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Abstract
While investigating odd-cycle free hypergraphs, Győri and Lemons introduced a col-
ored version of the classical theorem of Erdős and Gallai on Pk-free graphs. They
proved that any graph G with a proper vertex coloring and no path of length 2k + 1
with end vertices of different colors has at most 2kn edges. We show that Erdős and
Gallai’s original sharp upper bound of kn holds for their problem aswell.We also intro-
duce a version of this problem for trees and present a generalization of the Erdős-Sós
conjecture.
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1 Main results

We denote by P� the path of length � (that is, containing � edges). For a graph G,
we denote by E(G) and V (G) the edge and vertex set of G, respectively. We begin
by recalling the theorems of Erdős and Gallai about graphs without long paths and
cycles.

Theorem 1 (Erdős-Gallai [3]) Let G be an n-vertex graph with no P�, then

|E(G)| ≤ � − 1

2
n,
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and equality holds if and only if � divides n and G is the disjoint union of n
�
cliques of

size �.

Theorem 2 (Erdős-Gallai [3]) Let G be an n-vertex graph with no Cm for all m ≥ �,
then

|E(G)| ≤ (� − 1)(n − 1)

2
,

and equality holds if and only if � − 2 divides n − 1 and G is a connected graph such
that every block of G is a clique of size � − 1.

In fact, Theorem 1 was deduced as a simple corollary of Theorem 2. In a more recent
paper, Győri and Lemons [5] investigated the extremal number of hypergraphs avoid-
ing so-calledBerge-cycles. To this end, they introduced a generalization of the theorem
of Erdős and Gallai about paths. By a proper vertex coloring of a graph G, we mean
a coloring of the vertices of G such that no two adjacent vertices are the same color.
Győri and Lemons proved the following.

Theorem 3 (Győri-Lemons [5]) Let k be a positive integer and G be an n-vertex
graph with a proper vertex coloring such that G contains no P2k+1 with end vertices
of different colors, then

|E(G)| ≤ 2kn.

We show that the factor of 2 in Theorem 3 is not needed and, thus, recover the original
upper bound from the Erdős-Gallai theorem. We also determine which graphs achieve
this upper bound.

Theorem 4 Let k ≥ 0 and G be an n-vertex graph with a proper vertex coloring such
that G contains no P2k+1 with end vertices of different colors, then

|E(G)| ≤ kn,

and equality holds if and only if 2k + 1 divides n and G is the union of n
2k+1 disjoint

cliques of size 2k + 1.

Proof of Theorem 4 By induction on the number of vertices, we may assume that G is
connected and has minimum degree δ(G) ≥ k. Indeed, if δ(v) < k then

e(G) = e(G − v) + δ(v) ≤ k(n − 1) + k − 1 < kn.

If G is C�-free for all � ≥ 2k + 1, then by Theorem 2 we have

|E(G)| ≤ (n − 1)2k

2
< kn.

Thus, assume there is a cycle of length at least 2k + 1, and let C be the smallest such
cycle with length �. Let the vertices of C be v0, v1, v2, . . . , v�−1, v0, consecutively.
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Addition and subtraction in subscripts will always be taken modulo �. We say that an
edge e is outgoing if it has one vertex in V (C) and the other in V (G)\V (C). We say
a vertex v ∈ V (C) is outgoing if it is contained in an outgoing edge.

Wewill consider cases based on the value of �. Observe that � = 2k+2 is impossible
since v0, v1, . . . , v2k+1 is a path of length 2k + 1 but v0 and v2k+1 are adjacent,
contradiction.
Case 1 Suppose � ≥ 2k + 4. Since we have chosen � to be the length of the smallest
C� with � ≥ 2k + 1, we have v0 cannot be adjacent to any of v2, v3, . . . , v�−2k nor
any of v2k, v2k+1, . . . , v�−2, for otherwise we would have a shorter cycle of length at
least 2k + 1. Also note that v0 is adjacent to v1 and v�−1.

Observe that v0 cannot have two consecutive neighbors in the �-cycle. Indeed, if
vi and vi+1 are neighbors of v0, then we have the following (2k + 1)-paths starting at
v1: v1, v2, . . . , v2k+1, v2k+2 and v1, v2, . . . , vi , v0, vi+1, vi+2, . . . , v2k, v2k+1. Thus,
v2k+1 and v2k+2 would have to be colored the same, but this is impossible since they
are neighbors.

If v0 has a neighbor outside of C , say u0, then we have two paths of length 2k + 1:
u0, v0, v1, . . . , v2k and v2k, v2k−1, . . . , v0, v�−1. It follows that u0 and v�−1 have the
same color. Similarly, u0 and v1 have the same color. Thus, v�−1 and v1 also have the
same color, and similarly, for every i such that vi is outgoing, we can conclude vi−1
and vi+1 have the same color (Fig. 1).

If � = 2k + 4 and there is an outgoing vertex, say v0, then v1 and v2k+3 have the
same color (from the previous paragraph), a contradiction since v1 and v2k+2 also have
the same color (they are end vertices of a length 2k+1 path along the cycleC). If there
is no outgoing vertex in V (C), then C uses all vertices of the graph. Since no vertex
of the cycle has two consecutive neighbors, it follows that each degree is bounded by
2 + � 2k−5

2 � ≤ k and so the number of edges is at most (2k+4)k
2 = nk

2 < nk.
If � ≥ 2k + 5, we will show that v0 has an outgoing edge from the �-cycle C .

Suppose not, then since v0 does not have consecutive neighbors, it follows that v0 has
at most

2 +
⌈
2k − (� − 2k + 1)

2

⌉
≤ k − 1

neighbors, a contradiction. Thus, v0 and similarly every other vi has an outgoing
neighbor, and it follows that for every i , the vertices vi and vi+2 have the same color.
Hence v0 and v2k have the same color, contradicting that v0 and v2k+1 have the same
color, since they are end vertices of a P2k+1.
Case 2 Suppose � = 2k + 3. For all 0 ≤ i ≤ � − 1, vi+2, vi+1, . . . , v�−1, v0, . . . , vi
is a path of length � = 2k + 1, and so vi and vi+2 have the same color. Thus, v0 and
v2k+2 have the same color, but they are adjacent, contradiction.
Case 3 Finally, suppose � = 2k+1. If no edge is outgoing, then we are done, since by
connectivity the total number of edges in the graph is at most

(2k+1
2

) = kn. If indeed
the total number of edges is kn, then G is a clique. This is the only case when equality
holds. From here on, we will assume there is an outgoing edge.

Observe that if u is not a vertex ofC , then u cannot have two consecutive neighbors
in C , for otherwise we would have a cycle of length 2k + 2. Moreover, u cannot be
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Fig. 1 The picture on the left shows Case 1, and the other pictures show Case 3

connected to vi and vi+3, since there would be paths of length 2k + 1 from u to vi+1
and vi+2. It follows that u can have at most k − 1 neighbors in C and, thus, must have
a neighbor outside C .

If there are two consecutive non-outgoing vertices in C , then we may take two
such vertices vi and vi+1, for some index i , so that the next vertex vi+2 is outgoing.
Suppose {vi+2, u} is an outgoing edge. By the previous observation, there is an edge
{u, w} where w /∈ C . So we have a 2k + 1 length path from vi to w. Then vi+1 cannot
have two consecutive neighbors from C , since that would also imply that there is also
2k+1 length path fromw to vi−1. Similarly vi cannot have two consecutive neighbors
in C , hence vi and vi+1 have degree at most k. By removing these two vertices, we
remove 2k − 1 edges, and by the induction hypothesis the resulting graph has at most
k(n − 2) edges. So e(G) < kn.

For every i , either vi+1 or vi+2 is an outgoing vertex. Hence the vertex vi has either
the same color as vi+2, if vi+1 is an outgoing vertex, or the same color as vi+4, if vi+2
is an outgoing vertex. Hence by repeatedly applying this argument we obtain that v0
has the same color as v2k or v1, contradiction. ��

We believe that an analogue of Theorem 3 should hold in the setting of trees. Recall
that the extremal number ex(n, H) of a graph H is defined to be the largest number of
edges an n-vertex graph may have if it does not contain H as a subgraph. Erdős and
Sós made the following famous conjecture about the extremal number of trees.

Conjecture 1 (Erdős-Sós [2]) Let T be a treewith k ≥ 1 edges, then ex(n, T ) ≤ (k−1)n
2 .

A proof of Conjecture 1 for sufficiently large trees has been announced by Ajtai,
Komlós, Simonovits and Szemerédi [1].

We introduce a new variation of the extremal function ex(n, T ) in the case of trees.
Let exc(n, T ) denote the maximum number of edges possible in an n-vertex graph G
with a proper vertex coloring (using any number of colors), such that in every copy of
T in G the leaves of T are all the same color.

Theorem 5 Let T be a tree with k edges such that in the (unique) proper vertex 2-
coloring of T all leaves are not the same color, then exc(n, T ) ≤ (k − 1)n.

Proof There is a path of odd length in T with end vertices which are leaves. Let G
be an n-vertex graph with more than (k − 1)n edges with a proper vertex coloring.
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Fig. 2 Theorem 7 and its proof

We may find a subgraph G ′ of G with average degree at least that of G and minimum
degree greater than k − 1. The proper coloring of G induces a proper coloring of G ′
and so applying Theorem 3 for any odd � ≤ k, we may find a copy of P� in G ′ with
end vertices of distinct colors. We may now build up the rest of the tree in a greedy
fashion as every degree in G ′ is at least k and T has k + 1 vertices. Thus, we have
found a copy of T in the graph G with leaves of at least two colors. ��
Theorem 6 Let T be a tree with k edges such that in the proper vertex 2-coloring of T

all leaves are the same color, then exc(n, T ) =
⌊
n2
4

⌋
, provided n is sufficiently large.

Proof The fact that all leaves are colored the same by a 2-coloring implies that all
paths between pairs of leaves have even length. We add an edge e to T connecting an
arbitrary pair of leaves, and let G be the resulting graph. Since G has an odd cycle,
its chromatic number is clearly 3, and the deletion of e yields a 2-chromatic graph. It
follows from a theorem of Simonovits [7] that if n is sufficiently large, the extremal

number of G is precisely ex(n,G) =
⌊
n2
4

⌋
. Thus, in any n-vertex graph with more

than
⌊
n2
4

⌋
edges we have a copy T with two adjacent leaves, and so in any proper

coloring of this graph we have a copy of T with leaves of at least 2 colors. It follows

that exc(n, T ) ≤
⌊
n2
4

⌋
, and this bound is realized by the complete bipartite graph

K
 n
2 �,� n

2 �. ��
Remark 1 The paths of even length P2k are a special case of Theorem 6. Here better
bounds on n are known to exist. For example, the result of Füredi [4] on the extremal
number of odd cycles implies that n ≥ 4k is sufficient.

We believe that a strengthening of Conjecture 1 should hold for trees whose 2-
coloring yields two leaves of different colors.

Conjecture 2 Let T be a tree with k ≥ 1 edges such that in the proper vertex 2-coloring
of T all leaves are not the same color, then exc(n, T ) ≤ (k−1)n

2 .

One would hope that Conjecture 2 could be deduced directly from Conjecture 1,
but unfortunately this does not seem to be the case. We take a first step towards
Conjecture 2 by proving it in the case of double stars.

Theorem 7 For positive integers a and b, let Sa,b denote the tree on a+b+2 vertices
consisting of an edge {u, v}where |N (u)\v| = a, |N (v)\u| = b and N (u)∩N (v) = ∅

(see Fig. 2, left). We have exc(n, Sa,b) ≤ a+b
2 n.

123



694 Graphs and Combinatorics (2019) 35:689–694

Proof Let G be a vertex colored graph with |E(G)| > |V (G)| a+b
2 . Without loss of

generality, suppose a ≤ b. We may assume by induction that δ(G) > a+b
2 ≥ a.

Since ex(m, Sa,b) = m a+b
2 (see, for example [6]), it follows that G contains a copy

of Sa,b. Suppose this copy is defined by the edge {u, v} together with the disjoint sets
A ⊆ N (u), B ⊆ N (v) with |A| = a, |B| = b. Now, if there is more than one color in
A ∪ B, then we are done. So suppose the color of all vertices in A ∪ B is the same.
Hence A ∪ B is an independent set.

If u is not adjacent to some w ∈ B (see Fig. 2, middle), since |N (w)| ≥ a + 1,
we can pick C ⊆ N (w)\{u, v} of size a. So the edge {v,w} together with the sets
B ′ = (B ∪ {u})\{w} and C define an Sa,b where the colors of all vertices in C are
different from the colors of B ′\{u}.

If u is adjacent to allw ∈ B, then fix x ∈ B (see Fig. 2, right). Since |N (x)| ≥ a+1,
we can pick C ⊆ N (x)\{u} of size a. Let y ∈ A and define B ′ = (B ∪ {y})\{x}.
Observe that B ′ ⊆ N (u), and the edge {u, x} together with the sets B ′ and C defines
an Sa,b, where again the color of the vertices inC is different from the color of vertices
in B ′. ��
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