Closure and Spanning \boldsymbol{k}-Trees

Ryota Matsubara - Masao Tsugaki • Tomoki Yamashita

Received: 15 April 2011 / Revised: 26 November 2012 / Published online: 19 April 2013 © The Author(s) 2013. This article is published with open access at Springerlink.com

Abstract

In this paper, we propose a new closure concept for spanning k-trees. A k tree is a tree with maximum degree at most k. We prove that: Let G be a connected graph and let u and v be nonadjacent vertices of G. Suppose that $\sum_{w \in S} d_{G}(w) \geq|V(G)|-1$ for every independent set S in G of order k with $u, v \in S$. Then G has a spanning k-tree if and only if $G+u v$ has a spanning k-tree. This result implies Win's result (Abh Math Sem Univ Hamburg, 43:263-267, 1975) and Kano and Kishimoto's result (Graph Comb, 2013) as corollaries.

Keywords Spanning tree $\cdot k$-tree \cdot Closure

1 Introduction

All graphs considered in this paper are only simple and finite. For standard graphtheoretic terminology not explained in this paper, we refer the reader to [1].

Bondy and Chvátal [2] introduced the closure concept, and showed that it plays an important role for the existence of cycles, paths, and other subgraphs in graphs. In this

[^0]paper, we consider a closure concept for spanning k-trees, and refer the reader to the survey [3] on closure concept. A k-tree is a tree with maximum degree at most k. Win [6] obtained a degree sum condition for the existence of spanning k-trees.

Theorem 1 (Win [6]) Let $k \geq 2$ be an integer, and let G be a connected graph. If $\sum_{v \in S} d_{G}(v) \geq|V(G)|-1$ for every independent set S in G of order k, then G has a spanning k-tree.

Recently, Kano and Kishimoto [4] considered a closure concept for spanning k trees, and proved the following theorem.

Theorem 2 (Kano and Kishimoto [4]) Let $k \geq 2$ be an integer, and let G be an m-connected graph. Let u and v be two nonadjacent vertices of G. Suppose that $d_{G}(u)+d_{G}(v) \geq|V(G)|-m(k-2)-1$. Then G has a spanning k-tree if and only if $G+u v$ has a spanning k-tree.

In this paper, we give a closure result which implies the above theorems as corollaries.

Theorem 3 Let $k \geq 2$ be an integer, and let G be a connected graph. Let u and v be two nonadjacent vertices of G. Suppose that $\sum_{w \in S} d_{G}(w) \geq|V(G)|-1$ for every independent set S in G of order k such that $u, v \in S$. Then G has a spanning k-tree if and only if $G+u v$ has a spanning k-tree.

We now show that a graph satisfying the condition of Theorem 2 also satisfies that of Theorem 3.

Proof of Theorem 2 Assume that G is an m-connected graph and satisfies $d_{G}(u)+$ $d_{G}(v) \geq|V(G)|-m(k-2)-1$ for some $u, v \in V(G)$ with $u v \notin E(G)$. Since $|V(G)|-m(k-2)-1 \geq|V(G)|-\delta(G)(k-2)-1 \geq|V(G)|-\sum_{w \in T} d_{G}(w)-1$ for every independent set $T \subseteq V(G) \backslash\{u, v\}$ of order $k-2$, we have $\sum_{w \in S} d_{G}(w) \geq$ $|V(G)|-1$ for every independent set $S \subseteq V(G)$ of order k such that $u, v \in S$. Hence G satisfies the condition of Theorem 3 .

2 Proof of Theorem 3

We prove a slightly stronger theorem than Theorem 3. For a graph G and $S \subseteq V(G)$ with $|S| \geq k$, let $\Delta_{k}(S ; G):=\max \left\{\sum_{x \in X} d_{G}(x): X\right.$ is a subset of S of order $\left.k\right\}$. If there is no confusion, then we abbreviate $\Delta_{k}(S ; G)$ to $\Delta_{k}(S)$.

Theorem 4 Let $k \geq 2$ be an integer, and let G be a connected graph. Let u and v be two nonadjacent vertices of G. Suppose that there exists no independent set of order $k+1$ containing both u and v, or $\Delta_{k}(S) \geq|V(G)|-1$ for every independent set S in G of order $k+1$ such that $u, v \in S$. Then G has a spanning k-tree if and only if $G+u v$ has a spanning k-tree.

1. The degree condition of Theorem 4 is best possible in the following sense. Let G be a complete bipartite graph $K_{n, n(k-1)+2}$ with partite sets X and Y such that $|X|=n$ and $|Y|=n(k-1)+2$, where $n \geq 1$ and $k \geq 2$. Let u and v be
two vertices of Y. Then $\Delta_{k}(S)=n k=|V(G)|-2$ for every independent set S of order $k+1$ such that $u, v \in S$, and $G+u v$ has a spanning k-tree. But G has no spanning k-tree, because if G has a spanning k-tree T, then $|V(G)|-1=$ $|V(T)|-1=|E(T)| \leq k|X|=k n=|V(G)|-2$, a contradiction.
2. The closure $\mathrm{cl}^{\Delta}(G)$ obtained from Theorem 4 is well-defined.

Let G_{1} and G_{2} be graphs obtained from G by recursively joining pairs of nonadjacent vertices which satisfy the condition of Theorem 4 until there exists no such a pair. Let $e_{1}, e_{2}, \ldots, e_{m}$ and $f_{1}, f_{2}, \ldots, f_{n}$ be the sequences of edges added to G in obtaining G_{1} and G_{2}, respectively. Suppose that $e_{1}, e_{2}, \ldots, e_{l} \in E\left(G_{2}\right)$ and $e_{l+1} \notin E\left(G_{2}\right)$. Let $e_{l+1}:=u v$ and $H:=G+e_{1}+\cdots+e_{l}$. Then, by the definition of G_{2}, there exists an independent set S in G_{2} of order $k+1$ such that $u, v \in S$ and $\Delta_{k}\left(S ; G_{2}\right) \leq\left|V\left(G_{2}\right)\right|-2=|V(G)|-2$. Since H is a subgraph of G_{2}, S is an independent set in H and $\Delta_{k}\left(S ; G_{2}\right) \geq \Delta_{k}(S ; H)$. By the choice of e_{l+1}, we have $\Delta_{k}(S ; H) \geq|V(H)|-1=|V(G)|-1$. Hence $|V(G)|-2 \geq \Delta_{k}\left(S ; G_{2}\right) \geq \Delta_{k}(S ; H) \geq|V(G)|-1$, a contradiction. Hence $e_{1}, e_{2}, \ldots, e_{m} \in E\left(G_{2}\right)$. Similarly, we can obtain $f_{1}, f_{2}, \ldots, f_{n} \in E\left(G_{1}\right)$. This implies that $G_{1}=G_{2}$, and so cl ${ }^{\Delta}(G)$ is well-defined.
3. Theorem 4 implies a result due to Neumann-Lara and Rivera-Campo.

Neumann-Lara and Rivera-Campo [5] obtained an independence number condition for the existence of spanning k-trees. (In fact, they proved a stronger result as we mention in Sect. 3.)

Theorem 5 (Neumann-Lara and Rivera-Campo [5]) Let $k \geq 2$ be an integer, and let G be a connected graph. If there exists no independent set of order $k+1$, then G has a spanning k-tree.

If a graph G satisfies the hypothesis of Theorem 5, then $\mathrm{cl}^{\Delta}(G)$ is complete, and hence Theorem 4 implies Theorem 5.

Proof of Theorem 4 For a subgraph H of a graph G and a vertex $v \in V(H)$, we denote the set of neighbors of v in H by $N_{H}(v)$, and let $d_{H}(v):=\left|N_{H}(v)\right|$.

If G has a spanning k-tree, then trivially also $G+u v$ has a spanning k-tree. Hence we prove the converse.

Suppose that $G+u v$ has a spanning k-tree T and G does not have a spanning k-tree. Then $T-u v$ consists of two trees T_{1} and T_{2} such that $u \in V\left(T_{1}\right)$ and $v \in V\left(T_{2}\right)$. Note that for $i=1,2, T_{i}$ is a k-tree in G, and $d_{T_{i}}(w)=d_{T}(w)$ for $w \in V\left(T_{i}\right) \backslash\{u, v\}, d_{T_{1}}(u) \leq k-1$ and $d_{T_{2}}(v) \leq k-1$. Since G is a connected graph, there exist $w_{1} \in V\left(T_{1}\right)$ and $w_{2} \in V\left(T_{2}\right)$ with $w_{1} w_{2} \in E(G)$. Choose w_{1} and w_{2} such that $d_{T_{1}}\left(w_{1}\right)+d_{T_{2}}\left(w_{2}\right)$ is as small as possible. Since G does not have a spanning k-tree, it follows that for some $i=1,2$, there exists no k-tree S_{i} such that $V\left(S_{i}\right)=V\left(T_{i}\right)$ and $d_{S_{i}}\left(w_{i}\right) \leq k-1$. Without loss of generality, we may assume that

$$
\begin{equation*}
\text { there exists no } k \text {-tree } S_{1} \text { such that } V\left(S_{1}\right)=V\left(T_{1}\right) \text { and } d_{S_{1}}\left(w_{1}\right) \leq k-1 \text {. } \tag{1}
\end{equation*}
$$

Hence we have $d_{T_{1}}\left(w_{1}\right)=k$. Then $w_{1} \neq u$ because $d_{T_{1}}(u) \leq k-1$.
Let $T_{3}:=T_{1} \cup T_{2}+w_{1} w_{2}$ and let F_{0}, \ldots, F_{k} be $k+1$ components of $T_{3}-w_{1}$. Since F_{i} is a tree, there exists a vertex x_{i} of F_{i} with $d_{T_{1} \cup T_{2}}\left(x_{i}\right) \leq k-1$ for $0 \leq i \leq k$. Let $X:=\left\{x_{0}, x_{1}, \ldots, x_{k}\right\}$. We can choose X so that $u, v \in X$, because $d_{T_{1}}(u) \leq k-1$ and
$d_{T_{2}}(v) \leq k-1$. Without loss of generality, we may assume that $d_{G}\left(x_{0}\right)=\min \left\{d_{G}\left(x_{i}\right)\right.$: $0 \leq i \leq k\}$. Let $\left\{z_{i}\right\}:=N_{T_{3}}\left(w_{1}\right) \cap V\left(F_{i}\right)$ for each $0 \leq i \leq k$. We regard F_{0} as a rooted tree with root z_{0} and F_{i} as a rooted tree with root x_{i} for $1 \leq i \leq k$.

Claim 1 Let i, j be integers with $0 \leq i \neq j \leq k$. Then $d_{T_{1} \cup T_{2}}(y)=k$ for all $y \in N_{G}\left(x_{i}\right) \cap V\left(F_{j}\right)$.

Proof Suppose that $d_{T_{1} \cup T_{2}}(y) \leq k-1$ for some $y \in N_{G}\left(x_{p}\right) \cap V\left(F_{q}\right)$, where p, q are integers with $0 \leq p \neq q \leq k$. If $v \in\left\{x_{p}, x_{q}\right\}$, then $T^{\prime}:=T_{1} \cup T_{2}+x_{p} y$ is a spanning k-tree in G, a contradiction. Hence $v \notin\left\{x_{p}, x_{q}\right\}$. Then $S_{1}:=T_{1}-w_{1} z_{q}+x_{p} y$ is a k-tree with $V\left(S_{1}\right)=V\left(T_{1}\right)$ and $d_{S_{1}}\left(w_{1}\right)=k-1$. This contradicts (1).

By Claim 1 and the choice of x_{0}, we obtain the following.
Claim $2 X$ is an independent set in G, and $\Delta_{k}(X)=\sum_{i=1}^{k} d_{G}\left(x_{i}\right)$.
We define

$$
Y_{j}:=\bigcup_{1 \leq i \neq j \leq k}\left(N_{G}\left(x_{i}\right) \cap V\left(F_{j}\right)\right) \quad \text { for } 1 \leq j \leq k
$$

and

$$
Y_{0}:=\bigcup_{1 \leq i \leq k-1}\left(N_{G}\left(x_{i}\right) \cap V\left(F_{0}\right)\right) .
$$

For $0 \leq i \leq k$ and $z \in V\left(F_{i}\right)$, we denote the parent and the children of z in F_{i} by z^{-} and $\operatorname{ch}(z)$, respectively and we let $Y_{i}^{+}:=\bigcup_{y \in Y_{i}} \operatorname{ch}(y)$.

Claim $3 Y_{i}^{+} \cap N_{G}\left(x_{i}\right)=\emptyset$ for each $1 \leq i \leq k$, and $Y_{0}^{+} \cap N_{G}\left(x_{k}\right)=\emptyset$.
Proof First, suppose that there exists $y \in Y_{p}^{+} \cap N_{G}\left(x_{p}\right)$ for some $1 \leq p \leq k$. Then $y^{-} \in N_{G}\left(x_{q}\right)$ for some $1 \leq q \neq p \leq k$. If $v \in\left\{x_{p}, x_{q}\right\}$, then $T_{1} \cup T_{2}-$ $y y^{-}+x_{p} y+x_{q} y^{-}$is a spanning k-tree in G, a contradiction.Otherwise, $S_{1}:=$ $T_{1}-y y^{-}-w_{1} z_{p}+x_{p} y+x_{q} y^{-}$is a k-tree and $d_{S_{1}}\left(w_{1}\right)=k-1$. This contradicts (1). Next, suppose that there exists $y \in Y_{0}^{+} \cap N_{G}\left(x_{k}\right)$. Then $y^{-} \in N_{G}\left(x_{r}\right)$ for some $1 \leq r \leq k-1$. If $v \in\left\{x_{0}, x_{r}\right\}$, then $T_{1} \cup T_{2}-y y^{-}+x_{k} y+x_{r} y^{-}$is a spanning k-tree in G, a contradiction. Assume that $x_{k}=v$. Then $x_{k} \in V\left(T_{2}\right)$ and $y \in V\left(T_{1}\right)$, and the minimality of $d_{T_{1}}\left(w_{1}\right)+d_{T_{2}}\left(w_{2}\right)$ and $d_{T_{1}}(y)+d_{T_{2}}\left(x_{k}\right) \leq k+k-1$ yields that $d_{T_{2}}\left(w_{2}\right) \leq k-1$. Therefore $T_{3}-w_{1} z_{0}-y y^{-}+x_{k} y+x_{r} y^{-}$is a spanning k-tree in G, a contradiction. If $v \notin\left\{x_{0}, x_{r}, x_{k}\right\}$, then $S_{1}^{\prime}:=T_{1}-w_{1} z_{0}-y y^{-}+x_{k} y+x_{r} y^{-}$is a k-tree with $V\left(S_{1}^{\prime}\right)=V\left(T_{1}\right)$ and $d_{S_{1}^{\prime}}\left(w_{1}\right)=k-1$. This contradicts (1).

Claim $4 z_{i} \notin N_{G}\left(x_{j}\right)$ for each $0 \leq i \neq j \leq k$.
Proof Suppose that $z_{p} \in N_{G}\left(x_{q}\right)$ for some $0 \leq p \neq q \leq k$. Assume that $x_{p}=v$. Then $z_{p}=w_{2}$ and the minimality of $d_{T_{1}}\left(w_{1}\right)+d_{T_{2}}\left(w_{2}\right)$ yields that $k+d_{T_{2}}\left(w_{2}\right)=$ $d_{T_{1}}\left(w_{1}\right)+d_{T_{2}}\left(w_{2}\right) \leq d_{T_{1}}\left(x_{q}\right)+d_{T_{2}}\left(z_{p}\right) \leq k-1+d_{T_{2}}\left(w_{2}\right)$, a contradiction. Assume
that $x_{q}=v$. Then note that $d_{G}\left(w_{2}\right) \leq k-1$ by the choice of w_{1} and w_{2}. Thus, $T_{3}-z_{p} w_{1}+x_{q} z_{p}$ is a spanning k-tree in G, a contradiction. If $v \notin\left\{x_{p}, x_{q}\right\}$, then $S_{1}:=T_{1}-z_{p} w_{1}+x_{q} z_{p}$ is a k-tree with $V\left(S_{1}\right)=V\left(T_{1}\right)$ and $d_{S_{1}}\left(w_{1}\right)=k-1$, which contradicts (1).

Claim $5\left|Y_{i}^{+}\right|=(k-1)\left|Y_{i}\right|$ for each $0 \leq i \leq k$.
Proof By Claim 4, $z_{i} \notin Y_{i}$ for all $0 \leq i \leq k$, and hence $d_{F_{i}}(y)=d_{T_{1} \cup T_{2}}(y)$ for all $y \in Y_{i}$. It follows from Claim 1 that $|\operatorname{ch}(y)|=d_{F_{i}}(y)-1=k-1$ for all $y \in Y_{i}$. Since F_{i} is a tree, $\operatorname{ch}\left(y_{1}\right) \cap \operatorname{ch}\left(y_{2}\right)=\emptyset$ for every $y_{1}, y_{2} \in Y_{i}$ with $y_{1} \neq y_{2}$. Therefore we obtain $\left|Y_{i}^{+}\right|=\sum_{y \in Y_{i}}|\operatorname{ch}(y)|=(k-1)\left|Y_{i}\right|$ for each $0 \leq i \leq k$.

By Claims 3-5, for $1 \leq h \leq k$, we obtain

$$
\begin{aligned}
\left|N_{G}\left(x_{h}\right) \cap V\left(F_{h}\right)\right| & \leq\left|V\left(F_{h}\right)\right|-\left|\left\{x_{h}\right\}\right|-\left|Y_{h}^{+}\right| \\
& =\left|V\left(F_{h}\right)\right|-1-(k-1)\left|Y_{h}\right| \\
& \leq\left|V\left(F_{h}\right)\right|-1-\sum_{1 \leq i \leq k, i \neq h}\left|N_{G}\left(x_{i}\right) \cap V\left(F_{h}\right)\right|
\end{aligned}
$$

and

$$
\begin{aligned}
\left|N_{G}\left(x_{k}\right) \cap V\left(F_{0}\right)\right| & \leq\left|V\left(F_{0}\right)\right|-\left|\left\{z_{0}\right\}\right|-\left|Y_{0}^{+}\right| \\
& =\left|V\left(F_{0}\right)\right|-1-(k-1)\left|Y_{0}\right| \\
& \leq\left|V\left(F_{0}\right)\right|-1-\sum_{1 \leq i \leq k-1}\left|N_{G}\left(x_{i}\right) \cap V\left(F_{0}\right)\right| .
\end{aligned}
$$

Therefore we deduce that

$$
\begin{equation*}
\sum_{i=1}^{k}\left|N_{G}\left(x_{i}\right) \cap V\left(F_{j}\right)\right| \leq\left|V\left(F_{j}\right)\right|-1 \text { for each } 0 \leq j \leq k \tag{2}
\end{equation*}
$$

Since $d_{G}\left(x_{i}\right) \leq\left|\left\{w_{1}\right\}\right|+\sum_{j=0}^{k}\left|N_{G}\left(x_{i}\right) \cap V\left(F_{j}\right)\right|$ for each $1 \leq i \leq k$, it follows from the inequality (2) that

$$
\begin{aligned}
\Delta_{k}(X) & =\sum_{i=1}^{k} d_{G}\left(x_{i}\right) \\
& \leq \sum_{i=1}^{k}\left(\left|\left\{w_{1}\right\}\right|+\sum_{j=0}^{k}\left|N_{G}\left(x_{i}\right) \cap V\left(F_{j}\right)\right|\right) \\
& \leq k+\sum_{j=0}^{k}\left(\left|V\left(F_{j}\right)\right|-1\right) \\
& \leq|V(G)|-2
\end{aligned}
$$

a contradiction.

3 Problem

In this section, we propose a problem concerning a closure involving the independence number and the connectivity. Let $\alpha(G)$ and $\kappa(G)$ be the independence number and the connectivity of G, respectively. Neumann-Lara and Rivera-Campo [5] obtained the following result.

Theorem 6 (Neumann-Lara and Rivera-Campo [5]) Let $k \geq 2$ be an integer, and let G be a graph. If $\alpha(G) \leq(k-1) \kappa(G)+1$, then G has a spanning k-tree.

We can consider the following problem as a closure result for Theorem 6. For a graph G and $u, v \in V(G)$ with $u v \notin E(G)$, let $\alpha(u, v ; G)$ be the cardinality of a maximum independent set containing u and v. For a graph G and $u, v \in V(G)$, the local connectivity $\kappa(u, v ; G)$ is defined to be the maximum number of internallydisjoint paths connecting u and v in G.

Problem 7 Let $k \geq 2$ be an integer, and let G be a graph. Let u and v be two nonadjacent vertices of G. Assume that $\alpha(u, v ; G) \leq(k-1) \kappa(u, v ; G)+1$. Then G has a spanning k-tree if and only if $G+u v$ has a spanning k-tree.

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

References

1. Bondy, J.A.: Basic Graph Theory—Paths and Circuits. Handbook of Combinatorics, vol. I, pp. 5-110. Elsevier, Amsterdam (1995)
2. Bondy, J.A., Chvátal, V.: A method in graph theory. Discret. Math 15, 111-135 (1976)
3. Broersma, H.J., Ryjáček, Z., Schiermeyer, I.: Closure concepts: a survey. Graph. Combin. 16, 17-48 (2000)
4. Kano, M., Kishimoto, H.: Spanning k-tree of n-connected graphs. Graph. Combin (2013, to appear)
5. Neumann-Lara, V., Rivera-Campo, E.: Spanning trees with bounded degrees. Combinatorica 11, 55-61 (1991)
6. Win, S.: Existenz von Gerüsten mit vorgeschriebenem Maximalgrad in Graphen (German). Abh. Math. Sem. Univ. Hamburg 43, 263-267 (1975)

[^0]: R. Matsubara

 College of Engineering, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama-shi, Saitama, 337-8570, Japan
 e-mail: ryota@sic.shibaura-it.ac.jp
 M. Tsugaki (\triangle)

 Department of Mathematical Information Science, Tokyo University of Science,
 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
 e-mail: tsugaki@hotmail.com
 T. Yamashita

 Department of Mathematics, Kinki University, Kowakae 3-4-1, Higashi-Osaka, Osaka, 577-8502, Japan
 e-mail: yamashita@math.kindai.ac.jp

