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Abstract
For given graphs G1,G2, . . . ,Gk, k ≥ 2, the multicolor Ramsey number
R(G1,G2, . . . ,Gk) is the smallest integer n such that if we arbitrarily color the edges
of the complete graph of order n with k colors, then it contains a monochromatic
copy of Gi in color i , for some 1 ≤ i ≤ k. The main result of the paper is a theo-
rem which establishes the connection between the multicolor Ramsey number and the
appropriate multicolor bipartite Ramsey number together with the ordinary Ramsey
number. The remaining part of the paper consists of a number of corollaries which
are derived from the main result and from known results for Ramsey numbers and
bipartite Ramsey numbers. We provide some new exact values or generalize known
results for multicolor Ramsey numbers of paths, cycles, stripes and stars versus other
graphs.
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1 Introduction

All graphs in this paper are undirected, finite and simple. The union of two graphs
G and H , denoted by G ∪ H , is a graph with vertex set V (G) ∪ V (H) and edge set
E(G) ∪ E(H). The join of two graphs G and H , denoted by G + H , is a graph with
vertex set V (G) ∪ V (H) and edge set E(G) ∪ E(H) ∪ {uv|u ∈ V (G), v ∈ V (H)}.
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The union of k disjoint copies of the same graph G is denoted by kG. G stands for the
complement of the graph G. We denote by G[U ] the subgraph of G induced by the
vertex set U . By Pn and Cn we denote the path and cycle on n vertices, respectively.
For a 3-edge coloring (say blue, red and green) of a graph G, we denote by Gb (Gr

andGg) the subgraph induced by the edges of color blue (red and green, respectively).
For given graphs G1,G2, . . . ,Gk, k ≥ 2, the multicolor Ramsey number

R(G1,G2, . . . ,Gk) is the smallest integer n such that if we arbitrarily color the edges
of the complete graph of order n with k colors, then it contains a monochromatic copy
of Gi in color i , for some 1 ≤ i ≤ k. The existence of such a positive integer is
guaranteed by Ramsey’s classical result [17]. Ramsey numbers are still in the main
stream of investigations and there are no many results in the field of multicolor and
even three-color Ramsey numbers. There are a lot of open cases (see [18]).

The bipartite Ramsey number b(G1, . . . ,Gk) is the smallest positive integer b such
that any coloring of the edges of Kb,b with k colors contains a monochromatic copy
of bipartite Gi in the i-th color, for i , 1 ≤ i ≤ k.

In 2005, the second author began to determine the exact values for three color Ram-
sey numbers for two paths and one cycle. He proved that for n ≥ 6, R(P3, P3,Cn) = n
and R(P3, P4,Cn) = n + 1 [4]. In 2006 Dzido et al. [6] proved that R(P4, P4,Cn) =
n + 2 and R(P3, P5,Cn) = n + 1. In 2009 Dzido and Fidytek [5] (and independently
Bielak in [2]) obtained the exact value of R(Pi , Pk,Cm) for several values of i, k and
m.

Theorem 1 [2,5] Let i, k,m be integers such that m ≥ 3 is odd, k ≥ m, and k >
3i2−14i+25

4 when i is odd, and k > 3i2−10i+20
8 when i is even. Then

R(Pi , Pk,Cm) = 2k + 2
⌊ i

2

⌋
− 3.

In Sect. 3.1 we extend this result to other conditions on the length of paths and a
cycle. By a short proof we show that for integers n0, n1, n2 such that n0 is sufficiently
large, if n1 = 2s and n2 = 2m such thatm − 1 < 2s, or n1 = n2 = 2s or n1 = 2s + 1
and n2 = 2m such that s < m − 1 < 2s + 1 then

R(Cn0 , Pn1 , Pn2) = n0 +
⌊n1
2

⌋
+

⌊n2
2

⌋
− 2.

It should be noted that this result can be also obtained as a consequence of Theorem 2.2
in [14].

For the Ramsey number of paths a well-known theorem of Gerencsér and Gyárfás
[10] states that R(Pn, Pm) = m + �n/2� − 1 where m ≥ n ≥ 2. In 1975 [7] Faudree
and Schelp determined R(Pn1 , Pn2 , Pn3) for the case n1 ≥ 6(n2 + n3)2 and they
conjectured that

R(Pn, Pn, Pn) =
{
2n − 2 if n is even,
2n − 1 if n is odd.
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In 2007 this conjecture was established by Gyárfás et al. [11] for sufficiently large
n. We can apply our result for R(Cn0 , Pn1 , Pn2) to Pn0 instead of Cn0 to obtain the
same result as in [7]. The formula is the same but the original result contains the lower
bound for n0 and no conditions for n1 and n2 (except n1, n2 ≥ 2).

The Ramsey number of a star versus a path was completely determined by Parsons
[15]. In Sects. 3.3 and 3.6 we investigate multicolor Ramsey number of a cycle Cn or
path Pn versus stars and stripes for large value of n.

In [13] Maherani et al. proved that R(P3, kK2, t K2) = 2k + t − 1 for k ≥ t ≥ 3.
In this paper we show that R(Pn, kK2, t K2) = n + k + t − 2 for large n. In addition
we prove that for even k, R((k − 1)K2, Pk, Pk) = 3k − 4. For s < m − 1 < 2s + 1
and t ≥ m + s − 1, we obtain that R(t K2, P2s+1, P2m) = s + m + 2t − 2.

We also provide some new exact values or generalize known results for other
multicolor Ramsey numbers of paths, cycles, stripes and stars versus other graphs.

2 Main Results

Theorem 2 For every graph H and bipartite graphs G1, . . . ,Gk, we have

R(H ,G1, . . . ,Gk) ≤ R(H , Kb,b),

where b = b(G1, . . . ,Gk).

Proof Assume R(H , Kb,b) = n, we will show that for any coloring of the edges of the
complete graph Kn by k + 1 colors there exists a color i for which the corresponding
color class contains Gi as a subgraph.

Suppose that G = Kn is (k + 1)-edge colored such that G does not contain H of
color 1. We show that there is a copy of Gi of color i in G for some 2 ≤ i ≤ k + 1.
Now we merge k colors classes 2, . . . , k + 1. Suppose that new class is black. Since
R(H , Kb,b) = n, we have a black copy of Kb,b. Using to its original k-coloring, we see
that there exists a complete bipartite subgraph L = Kb,b whose edges are colored with
2, . . . , k + 1 (observe that there is no edges of color 1 in L). Now b = b(G1, . . . ,Gk)

guarantees that L contains a copy of Gi of color i for some 2 ≤ i ≤ k + 1.

Häggkvist [12] obtained the upper bound R(Pm, Kn,k) ≤ k+n+m−2. In addition,
Faudree et al. [9] obtained the exact value R(t K2, Kn,n) = max{n+2t−1, 2n+t−1}.
Using these results with Theorem 2 we immediately obtain the following.

Corollary 1 For bipartite graphs G1, . . . ,Gk, we have

1.

R(Pm,G1, . . . ,Gk) ≤ 2b + m − 2,
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2.

R(t K2,G1, . . . ,Gk) ≤
{
2b + t − 1 if t ≤ b,

b + 2t − 1 if t ≥ b,

where b = b(G1, . . . ,Gk).

For bipartite graphs G1,G2, . . . ,Gk we easily have R(G1,G2, . . . ,Gk) ≤
2b(G1,G2, . . . ,Gk). The answer to the question when the equality holds is an open
problem. For example, we know that b(C2m,C4) = m + 1 for m ≥ 4, while
R(C2m,C4) = 2m + 1 for m ≥ 3 (see [18,19], respectively).

Corollary 2 If R(G1,G2, . . . ,Gk) = 2b(G1,G2, . . . ,Gk) = 2t for bipartite graphs
G1, . . . ,Gk, then

R(t K2,G1, . . . ,Gk) = 3t − 1.

Proof By Corollary 1, the upper bound is clear. To see the lower bound consider the
graph G = K3t−2 = K2t−1+Kt−1. Since R(G1, . . . ,Gk) = 2t , we take a k-coloring
of E(K2t−1) which does not contain a copy of Gi in color i for any 1 ≤ i ≤ k. The
remaining edges of G we color with color (k + 1) and clearly such Gk+1 contains no
copy of t K2. This proves the corollary.

3 More Corollaries

This section contains a number of corollaries following from the main Theorem 2 and
some known results about Ramsey numbers and bipartite Ramsey numbers.

3.1 R(Cn0, Pn1, Pn2) for Large n0

In this subsection, we determine the value of R(Cn0 , Pn1 , Pn2) for large n0 and special
cases of n1, n2.We first recall a result of Bondy and Erdős from 1973 [1] for n > n1(r)
(that is for sufficiently large n). More precisely, they showed the following.

Theorem 3 [1] For n > n1(r , t), R(Cn, K t+1
r ) = t(n − 1) + r where K t+1

r is the
complete (t+1)-partite graphwith parts of size r . In particular R(Cn, Kr ,r ) = n+r−1.

We can apply this result and Theorem 2 to determine the value which can be also
obtained as consequence of Theorem 2.2 in [14].

Theorem 4 For sufficiently large n0, if n1 = 2s and n2 = 2m such that m − 1 < 2s
or if n1 = n2 = 2s or if n1 = 2s + 1 and n2 = 2m such that s < m − 1 < 2s + 1,
then we have

R(Cn0 , Pn1 , Pn2) = n0 +
⌊n1
2

⌋
+

⌊n2
2

⌋
− 2.
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Proof For the upper bound, by Theorem 2, R(Cn0 , Pn1 , Pn2) ≤ R(Cn0 , Kb,b) where
b = b(Pn1 , Pn2). By Theorem 3, R(Cn0 , Pn1 , Pn2) ≤ n0 + b − 1. On the other hand,

b =
⌊
n1
2

⌋
+

⌊
n2
2

⌋
−1 (see Theorem 5) and R(Cn0 , Pn1 , Pn2) ≤ n0+

⌊
n1
2

⌋
+

⌊
n2
2

⌋
−2.

For the lower bound, consider the graph G = KR−1 ∪ K n2
2 −1 where R =

R(Cn0 , Pn1). It is known that R = n0 +
⌊
n1
2

⌋
− 1 for n0 ≥ n1 ≥ 2. It is clear

that there is a blue/red coloring of KR−1 such that Gb contains no copy of Cn0 and
Gr contains no copy of Pn1 . Color the remaining subgraph K n2

2 −1 with red. Since
n2
2 − 1 < n1, there is no a red copy of Pn1 in K n2

2 −1. Consider G = K R−1 + K n2
2 −1

and color it with green. Thus Gg contains no copy of Pn2 . The equality follows.

In 1975 Faudree and Schelp [7] proved that if n0 ≥ 6(n1 + n2)2, then
R(Pn0 , Pn1 , Pn2) = n0+�n1/2�+�n2/2�−2 forn1, n2 ≥ 2. Since R(Pn0 , Pn1 , Pn2) ≤
R(Cn0 , Pn1 , Pn2), we can apply Theorem 4 to Pn0 instead of Cn0 to obtain the same
results as in [7].

Corollary 3 For sufficiently large n0, if n1 = 2s and n2 = 2m where m − 1 < 2s or
if n1 = n2 = 2s or if n1 = 2s + 1 and n2 = 2m where s < m − 1 < 2s + 1, then we
have

R(Pn0 , Pn1 , Pn2) = n0 +
⌊n1
2

⌋
+

⌊n2
2

⌋
− 2.

Proof Since R(Pn0 , Pn1) = n0 +
⌊
n1
2

⌋
− 1 for n0 ≥ n1 ≥ 2, let us consider the same

graph and coloring as in the proof of Theorem 4.

3.2 R(tK2, Pk, Pk′ )

In 1975 Faudree and Schelp [8] determined b(Pn, Pk) for all n and k. In the following
theorem we present only two cases which we will use in the proof of the next theorem.

Theorem 5 [8] For s,m positive integers,

1. b(P2s, P2m) = s + m − 1,
2. b(P2s+1, P2m) = s + m − 1 for s < m − 1.

Theorem 6 For positive integers k,m, s, t,

(i) R((k − 1)K2, Pk, Pk) = 3k − 4 if k is even,
(ii) R(t K2, P2s+1, P2m) = s+m+2t −2 for s < m−1 < 2s+1 and t ≥ m+ s−1.

Proof (i) Corollary 1 implies that R(t K2, Pk, Pk) ≤ 2b + t − 1 for t ≤ b and b =
b(Pk, Pk). Theorem 5 (that is b = b(Pk, Pk) = k − 1 for even k) completes the proof
for the upper bound.
It is known that R = R((k − 1)K2, Pk) = 2k + �k/2� − 3 (see [9]). Consider the
graph G = KR−1 ∪ Kk/2−1. Clearly KR−1 has a blue/red coloring such that Kb

R−1
contains no copy of (k − 1)K2 and Kr

R−1 contains no copy of Pk . We can take this
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coloring and we color the edges of Kk/2−1 with red. The edges of G we color with
green. Hence Gg contains no copy of Pk . This gives the desired lower bound.

(ii) As before, by Corollary 1, we have R(t K2, P2s+1, P2m) ≤ b + 2t − 1 for t ≥
m+s−1. On the other hand by Theorem 5, for s < m−1, b(P2s+1, P2m) = s+m−1.
So for s < m − 1 and t ≥ m + s − 1, R(t K2, P2s+1, P2m) ≤ s + m + 2t − 2.
Now, let G = KR−1 ∪ Km−1 where R = R(t K2, P2s+1) = 2t + �(2s + 1)/2� − 1
for t > �(2s + 1)/2� (see [9]). Clearly KR−1 can be colored in such a way that Kb

R−1
contains no copy of t K2 and Kr

R−1 contains no copy of P2s+1. We color the subgraph
Km−1 with red and the edges of G with green. Then Gg contains no copy of P2m and
the proof is complete.

3.3 R(Cn, kK2, tK2) and R(Pn, kK2, tK2) for Large n

Lemma 1 [3] For positive integers m and n,

b(mK2, nK2) = m + n − 1.

Theorem 7 R(Cn, kK2, t K2) = n + k + t − 2, for sufficiently large n.

Proof Theorems 2, 3 and Lemma 1 give us the desired upper bound.
In [9] it is shown that R(Cn, kK2) = n + k − 1 for k ≤ � n

2 �. Consider the graph
G = Kn+k−2 ∪ K t−1. There is a blue/red coloring of Kn+k−2 such that Gb contains
no copy of Cn and Gr contains no copy of kK2. Color G = Kn+k−2 + Kt−1 with
color green. The theorem follows.

In [13] Maherani et al. proved that R(P3, kK2, t K2) = 2k + t − 1 for k ≥ t ≥ 3.

Theorem 8 R(Pn, kK2, t K2) = n + k + t − 2, for sufficiently large n.

Proof Clearly R(Pn, kK2, t K2) ≤ R(Cn, kK2, t K2). Theorem 7 gives us the upper
bound.

In [9] it is shown that R(Pn, kK2) = n + k − 1 for k ≤ � n
2 �. We obtain the lower

bound by considering the same coloring as in the proof of Theorem 7.

3.4 R(tK2, P3, C2n) for t ≤ n

Theorem 9 [18] R(P3,C2n) = 2n.

Theorem 10 For positive integers t ≤ n, R(t K2, P3,C2n) = 2n + t − 1.

Proof It is easy to see that b(P3,C2n) = n for n ≥ 3. By Corollary 1, we have
R(t K2,C2n, P3) ≤ 2n + t − 1 where t ≤ n. To see the lower bound, assume that
G = K2n−1 ∪ K t−1. It is clear that there is a blue/red coloring of E(K2n−1) such that
there is no blue copy C2n and no red copy P3. We can take this coloring and we color
the edges of G = K 2n−1 + Kt−1 with color green. There is no green copy t K2.
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3.5 R(tK2, C2m, C4)

Theorem 11 [19] b(C2m,C4) = m + 1 for m ≥ 4.

Theorem 12 [9] R(t K2,Cn) = max{n + 2t − 1 − �n/2�, n + t − 1} for n ≥ 3.

Theorem 13 For a positive integer m ≥ 4,

1. if t ≥ m + 1 then R(t K2,C2m,C4) = m + 2t,
2. if t ≤ m then 2m + t ≤ R(t K2,C2m,C4) ≤ 2m + t + 1.

Proof (1) By Corollary 1 and Theorem 11, we have R(t K2,C2m,C4) ≤ b+ 2t − 1 =
m + 2t where b = b(C2m, K2,2) and t ≥ m + 1. To see the lower bound, consider
the graph G = KR−1 ∪ K1 where R = R(t K2,C2m) = m + 2t − 1 for t ≥ m + 1.
It is clear that there is a blue/red coloring of E(KR−1) such that there is no blue copy
of t K2 and no red copy of C2m . We can take this coloring. We color the edges of
G = K R−1 + K 1 by green. So there is no green copy of C4.

(2) ByCorollary 1, we have R(t K2,C2m,C4) ≤ 2b+t−1where b = b(C2m, K2,2)

and t ≤ m + 1. By Theorem 11, we obtain R(t K2,C2m,C4) ≤ 2m + t + 1. To see
the lower bound, consider the graph G = KR−1 ∪ K1 where R = R(t K2,C2m) =
2m + t − 1. It is clear that there is a blue/red coloring of E(KR−1) such that there is
no blue copy of t K2 and no red copy C2m . We can take such a coloring and we color
the edges of G = K R−1 + K 1 with green. There is no green copy of C4 and the proof
is complete.

3.6 Multicolor Ramsey Numbers

This last subsection contains some results for Ramsey numbers with more than 3
colors.

Theorem 14 Letm1,m2, . . . ,ms and k1, k2, . . . , kt be positive integers andn > n1(b)
where b = b(K1,k1 , K1,k2 , . . . , K1,kt ,m1K2,m2K2, . . . ,msK2). Then

R(Cn, K1,k1 , K1,k2 , . . . , K1,kt ,m1K2,m2K2, . . . ,msK2) ≤ n + b − 1.

Proof By using the same argument as in Theorem 2, we have R(Cn, K1,k1 , K1,k2 ,

. . . , K1,kt ,m1K2,m2K2, . . . ,msK2) ≤ R(Cn, Kb,b) where b = b(K1,k1 , K1,k2 ,

. . . , K1,kt ,m1K2,m2K2, . . . ,msK2). Next we apply Theorem 3.

Lemma 2 [16] Let m1,m2, . . . ,ms and k1, k2, . . . , kt be positive integers with Λ =∑s
i=1(mi−1) and

∑ = ∑t
i=1(ki−1). Then b(K1,k1 , K1,k2 , . . . , K1,kt ,m1K2,m2K2,

. . . ,msK2) = b, where

b =
{

Λ + 1 if Σ < �(Λ + 1)/2�,
Σ + �Λ/2� + 1 if Σ ≥ �(Λ + 1)/2�.

Combining Theorem 14 and Lemma 2, we obtain the following.
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Theorem 15 Let m1,m2, . . . ,ms and k1, k2, . . . , kt be positive integers with Λ =∑s
i=1(mi − 1) and

∑ = ∑t
i=1(ki − 1). If Σ ≤ �(Λ + 1)/2� for n > n1(Λ), then

R(Cn,m1K2,m2K2, . . . ,msK2, K1,k1 , K1,k2 , . . . , K1,kt ) = n + Λ.

Proof For the upper bound, we apply Theorem 14 and Lemma 2.
For the lower bound color all edges of G = Kn−1 ∪ KΛ by color 1 and for all
edges of G = Kn−1 + KΛ consider the following coloring. Color Kn−1 + Km1−1 and
Km1−1+K∑s

i=2(mi−1) by color 2 and color Kn−1+Km2−1 and Km2−1+K∑s
i=3(mi−1)

by color 3 and in the general color Kn−1+Km j−1 and Km j−1+K∑s
i= j+1(mi−1) by color

j+1where j ≥ 1 andfinally color Kn−1+Kms−1 by color s. ThenG1 contains no copy
of Cn , Gi+1 contains no copy of mi K2 for 1 ≤ i ≤ s, as desired. Note that this lower
bound is usable on arbitrary graphs H1, . . . , Ht instead of K1,k1 , K1,k2 , . . . , K1,kt .

Corollary 4 For given positive integers m1,m2, . . . ,ms and k1, k2, . . . , kt with Λ =∑s
i=1(mi − 1),

∑ = ∑t
i=1(ki − 1), sufficiently large n and Σ ≤ �(Λ + 1)/2�,

R(Pn, K1,k1 , K1,k2 , . . . , K1,kt ,m1K2,m2K2, . . . ,msK2) = n + Λ.

Lemma 3 [16] For positive integers m, k1, . . . , kr ≥ 2 and
∑ = ∑r

i=1(ki − 1),

b(Pm, K1,k1 , . . . , K1,kr ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Σ + m
2 if Σ ≥ m

2 ,m even,

Σ + m+1
2 if Σ ≥ m−1

2 ,m odd, Σ ≡ 0 mod(m−1
2 ),

Σ + m−1
2 if Σ ≥ m−1

2 ,m odd, Σ 	≡ 0 mod(m−1
2 ),

2Σ + 1 if 1
2�m

2 � + 1 ≤ Σ < �m
2 � + 1,

�m+1
2 � if Σ < 1

2�m/2�.

Theorem 16 For Σ < s
2 , m = 2s and 2 ≤ t ≤ s,

R(t K2, Pm, K1,k1 , . . . , K1,kr ) = m + t − 1.

Proof Suppose that Σ < s
2 , m = 2s and 2 ≤ t ≤ s. By Corollary 1 and Lemma 3, we

have R(t K2, Pm, K1,k1 , . . . , K1,kr ) ≤ m + t − 1. To obtain the lower bound, divide
the vertex set of G = Km+t−2 into two parts A and B, where |A| = m − 1 and
|B| = t − 1. Color the edges of G[A] with the second color and other edges with the
first color. Note that the lower bound is usable for arbitrary graphs H1, . . . , Ht instead
of K1,k1 , K1,k2 , . . . , K1,kr .

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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