equal to 2, then Graph(A) is empty.

Theorem 7.3 A ∈ GR(2) if and only if either A has an order 2 or in every connected
component of Graph(A) there is a loop.

Proof By Lemmas 2.2(3) and 2.3, we may restrict our consideration to the one-
generated permutation groups without fix points. First, we prove the „only if” part.
Assume that a connected component K of Graph(A) does not include the loop. If
K includes no vertices of 3, 4, 5, then there exists an orbit O such that |O| > 2 and
gcd(|O|, |O ′|) ≤ 2, for every orbit O ′ �= O . By Theorem 7.1, we have A /∈ GR.

Assume now that K includes at least one of the vertices 3, 4, 5. We have the fol-
lowing possibilities:

Case 1. There is an orbit O , such that |O| > 2 and gcd(|O|, |O ′|) ≤ 2 for every
orbit O ′ �= O . This is the same case as above.

Case 2. There are two orbits O1 and O2 such that gcd(|O1|, |O2|) ∈ {3, 5} and
moreover, gcd(|O1|, |O|) ≤ 2, gcd(|O2|, |O|) ≤ 2 for every orbit O /∈ {O1, O2}. By
Theorem 4.1, Lemmas 2.3 and 6.5, we have A /∈ GR(2).

Case 3. There are two orbits O1and O2 such that gcd(|O1|, |O2|) = 4 and
gcd(|O1|, |O|) = 1, gcd(|O2|, |O|) = 1 for every orbit O /∈ {O1, O2}. By Theo-
rem 4.1 and Lemma 2.3, we have A /∈ GR(2).

Case 4. There are three orbits O1, O2, and O3 such that gcd(|O1|, |O2|) ∈ {3, 5},
gcd(|O2|, |O3|) ∈ {3, 5}, gcd(|O1|, |O3|) ≤ 2. Moreover, we have gcd(|O1|, |O|)
≤ 2, gcd(|O2|, |O|) ≤ 2, gcd(|O3|, |O|) ≤ 2 for every orbit O /∈ {O1, O2, O3}. By
Theorems 4.2 and 4.5, Lemmas 2.3 and 6.5, we have A /∈ GR(2).

Case 5. There are three orbits O1, O2 and O3 with the properties gcd(|O1|, |O2|)
= 4, gcd(|O2|, |O3|) ∈ {3, 5}, gcd(|O1|, |O3|) ∈ {1, 3, 5}. Moreover, gcd(|O1|, |O|)
= 1, gcd(|O2|, |O|) = 1, gcd(|O2|, |O|) = 1 for every orbit O /∈ {O1, O2, O3}. By
Theorem 4.2, Theorem 4.5 and Lemma 2.3, we have A /∈ GR(2).

Case 6. There are four orbits O1, O2, O3, O4 such that gcd(|Oi |, |Oi+1|) ∈ {3, 4, 5}
and gcd(|Oi |, |Oj |) = 1, otherwise. Moreover, gcd(|Oi |, |O|) = 1 for every orbit
O /∈ {O1, O2, O3, O4}. By Theorem 4.3, and Lemma 2.3, we have A /∈ GR(2).

Case 7. There are four orbits O1, O2, O3, and O4 such that gcd(|O1|, |O2|) = 3,
gcd(|O1|, |O3|) = 4, gcd(|O1|, |O4|) = 5. Moreover, we have gcd(|O2|, |O3|) = 1,
gcd(|O3|, |O4|) = 1, gcd(|O2|, |O4|) = 1. Also, gcd(|Oi |, |O|) = 1 for every orbit
O /∈ {O1, O2, O3, O4}. By Theorem 4.4, and Lemma 2.3, we have A /∈ GR(2). This
completes the „only if” part of the proof.

We prove the „if” part. If A has order two, then by Theorem 3.1, the statement holds.
Assume thatGraph(A) is nonempty. Let K be a connected component ofGraph(A).
By O(K ), we denote the set of those orbits of O that there exists p ∈ K such that
p divides |O|. Let K1, . . . , Kt , t ≥ 0 be connected components of Graph(A) such
that, for every i ∈ {1, . . . , t}, there is no O ∈ Ki of even cardinality. Let H1, . . . , Hr ,
r ≥ 0 be connected components of Graph(A) such that, for every i ∈ {1, . . . , t},
there exists an orbit O ∈ Ki of even cardinality.

For every connected component K ∈ {K1, . . . , Kt }, we apply the following pro-
cedure. Let p be a vertex with a loop in a component Ki . Let {O1, . . . , Ow} be a list
of the orbits which belong to O(K ) such that, for every i ∈ {2, . . . w}, there exists
j < i such that gcd(|Oi |, |Oj |) > 2. Moreover, if |Os | is divided by p and |Or | is
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not divided by p, then s < r . In addition, if p ∈ {3, 5}, then, whenever it is possible,
we chose O1, O2 such that gcd(|O1|, |O2|) > p. Let Ai

K be the restriction of A to the
set O1∪, · · · ,∪Oi . We denote AK = Aw

K . If p ∈ {3, 5} and gcd(|O1|, |O2|) = p,
then by Lemma 5.4, A3

K ∈ GR(2). Otherwise, by Lemma 5.2, A2
K ∈ GR(2). Let us

assume that Ai
K ∈ GR(2) is proved. Since gcd(|Oi+1|, |Oj |) > 2 for some j ≤ i , by

Lemma 6.1, we have Ai+1
K ∈ GR(2). Hence, by induction, we have AK ∈ GR(2).

For the connected components H1, . . . , Hr , we modify a little this procedure.
Whenever this is possible we choose H1 such that 4 does not belong to H1. Let
H ∈ {H1, . . . , Hr }. We choose a vertex p with the loop in H . If this is possi-
ble, then p �= 4. We make a list of orbits in O(H) = OH

1 , . . . OH
w(H) in the same

way as in previous procedure. In addition, for p = 4, whenever this is possible, we
choose either OH

1 and OH
2 such that gcd(|OH

1 |, |OH
2 |) = 4t for some t > 1 or OH

1 ,
OH
2 , and OH

3 such that gcd(|OH
1 |, |OH

2 |, |OH
3 |) = 4. Otherwise, we choose OH

1
and OH

2 such that gcd(|OH
1 |, |OH

2 |) = 4. Let Al
Hi

be the restriction of A to the set⋃i−1
j=1

⋃
O(Hj )∪⋃l

j=1 O
Hi
j . We denote AHi = Aw(Hi )

Hi
. If 4 is not a chosen vertex in

H1 or we have chosen OH
1 and OH

2 such that gcd(|OH
1 |, |OH

2 |) = 4t , or else there are
at least three orbits of cardinality divided by 4, then in the same way as in the previous
procedure, we show that AH1 ∈ GR(2).

By one of the Lemmas 6.2, 6.3 or Lemma 6.4, respectively to the situation, we
obtain that either A2

H2
∈ GR(2) or A3

H2
∈ GR(2). As in the previous procedure, using

Lemma 6.1, we may show that AH2 ∈ GR(2). Continuing in the same way, we show
that AHr ∈ GR(2). Let B be the restriction of A to the set

⋃r
j=1

⋃
O(Hj )∪⋃

O(2),
where O(2) is the set of orbits of cardinality 2. Then, by Lemma 6.1, we have also
B ∈ GR(2). Since A = B ⊕ ⊕

AKi , by Theorem 2.2, we have A ∈ GR(2).
This procedure works in the situations where

• r > 1,
• there exists a loop in H1 at a vertex different from 4,
• there are two orbits O1 and O2 in O(H1) such that gcd(|O1|, |O2|) = 4s for some
s > 1,

• there are at least three orbits of cardinality divided by 4.

Otherwise, there are two orbits O1 and O2 in the set O(H1) for which we have
gcd(|O1|, |O2|) = 4.Moreover, there is no other orbit in O(H1) of cardinality divided
by 4. Also, there is at least one other orbit in O(H1) of cardinality divided by 2. We
consider two situations.

Case 1. There is an orbitO3 ∈ O(H1) such thatO3 /∈ {O1, O2} and |O3| > 2. Every
prime, which divides |O3| belongs to the same component as the vertex 4. Hence, there
is a path from every prime that divides |O3| to the vertex 4. Since there is no loop
in this component, except for the vertex 4, there is no other orbit O in O(H1) such
that p divides gcd(O, O3) and p is prime greater then 5. Hence, |O3| = 2sw, where
s ∈ {3, 5}. Moreover, there is an orbit O4 ∈ O(H1) such that gcd(|O3|, |O4|) = s.
By similar argument as above, 15 divides |O4|. Moreover, 2 does not divide |O4|
and 15/s divides either |O1| or |O2|. In addition, there is no other orbit in O(H1).
Therefore, in this situation O(H1) consists of four orbits O1, O2, O3 and O4 such that
gcd(|O1|, |O2|) = 4, 15 divides |O3|.Moreover, |O1| is not divided neither by 3 nor by
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5. In addition, we have gcd(|O1|, |O3|) = 2, gcd(|O1|, |O4|) = 1, gcd(|O2|, |O4|) =
2, gcd(|O3|, |O4|) = q, where q ∈ {3, 5}, gcd(|O2|, |O3|) = 15/q. We construct
a graph G1 on the set O1 ∪ O2 ∪ O3 as in Lemma 6.4. Unfortunately, Aut(G1)

contains a reflection on the set O3. However, if we construct a graph G on the set
O1 ∪ O2 ∪ O3 ∪ O4 as in Lemma 6.1, using G1 and the orbit O4, this reflection will
be eliminated. Hence, also in this situation, AH1 ∈ GR(2) and we can continue the
procedure.

Case 2. There is no orbit of A with cardinality larger than 4, divided by 2 but not
by 4. Then, there is an orbit of cardinality 2. We add the orbit of cardinality two as the
first element of the list of the orbits which belong to O(H1). We may use A1

H1
= C2

as in the first step of induction. Then, we use Lemma 6.4 to show that A3
H1

∈ GR(2)
and continue the procedure. Since there are only two orbits of even cardinality greater
then 2, i. e., O1 and O2, the conditions in Lemma 6.1 are satisfied and the procedure
works.

This completes the proof of the theorem. �

8 Other Structures

In this section, we deal with the same problem for other structures, digraphs, super-
graphs and boolean functions.

8.1 Digraphs

We start with the digraphs. A digraphG is a pair (V , E), where V is a set of the vertices
ofG and E ⊆ (V ×V )\{(v, v) : v ∈ V } is a set of directed edges ofG (without loops).
A permutation σ of the set V belongs to Aut(G) if, for every pair (v,w), we have
(v,w) ∈ E if and only if (σ (v), σ (w)) ∈ E . For a digraph G = (V , E) and a vertex
v ∈ V , we define d f (v) to be the number of these vertex w ∈ V that (w, v) ∈ E . We
say that a permutation group A belongs to the class DGR(2) if there exists a digraph
G such that Aut(G) = A. In [18], A. Kisielewicz stayed the following.

Theorem 8.1 [18] Every one generated permutation group belong to the class
DGR(2).

In [18], Kisielewicz has proved this only for one example. He has written that it
can be easily generalized for the general case. Since it may be not so obvious how to
do it, we write a more detailed proof.

Proof We prove it by induction on the number of orbits. This is obvious, and many
authors have observed it, that Cn ∈ DGR(2) for every n. Hence, we have the first
step of the induction. For the second step, we prove the extension lemma, similar as
Lemma 6.1. This is an extension of [10, Theorem 2.1].

Lemma 8.2 Let (A, V ) be a one-generated permutation group. Let O be an orbit
of A such that there exists a digraph G1 = (V \O, E1) with the group Aut(G1)

which is equal to the restriction of A to the set V \O. Moreover, assume that for every
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v ∈ V \O, we have d f (v) ≥ 1. Then, A ∈ DGR(2). In addition, there exists a digraph
G = (V , E) such Aut(G) = A and for every v ∈ V , we have d f (v) ≥ 1.

Proof Let O , O1, . . . , Ot be a list of orbits of A. We denote O = {v1, . . . , v|O|−1}
and Oi = {wi

1, . . . , w
i
|O1|−1}. Assume that A = 〈σ 〉, σ (vi ) = v(i+1 mod |O|),

and σ (w
j
i ) = w

j
(i+1 mod |Oj |). Let B be the restriction of A to the set V \O .

Let G1 = (V \O, E1) be a digraph such that Aut(G1) = B, and, for every v ∈ V \O ,
we have d f (v) ≥ 1. We define a digraph G = (V , E) as follows. (v,w) ∈ E if and
only if one of the following holds.

• {v,w} ⊆ (V \O) and (v,w) ∈ E1,
• v = vi , w = w(i+1 mod |O|),
• v = vi , w = w

j
k and i ≡ k mod gcd(|O|, |Oj |).

Obviously, d f (v) = 1, for every v ∈ O and d f (v) > 1, otherwise. This implies that
the set O is stabilized by Aut(G). The rest of proof is the same as in the proof of
Lemma 6.1. �

We continue the proof of the theorem. If A is of order two, then, by Theorem 7.3,
A ∈ GR(2) ⊆ DGR(2). Let A be a one-generated group of order greater than two.
There exists an orbit O of cardinality n > 2. Then, the group A restricted to O is
equal to Cn . There exists a graph G = (O, E) such that d f (v) = 1 for every v ∈ O .
Consequently, using repetitively Lemma 8.2, we have A ∈ DGR(2). �

8.2 Supergraphs

The supergraphs is another graphical structure. It was introduced in [18] by A.
Kisielewicz. This is an extension of a graph. A supergraph G is a pair (V , E), where
V is a set of vertices of G. The set of the edges is defined inductively. Every vertex is
an edge of order 0. Let Ei be the set of the edges of order i . If k > 0, then every edge
of order k is a pair {v,w}, v �= w, such that v ∈ E j , w ∈ El and j < k, l < k. Then,
E = ⋃

Ei . We say that G is of order k, if E = Ek and E �= Ek−1. A permutation σ

of V belongs to Aut(G), if σ preserves the structure of G. We say that A ∈ SGR(k)
if there exists a supergraph G of order at most k such that Aut(G) = A. In [18], we
can find the following.

Theorem 8.3 [18] GR(2) = SGR(1) and DGR(2) ⊆ SGR(2).

An immediate consequence of Theorems 8.1 and 8.3 is:

Corollary 8.4 Every one-generated permutation group belongs to SGR(2). Moreover,
a one-generated permutation group belongs to SGR(1) if and only if it belongs to
GR(2).

8.3 Boolean Functions

By a boolean function, we mean every function f of the form f : {0, 1}{0,...,n−1} →
{0, . . . , k − 1}. A permutation σ of the set {0, . . . , n − 1} belongs to Aut( f ) if σ
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preserves the function f . We say that a permutation group A belongs to the class
BGR(k) if there exists a boolean function f : {0, 1}{0,...,n−1} → {0, . . . , k − 1}.
By BGR we denote

⋃
BGR(k). The boolean function can be identifying with n-

dimension k-colored simplex, i. e., where every subsimplex is colored one of k-colors.
In this sense boolean functions are graphical structures, which is one of the natural
generalizations of edge-colored graphs. The theorem stated in [4] and repeated in [19],
we can write as follows.

Theorem 8.5 [4] A one-generated permutation group A belongs to BGR if and only
if whenever there exists an orbit O such that |O| ∈ {3, 4, 5}, then there exists an orbit
O ′ such that gcd(|O|, |O ′|) > 2. Moreover, if A ∈ BGR, then A ∈ BGR(2).

In [4], the proof is very complicated. In [19], it is much simpler. However, the proof
in [19] contains a gap. At the end of the proof, it is used an extension theorem ([19,
Theorem 4.4]) without checking the assumptions. In my opinion, the assumptions
were forgotten. Obviously, one can prove that they are satisfied. However, the proof
of those conditions is as hard as the proof of whole the theorem. The extension lemma
that should be used there is a stronger version of [19, Theorem 4.4] but in less general
case.

Lemma 8.6 Let (A, V ) be a one-generated permutation group. Let W be a proper
subset of V preserved by A such that A restricted to W belongs to BGR(2) and A
restricted to V \W belongs to BGR(2). Then, A ∈ BGR(2).

The proof is similar to the proof of Lemma 6.1 and the proof of Lemma 8.2. This is
as hard as the proof of Lemma 8.2, easier than the proof of Lemma 6.1 and definitely
easier than the proof of [19, Theorem 4.4]. We leave it to the reader.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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