ORIGINAL PAPER

Bipartization of Graphs

Mateusz Miotk ${ }^{1}$. Jerzy Topp ${ }^{1}$. Paweł Żyliński ${ }^{1}$

Received: 7 April 2018 / Revised: 8 July 2019 / Published online: 9 August 2019
© The Author(s) 2019

Abstract

A dominating set of a graph G is a set $D \subseteq V_{G}$ such that every vertex in $V_{G}-D$ is adjacent to at least one vertex in D, and the domination number $\gamma(G)$ of G is the minimum cardinality of a dominating set of G. In this paper we provide a new characterization of bipartite graphs whose domination number is equal to the cardinality of its smaller partite set. Our characterization is based upon a new graph operation.

Keywords Bipartite graph • Bipartization • Domination number
Mathematics Subject Classification 05C69 - 05C76 • 05C05

1 Introduction and Notation

For notation and graph theory terminology we in general follow [2]. Specifically, let $G=\left(V_{G}, E_{G}\right)$ be a graph with vertex set V_{G} and edge set E_{G}. For a subset $X \subseteq V_{G}$, the subgraph induced by X is denoted by $G[X]$. For simplicity of notation, if $X=\left\{x_{1}, \ldots, x_{k}\right\}$, we shall write $G\left[x_{1}, \ldots, x_{k}\right]$ instead of $G\left[\left\{x_{1}, \ldots, x_{k}\right\}\right]$. For a vertex v of G, its neighborhood, denoted by $N_{G}(v)$, is the set of all vertices adjacent to v, and the cardinality of $N_{G}(v)$, denoted by $\operatorname{deg}_{G}(v)$, is called the degree of v. The closed neighborhood of v, denoted by $N_{G}[v]$, is the set $N_{G}(v) \cup\{v\}$. In general, the neighborhood of $X \subseteq V_{G}$, denoted by $N_{G}(X)$, is defined to be $\bigcup_{v \in X} N_{G}(v)$, and the closed neighborhood of X, denoted by $N_{G}[X]$, is the set $N_{G}(X) \cup X$. A vertex of degree one is called a leaf, and the only neighbor of a leaf is called its support vertex

[^0](or simply, its support). A weak support is a vertex adjacent to exactly one leaf. Finally, the set of leaves and the set of supports of G we denoted by L_{G} and S_{G}, respectively.

A subset D of V_{G} is said to be a dominating set of a graph G if each vertex belonging to the set $V_{G}-D$ has a neighbor in D. The cardinality of a minimum dominating set of G is called the domination number of G and is denoted by $\gamma(G)$. A subset $C \subseteq V_{G}$ is a covering set of G if each edge of G has an end-vertex in C. The cardinality of a minimum covering set of G is called the covering number of G and denoted by $\beta(G)$.

It is obvious that if $G=\left((A, B), E_{G}\right)$ is a connected bipartite graph, then $\gamma(G) \leq \min \{|A|,|B|\}$. In this paper the set of all connected bipartite graphs $G=\left((A, B), E_{G}\right)$ in which $\gamma(G)=\min \{|A|,|B|\}$ is denoted by \mathcal{B}. Some properties of the graphs belonging to the set \mathcal{B} were observed in the papers [1,3-6], where all graphs with the domination number equal to the covering number were characterized. In this paper, inspired by results and constructions of Hartnell and Rall [3], we introduce a new graph operation, called the bipartization of a graph with respect to a function, study basic properties of this operation, and provide a new characterization of the graphs belonging to the set \mathcal{B} in terms of this new operation.

2 Bipartization of a Graph

Let \mathcal{K}_{H} denote the set of all complete subgraphs of a graph H. If $v \in V_{H}$, then the set $\left\{K \in \mathcal{K}_{H}: v \in V_{K}\right\}$ is denoted by $\mathcal{K}_{H}(v)$. If $X \subseteq V_{H}$, then the set $\bigcup_{v \in X} \mathcal{K}_{H}(v)$ is denoted by $\mathcal{K}_{H}(X)$, and it is obvious that $\mathcal{K}_{H}(X)=\left\{K \in \mathcal{K}_{H}: V_{K} \cap X\right.$ $\neq \emptyset\}$. Let $f: \mathcal{K}_{H} \rightarrow \mathbb{N}$ be a function. If $K \in \mathcal{K}_{H}$, then by \mathcal{F}_{K} we denote the set $\{(K, 1), \ldots,(K, f(K))\}$ if $f(K) \geq 1$, and we let $\mathcal{F}_{K}=\emptyset$ if $f(K)=0$. By \mathcal{K}_{H}^{f} we denote the set of all positively f-valued complete subgraphs of H, that is, \mathcal{K}_{H}^{f} $=\left\{K \in \mathcal{K}_{H}: f(K) \geq 1\right\}$.

Definition 1 Let H be a graph and let $f: \mathcal{K}_{H} \rightarrow \mathbb{N}$ be a function. The bipartization of H with respect to f is the bipartite graph $B_{f}(H)=\left((A, B), E_{B_{f}(H)}\right)$ in which $A=V_{H}, B=\bigcup_{K \in \mathcal{K}_{H}} \mathcal{F}_{K}$, and where a vertex $x \in A$ is adjacent to a vertex $(K, i) \in B$ if and only if x is a vertex of the complete graph $K(i=1, \ldots, f(K))$.

Example 1 Figure 1 presents a graph H (for which $\mathcal{K}_{H}=\{H[a], H[b], H[c], H[d]$, $H[a, b], H[a, c], H[b, c], H[c, d], H[a, b, c]\})$ and its two bipartizations $B_{f}(H)$ and $B_{g}(H)$ with respect to functions $f, g: \mathcal{K}_{H} \rightarrow \mathbb{N}$, respectively, where $f(H[a])=1$, $f(H[b])=1, f(H[c])=2, f(H[d])=0, f(H[a, b])=3, f(H[a, c])=0$, $f(H[b, c])=2, f(H[c, d])=3, f(H[a, b, c])=1$, while $g(H[v])=0$ for every vertex $v \in V_{H}, g(H[u, v])=1$ for every edge $u v \in E_{H}$, and $g(H[a, b, c])=0$. Observe that $B_{g}(H)$ is the subdivision graph $S(H)$ of H (i.e., the graph obtained from H by inserting a new vertex into each edge of H).

Fig. 1 Graphs $H, B_{f}(H)$, and $B_{g}(H)$

3 Properties of Bipartizations of Graphs

It is clear from the above definition of the bipartization of a graph with respect to a function that we have the following proposition.

Proposition 1 The bipartization of a graph with respect to a function has the following properties:
(1) If $B_{f}(H)=\left((A, B), E_{B_{f}(H)}\right)$ is the bipartization of a graph H with respect to a function $f: \mathcal{K}_{H} \rightarrow \mathbb{N}$, then:
(a) $N_{B_{f}(H)}(v)=\bigcup_{K \in \mathcal{K}_{H}(v)} \mathcal{F}_{K}$ if $v \in A$.
(b) $N_{B_{f}(H)}(X)=\bigcup_{K \in \mathcal{K}_{H}(X)} \mathcal{F}_{K}$ if $X \subseteq A$.
(c) $N_{B_{f}(H)}((K, i))=V_{K}$ if $(K, i) \in B(i=1, \ldots, f(K))$.
(d) $\left|V_{B_{f}(H)}\right|=\left|V_{H}\right|+\sum_{K \in \mathcal{K}_{H}} f(K)$ and $\left|E_{B_{f}(H)}\right|=\sum_{K \in \mathcal{K}_{H}} f(K)\left|V_{K}\right|$.
(2) If H is a connected graph and $f: \mathcal{K}_{H} \rightarrow \mathbb{N}$ is a function such that every edge of H belongs to a positively f-valued complete subgraph of H, then the bipartization $B_{f}(H)$ is a connected graph.
(3) If H is a graph and $f, g: \mathcal{K}_{H} \rightarrow \mathbb{N}$ are functions such that $f(K) \geq g(K)$ for every $K \in \mathcal{K}_{H}$, then the graph $B_{g}(H)$ is an induced subgraph of $B_{f}(H)$.

Our study of properties of bipartizations we begin by showing that every bipartite graph is the bipartization of some graph with respect to some function.

Theorem 1 For every bipartite graph $G=\left((A, B), E_{G}\right)$ there exist a graph H and a function $f: \mathcal{K}_{H} \rightarrow \mathbb{N}$ such that $G=B_{f}(H)$.

Proof We say that vertices x and y of G are similar if $N_{G}(x)=N_{G}(y)$. It is obvious that this similarity is an equivalence relation on B (as well as on A and $A \cup B$). Let B_{1}, \ldots, B_{l} be the equivalence classes of this relation on B, say $B_{i}=\left\{b_{1}^{i}, b_{2}^{i}, \ldots, b_{k_{i}}^{i}\right\}$ for $i=1, \ldots, l$. It follows from properties of the equivalence classes that $\left|B_{1}\right|+$ $\cdots+\left|B_{l}\right|=|B|, N_{G}\left(b_{1}^{i}\right)=N_{G}(x)$ for every $x \in B_{i}$, and $N_{G}\left(b_{1}^{i}\right) \neq N_{G}\left(b_{1}^{j}\right)$ if $i, j \in\{1, \ldots, l\}$ and $i \neq j$.

Fig. 2 Graph G is the bipartization of the two non-isomorphic graphs H and F

Now, let $H=\left(V_{H}, E_{H}\right)$ be a graph in which $V_{H}=A$ and two vertices x and y are adjacent in H if and only if they are at distance two apart from each other in G. Let \mathcal{K}_{H} be the set of all complete subgraphs of H, and let $f: \mathcal{K}_{H} \rightarrow \mathbb{N}$ be a function such that $f(K)=\left|\left\{b \in B: N_{G}(b)=V_{K}\right\}\right|$ for $K \in \mathcal{K}_{H}$. Next, let K_{i} be the induced subgraph H [$\left.N_{G}\left(b_{1}^{i}\right)\right]$ of H. It follows from the definition of H that K_{i} is a complete subgraph of H. In addition, from the definition of f and from properties of the classes B_{1}, \ldots, B_{l}, it follows that $f\left(K_{i}\right)=\left|B_{i}\right|>0(i=1, \ldots, l)$, and $f(K)=0$ if $K \in \mathcal{K}_{H}-\left\{K_{1}, \ldots, K_{l}\right\}$. Consequently, $\mathcal{K}_{H}^{f}=\left\{K_{1}, \ldots, K_{l}\right\}$.

Finally, consider the bipartite graph $B_{f}(H)=\left((X, Y), E_{B_{f}(H)}\right)$ in which $X=$ $V_{H}=A, Y=\bigcup_{K \in \mathcal{K}_{H}} \mathcal{F}_{K}=\bigcup_{K \in \mathcal{K}_{H}^{f}} \mathcal{F}_{K}=\bigcup_{i=1}^{l}\left\{\left(K_{i}, 1\right), \ldots,\left(K_{i}, k_{i}\right)\right\}$, and where $N_{B_{f}(H)}\left(\left(K_{i}, j\right)\right)=V_{K_{i}}=N_{G}\left(b_{1}^{i}\right)$ for every $\left(K_{i}, j\right) \in Y$. Now, one can observe that the function $\varphi: A \cup B \rightarrow X \cup Y$, where $\varphi(x)=x$ if $x \in A$, and $\varphi\left(b_{j}^{i}\right)=\left(K_{i}, j\right)$ if $b_{j}^{i} \in B$, is an isomorphism between graphs G and $B_{f}(H)$.

We have proved that a bipartite graph $G=\left((A, B), E_{G}\right)$ is the bipartization $B_{f}(H)$ of a graph $H=\left(V_{H}, E_{H}\right)$ (in which $V_{H}=A$ and $E_{H}=\{x y: x, y$ $\in A$ and $\left.d_{G}(x, y)=2\right\}$) with respect to a function $f: \mathcal{K}_{H} \rightarrow \mathbb{N}$, where $f(K)=\mid\{b$ $\left.\in B: N_{G}(b)=V_{K}\right\} \mid$ for $K \in \mathcal{K}_{H}$. The same graph G is also the bipartization $B_{g}(F)$ of a graph $F=\left(V_{F}, E_{F}\right)$ (in which $V_{F}=B$ and $E_{F}=\left\{x y: x, y \in B\right.$ and $d_{G}(x, y)=$ 2\}) with respect to a function $g: \mathcal{K}_{F} \rightarrow \mathbb{N}$, where $g(K)=\left|\left\{a \in A: N_{G}(a)=V_{K}\right\}\right|$ for $K \in \mathcal{K}_{F}$. Consequently, every bipartite graph may be the bipartization of two non-isomorphic graphs.

Example 2 Figure 2 depicts the bipartite graph G which is the bipartization of the nonisomorphic graphs H and F with respect to functions $\bar{f}: \mathcal{K}_{H} \rightarrow \mathbb{N}$ and $\bar{g}: \mathcal{K}_{F} \rightarrow \mathbb{N}$, respectively, which non-zero values are displayed in the figure.

It is obvious from Theorem 1 that every tree is a bipartization. We are now interested in providing a simple characterization of graphs H and functions $f: \mathcal{K}_{H} \rightarrow \mathbb{N}$ for which the bipartization $B_{f}(H)$ is a tree. We begin with the following notation: An alternating sequence of vertices and complete graphs $\left(v_{0}, F_{1}, v_{1}, \ldots, v_{k-1}, F_{k}, v_{k}\right)$ is said to be a positively f-valued complete $v_{0}-v_{k}$ path if $v_{i-1} v_{i}$ is an edge in the complete graph F_{i} for $i=1, \ldots, k$. We now have the following two useful lemmas.

Lemma 1 Let H be a connected graph, and let $f: \mathcal{K}_{H} \rightarrow \mathbb{N}$ be a function. If there are two vertices u and v and two distinct internally vertex-disjoint positively f-valued complete $u-v$ paths in H, then the bipartization $B_{f}(H)$ contains a cycle.

Proof If ($v_{0}=u, F_{1}, v_{1}, \ldots, v_{m-1}, F_{m}, v_{m}=v$) and ($v_{0}^{\prime}=u, F_{1}^{\prime}, v_{1}^{\prime}, \ldots, v_{n-1}^{\prime}$, $F_{n}^{\prime}, v_{n}^{\prime}=v$) are distinct internally vertex-disjoint positively f-valued complete $u-v$ paths in H, then $\left(v_{0},\left(F_{1}, 1\right), v_{1}, \ldots, v_{m-1},\left(F_{m}, 1\right), v_{m}\right)$ and $\left(v_{0}^{\prime},\left(F_{1}^{\prime}, 1\right)\right.$, $\left.v_{1}^{\prime}, \ldots, v_{n-1}^{\prime},\left(F_{n}^{\prime}, 1\right), v_{n}^{\prime}\right)$ are distinct $u-v$ paths in $B_{f}(H)$, and so they generate at least one cycle in $B_{f}(H)$.

Let us recall first that a maximal connected subgraph without a cutvertex is called a block. A graph H is said to be a block graph if each block of H is a complete graph. The next lemma is probably known, therefore we omit its easy inductive proof.

Lemma 2 If \mathcal{S} is the set of all blocks of a graph H, then $\sum_{B \in \mathcal{S}}\left(\left|V_{B}\right|-1\right)=\left|V_{H}\right|-1$.
Now we are ready for a characterization of graphs which bipartizations (with respect to some functions) are trees.

Theorem 2 Let H be a connected graph, and let $f: \mathcal{K}_{H} \rightarrow \mathbb{N}$ be a function such that every edge of H belongs to some positively f-valued complete subgraph of H. Then the bipartization $B_{f}(H)$ is a tree if and only if the following conditions hold:
(1) $f(K) \leq 1$ for every non-trivial complete subgraph K of H.
(2) H is a block graph.
(3) For a non-trivial complete subgraph K of H is $f(K)=1$ if and only if K is a block of H.

Proof Assume that $B_{f}(H)$ is a tree. The statement (1) is obvious, for if there were a non-trivial complete subgraph K of H for which $f(K) \geq 2$, then for any two vertices u and v belonging to K, the sequence $(u,(K, 1), v,(K, 2), u)$ would be a cycle in $B_{f}(H)$.

Suppose now that H is not a block graph. Then there exists a block in H, say B, which is not a complete graph. Thus in B there exists a cycle such that not all its chords belong to B. Let $C=\left(v_{0}, v_{1}, \ldots, v_{l}, v_{0}\right)$ be a shortest such cycle in B. Then $l \geq 3$ and we distinguish two cases. If C is chordless, then, by Lemma $1, B_{f}(H)$ contains a cycle. Thus assume that C has a chord. We may assume that v_{0} is an end-vertex of a chord of C, and then let k be the smallest integer such that $v_{0} v_{k}$ is a chord of C. Now the choice of C implies that the vertices $v_{0}, v_{1}, \ldots, v_{k}$ are mutually adjacent, and therefore, $k=2$. Similarly, $v_{0}, v_{k}, \ldots, v_{l}$ are mutually adjacent, and so we must have $l=3$. Consequently, $C=\left(v_{0}, v_{1}, v_{2}, v_{3}, v_{0}\right)$ and $v_{0} v_{2}$ is the only chord of C. Now it is obvious that there are at least two $v_{0}-v_{2}$ positively f-valued complete paths in H. From this and from Lemma 1 it follows that the bipartition $B_{f}(H)$ contains a cycle. This contradiction completes the proof of the statement (2).

Let B be a block of H. We have already proved that B is a complete graph. Let B^{\prime} be a proper non-trivial complete subgraph of B. To prove (3), it suffices to observe that $f\left(B^{\prime}\right)=0$. On the contrary, suppose that $f\left(B^{\prime}\right) \neq 0$. We now choose two distinct
vertices v and u belonging to B^{\prime}, and a vertex w belonging to B but not to B^{\prime}. This clearly forces that there are at least two $v-u$ positively f-valued complete paths in H. Consequently, by Lemma 1, $B_{f}(H)$ contains a cycle, and this contradiction completes the proof of the statement (3).

Assume now that the conditions (1)-(3) are satisfied for H and f. Since end-vertices of $B_{f}(H)$, corresponding to positively f-valued one-vertex complete subgraphs of H, are not important to our study of tree-like structure of $B_{f}(H)$, we can assume without loss of generality that $f(H[v])=0$ for every vertex $v \in V_{H}$. Consequently, H is a block graph and $f(K)=1$ for every block K of H, while $f\left(K^{\prime}\right)=0$ for every other complete subgraph K^{\prime} of H. It remains to prove that $B_{f}(H)$ is a tree. Since $B_{f}(H)$ is a connected graph, it suffices to show that $\left|E_{B_{f}(H)}\right|=\left|V_{B_{f}(H)}\right|-1$. Let \mathcal{S} be the set of all blocks of H. Then $\mathcal{K}_{H}^{f}=\mathcal{S},\left|V_{B_{f}(H)}\right|=\left|V_{H}\right|+\sum_{K \in \mathcal{K}_{H}^{f}} f(K)=\left|V_{H}\right|+|\mathcal{S}|$, and $\left|E_{B_{f}(H)}\right|=\sum_{K \in \mathcal{K}_{H}^{f}} f(K)\left|V_{K}\right|=\sum_{K \in \mathcal{S}}\left|V_{K}\right|=\sum_{K \in \mathcal{S}}\left(\left|V_{K}\right|-1\right)+|\mathcal{S}|$. Now, since $\sum_{K \in \mathcal{S}}\left(\left|V_{K}\right|-1\right)=\left|V_{H}\right|-1$ (by Lemma 2), we finally have $\left|E_{B_{f}(H)}\right|$ $=\left(\left|V_{H}\right|-1\right)+|\mathcal{S}|=\left(\left|V_{H}\right|+|\mathcal{S}|\right)-1=\left|V_{B_{f}(H)}\right|-1$.

Corollary 1 For every connected graph H, there exists a function $f: \mathcal{K}_{H} \rightarrow \mathbb{N}$ such that the bipartization $B_{f}(H)$ is a tree.

Proof Let F be a spanning block graph of H and let $f: \mathcal{K}_{F} \rightarrow\{0,1\}$ be a function such that $f(K)=1$ if and only if K is a block of F. Clearly, f satisfies the conditions (1)-(3) of Theorem 2, and so the bipartization $B_{f}(H)$ is a tree.

Example 3 Figure 2 shows the tree G which is the bipartization of two block graphs H and F with respect to functions \bar{f} and \bar{g}, respectively, which non-zero values are listed in the same figure.

4 Graphs Belonging to the Family \mathcal{B}

In this section, we provide an alternative characterization of all bipartite graphs whose domination number is equal to the cardinality of its smaller partite set, that is, we prove that a connected graph G belongs to the class \mathcal{B} if and only if G is some bipartization of a graph. For that purpose, we need the following lemma.

Lemma 3 [4] Let $G=\left((A, B), E_{G}\right)$ be a connected bipartite graph with $1 \leq|A|$ $\leq|B|$. Then the following statements are equivalent:
(1) $\gamma(G)=|A|$.
(2) $\gamma(G)=\beta(G)=|A|$.
(3) G has the following two properties:
(a) Each support vertex of G belonging to B is a weak support and each of its non-leaf neighbors is a support.
(b) If x and y are vertices belonging to $A-\left(L_{G} \cup S_{G}\right)$ and $d_{G}(x, y)=2$, then there are at least two vertices \bar{x} and \bar{y} in B such that $N_{G}(\bar{x})=N_{G}(\bar{y})=\{x, y\}$.

We are ready to establish our main theorem that provides an alternative characterization of the graphs belonging to \mathcal{B} in terms of the bipartization of a graph.

Theorem 3 Let $G=\left((A, B), E_{G}\right)$ be a connected bipartite graph with $1 \leq|A| \leq|B|$. Then $\gamma(G)=|A|$ if and only if G is the bipartization $B_{f}(H)$ of a connected graph H with respect to a non-zero function $f: \mathcal{K}_{H} \rightarrow \mathbb{N}$ and f has the following two properties:
(1) If $u v \in E_{H}$ and $f(H[u, v])=0$, then $f\left(H^{\prime}\right)>0$ for some complete subgraph H^{\prime} of H containing the edge uv.
(2) If $u v \in E_{H}$ and $f(H[u])=f(H[v])=0$, then $f(H[u, v]) \geq 2$.

Proof Assume first that $\gamma(G)=|A|$. Then G has the properties (3a) and (3b) of Lemma 3. Let $H=\left(V_{H}, E_{H}\right)$ be a graph in which $V_{H}=A$ and $E_{H}=\{x y: x, y$ $\in A$ and $\left.d_{G}(x, y)=2\right\}$, and let $f: \mathcal{K}_{H} \rightarrow \mathbb{N}$ be a function such that $f(K)=\mid\{x$ $\left.\in B: N_{G}(x)=V_{K}\right\} \mid$ for each $K \in \mathcal{K}_{H}$. Then G is the bipartization $B_{f}(H)$ of H with respect to f, as we have shown in the proof of Theorem 1. It is obvious that if $H=K_{1}$, then $\mathcal{K}_{H}=\{H\}$ and it must be $f(H) \geq 1$ (as otherwise $G=B_{f}(H)$ would be a graph of order one). Thus assume that H is non-trivial. Now it remains to prove that f has the properties (1) and (2).

Let $u v$ be an edge of H such that $f(H[u, v])=0$. Suppose on the contrary that $f\left(H^{\prime}\right)=0$ for every complete subgraph H^{\prime} containing the edge $u v$. Then the vertices u and v do not share a neighbor in $B_{f}(H)=G$, so $d_{G}(u, v)>2$ and $u v$ is not an edge in H, a contradiction. This proves the property (1).

Now let $u v$ be an edge of H such that $f(H[u])=f(H[v])=0$. From these assumptions it follows that $d_{G}(u, v)=2$ and neither u nor v is a support vertex in $G=B_{f}(H)$. Now we shall prove that none of the vertices u and v is a leaf in G. First, because $u, v \in A$ and they have a common neighbor, it follows from the first part of the property (3a) of Lemma 3 that at least one of the vertices u and v is not a leaf in G. Suppose now that exactly one of the vertices u and v is a leaf in G, say u is a leaf. Then it follows from the second part of the property (3a) of Lemma 3 that v is a support vertex in $G=B_{f}(H)$ and, therefore, $f(H[v])>0$, a contradiction. Consequently, both u and v are elements of $A-N_{G}\left[L_{G}\right]$. Thus, since $d_{G}(u, v)=2$, the property (3b) of Lemma 3 implies that there are at least two vertices $\bar{u}, \bar{v} \in B$ such that $N_{G}(\bar{u})=N_{G}(\bar{u})=\{u, v\}$. Therefore $f(H[u, v])=\left|\left\{x \in B: N_{G}(x)=\{u, v\}\right\}\right| \geq|\{\bar{u}, \bar{v}\}|=2$ and this proves the property (2).

Assume now that H is a connected graph, and $f: \mathcal{K}_{H} \rightarrow \mathbb{N}$ is a non-zero function having the properties (1) and (2). We shall prove that in the bipartization $B_{f}(H)=\left((A, B), E_{B_{f}(H)}\right)$, where $A=V_{H}$ and $B=\bigcup_{K \in \mathcal{K}_{H}} \mathcal{F}_{K}$, is $|A| \leq|B|$ and $\gamma\left(B_{f}(H)\right)=|A|$. This is obvious if H is a graph of order 1. Thus assume that H is a graph of order at least 2. From the property (1) it follows that $B_{f}(H)$ is a connected graph. We first prove the inequality $|A| \leq|B|$. To prove this, it suffices to show that $B_{f}(H)$ has an A-saturating matching. We begin by dividing $A=V_{H}$ into two subsets $V_{H}^{1}=\left\{v \in V_{H}: f(H[v]) \geq 1\right\}$ and $V_{H}^{0}=\left\{v \in V_{H}: f(H[v])=0\right\}$. It is obvious that the edge-set $M^{1}=\left\{v(H[v], 1): v \in V_{H}^{1}\right\}$ is a V_{H}^{1}-saturating matching in $B_{f}(H)$. Next, we order the set V_{H}^{0} in an arbitrary way, say $V_{H}^{0}=\left\{v_{1}, \ldots, v_{n}\right\}$. Now,
depending on this order, we consecutively choose edges e_{1}, \ldots, e_{n} in such a way that $M^{1} \cup\left\{e_{1}, \ldots, e_{i}\right\}$ is a $\left(V_{H}^{1} \cup\left\{v_{1}, \ldots, v_{i}\right\}\right)$-saturating matching in $B_{f}(H)$.

Assume that we have already chosen a $\left(V_{H}^{1} \cup\left\{v_{1}, \ldots, v_{i-1}\right\}\right)$-saturating matching $M^{1} \cup\left\{e_{1}, \ldots, e_{i-1}\right\}$ in $B_{f}(H)$, and consider the next vertex $v_{i} \in V_{H}^{0}$. If $N_{H}\left(v_{i}\right) \cap V_{H}^{0}$ $\neq \emptyset$, say $v_{j} \in N_{H}\left(v_{i}\right) \cap V_{H}^{0}$, then $f\left(H\left[v_{j}\right]\right)=0$ and therefore $f\left(H\left[v_{i}, v_{j}\right]\right) \geq 2$ (by the property (2)) and the edge $e_{i}=v_{i}\left(H\left[v_{i}, v_{j}\right], 1\right)$ if $j>i\left(e_{i}=v_{i}\left(H\left[v_{i}, v_{j}\right], 2\right)\right.$ if $j<i$) together with $M^{1} \cup\left\{e_{1}, \ldots, e_{i-1}\right\}$ form a $\left(V_{H}^{1} \cup\left\{v_{1}, \ldots, v_{i}\right\}\right)$-saturating matching in $B_{f}(H)$. Thus assume that $N_{H}\left(v_{i}\right) \subseteq V_{H}^{1}$. Let v be a neighbor of v_{i} in H. If $f\left(H\left[v_{i}, v\right]\right) \geq 1$, then the edge $e_{i}=v_{i}\left(H\left[v_{i}, v\right], 1\right)$ has the desired property. Finally, if $f\left(H\left[v_{i}, v\right]\right)=0$, then $f\left(H^{\prime}\right)>0$ for some complete subgraph H^{\prime} of H containing the edge $v_{i} v$ (by the property (1)) and in this case the edge $e_{i}=v_{i}\left(H^{\prime}, 1\right)$ has the desired property (as $N_{H}\left(v_{i}\right) \subseteq V_{H}^{1}$). Repeating this procedure as many times as needed, an A-saturating matching in $B_{f}(H)$ can be obtained.

To complete the proof, it remains to show that $\gamma\left(B_{f}(H)\right)=|A|$. In a standard way, suppose to the contrary that $\gamma\left(B_{f}(H)\right)<|A|$. Let D be a minimum dominating set of $B_{f}(H)$ with $|D \cap A|$ as large as possible. Since $\gamma\left(B_{f}(H)\right)=|D|$, the inequality $\gamma\left(B_{f}(H)\right)<|A|$ implies that $|A-D|>|D \cap B| \geq 1$. In addition, since $|D \cap A|$ is as large as possible, the set $V_{H}^{1}\left(=\left\{v \in V_{H}: f(H[v]) \geq 1\right\}\right)$ is a subset of $D \cap A$, while $A-D$ is a subset of $V_{H}^{0}\left(=\left\{v \in V_{H}: f(H[v])=0\right\}\right)$. Now, because $|A-D|>|D \cap B|$ and each vertex of $A-D$ has a neighbor in $D \cap B$, the pigeonhole principle implies that there are two vertices x and y in $A-D$ which are adjacent to the same vertex in $D \cap B$. Hence, x and y are adjacent in H (by the definition of $B_{f}(H)$). Now, since $f(H[x])=f(H[y])=0$, the property (2) implies that $f(H[x, y]) \geq 2$. Next, since $N_{B_{f}(H)}((H[x, y], 1))=N_{B_{f}(H)}((H[x, y], 2))=\{x, y\}$ and $\{x, y\} \cap D=\emptyset$, the vertices $(H[x, y], 1)$ and $(H[x, y], 2)$ belong to $D \cap B$. Consequently, it is easy to observe that the set $D^{\prime}=(D-\{(H[x, y], 1),(H[x, y], 2)\}) \cup\{x, y\}$ is a dominating set of $B_{f}(H)$, which is impossible as $\left|D^{\prime}\right|=|D|$ and $\left|D^{\prime} \cap A\right|>|D \cap A|$. This completes the proof.

Example 4 The graph H and the function $f: \mathcal{K}_{H} \rightarrow \mathbb{N}$ given in Example 1 have the properties (1) and (2) of Theorem 3 and therefore the bipartization $B_{f}(H)$ belongs to the family \mathcal{B}, that is, $\gamma\left(B_{f}(H)\right)=|A|$, where A is the smaller of two partite sets of $B_{f}(H)$ shown in Fig. 1.

The graph F and the function \bar{g} given in Fig. 2 do not satisfy the condition (2) of Theorem 3. However, the bipartization $G=B_{\bar{g}}(F)$ is a graph belonging to the family \mathcal{B} since G is also the bipartization $B_{\bar{f}}(H)$, with H and \bar{f} given in Fig. 2 and possessing properties (1) and (2) of Theorem 3.

It is obvious that the complete bipartite graph $K_{m, n}$ is the bipartization of the complete graph K_{m} (resp. K_{n}) with respect to the function $f: \mathcal{K}_{K_{m}} \rightarrow\{0, n\}$, where $f(K)=0$ if and only if $K \in \mathcal{K}_{K_{m}}-\left\{K_{m}\right\}$ (resp. $g: \mathcal{K}_{K_{n}} \rightarrow\{0, m\}$, where $g(K)=0$ if and only if $K \in \mathcal{K}_{K_{n}}-\left\{K_{n}\right\}$). It is also evident that if $\min \{m, n\} \geq 3$, then $K_{m, n}$ does not belong to the family \mathcal{B} (as $\left.\gamma\left(K_{m, n}\right)=2<\min \{m, n\}\right)$, and neither K_{m} and f nor K_{n} and g possess the property (2) of Theorem 3.

Finally, as an immediate consequence of Theorems 2 and 3 we have the following simple characterization of trees in which the domination number is equal to the size of a smaller of its partite sets. All such trees are bipartizations of block graphs.

Corollary 2 Let $T=\left((A, B), E_{T}\right)$ be a tree in which $1 \leq|A| \leq|B|$. Then $\gamma(T)=|A|$ if and only if T is the bipartization $B_{f}(H)$ of a block graph H with respect to a non-zero function $f: \mathcal{K}_{H} \rightarrow \mathbb{N}$ and f has the following two properties:
(1) $f(K)=1$ if K is a block of H, and $f\left(K^{\prime}\right)=0$ if K^{\prime} is a non-trivial complete subgraph of H which is not a block of H.
(2) $\max \{f(H[u]), f(H[v])\} \geq 1$ for every edge uv of H (or, equivalently, the set $\left\{v \in V_{H}: f(H[v]) \geq 1\right\}$ is a covering set of $\left.H\right)$.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Arumugam, S., Jose, B.K., Bujtás, C., Tuza, Z.: Equality of domination and transversal numbers in hypergraphs. Discrete Appl. Math. 161, 1859-1867 (2013)
2. Chartrand, G., Lesniak, L., Zhang, P.: Graphs and Digraphs. Chapman and Hall/CRC, Boca Raton (2015)
3. Hartnell, B., Rall, D.F.: A characterization of graphs in which some minimum dominating set covers all the edges. Czechoslov. Math. J. 45, 221-230 (1995)
4. Lingas, A., Miotk, M., Topp, J., Żyliński, P.: Graphs with equal domination and covering numbers (2018). arXiv:1802.09051v1 [math.CO] (manuscript; 25 Feb 2018)
5. Randerath, B., Volkmann, L.: Characterization of graphs with equal domination and covering number. Discrete Math. 191, 159-169 (1998)
6. Wu, Y., Yu, Q.: A characterization of graphs with equal domination number and vertex cover number. Bull. Malays. Math. Sci. Soc. 35, 803-806 (2012)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

[^0]: \boxtimes Jerzy Topp
 j.topp@inf.ug.edu.pl

 Mateusz Miotk
 mmiotk@inf.ug.edu.pl
 Paweł Żyliński
 pawel.zylinski@ug.edu.pl
 1 University of Gdańsk, Gdańsk, Poland

