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Abstract In this paper, we propose a new closure concept for spanning k-trees. A k-
tree is a tree with maximum degree at most k. We prove that: Let G be a connected graph
and let u and v be nonadjacent vertices of G. Suppose that

∑
w∈S dG(w) ≥ |V (G)|−1

for every independent set S in G of order k with u, v ∈ S. Then G has a spanning
k-tree if and only if G + uv has a spanning k-tree. This result implies Win’s result
(Abh Math Sem Univ Hamburg, 43:263–267, 1975) and Kano and Kishimoto’s result
(Graph Comb, 2013) as corollaries.
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1 Introduction

All graphs considered in this paper are only simple and finite. For standard graph-
theoretic terminology not explained in this paper, we refer the reader to [1].

Bondy and Chvátal [2] introduced the closure concept, and showed that it plays an
important role for the existence of cycles, paths, and other subgraphs in graphs. In this
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paper, we consider a closure concept for spanning k-trees, and refer the reader to the
survey [3] on closure concept. A k-tree is a tree with maximum degree at most k. Win
[6] obtained a degree sum condition for the existence of spanning k-trees.

Theorem 1 (Win [6]) Let k ≥ 2 be an integer, and let G be a connected graph. If∑
v∈S dG(v) ≥ |V (G)| − 1 for every independent set S in G of order k, then G has a

spanning k-tree.

Recently, Kano and Kishimoto [4] considered a closure concept for spanning k-
trees, and proved the following theorem.

Theorem 2 (Kano and Kishimoto [4]) Let k ≥ 2 be an integer, and let G be an
m-connected graph. Let u and v be two nonadjacent vertices of G. Suppose that
dG(u) + dG(v) ≥ |V (G)| − m(k − 2) − 1. Then G has a spanning k-tree if and only
if G + uv has a spanning k-tree.

In this paper, we give a closure result which implies the above theorems as corol-
laries.

Theorem 3 Let k ≥ 2 be an integer, and let G be a connected graph. Let u and v be
two nonadjacent vertices of G. Suppose that

∑
w∈S dG(w) ≥ |V (G)| − 1 for every

independent set S in G of order k such that u, v ∈ S. Then G has a spanning k-tree if
and only if G + uv has a spanning k-tree.

We now show that a graph satisfying the condition of Theorem 2 also satisfies that
of Theorem 3.

Proof of Theorem 2 Assume that G is an m-connected graph and satisfies dG(u)+
dG(v) ≥ |V (G)| − m(k − 2) − 1 for some u, v ∈ V (G) with uv /∈ E(G). Since
|V (G)| − m(k − 2) − 1 ≥ |V (G)| − δ(G)(k − 2) − 1 ≥ |V (G)| − ∑

w∈T dG(w) − 1
for every independent set T ⊆ V (G)\{u, v} of order k − 2, we have

∑
w∈S dG(w) ≥

|V (G)| − 1 for every independent set S ⊆ V (G) of order k such that u, v ∈ S. Hence
G satisfies the condition of Theorem 3. ��

2 Proof of Theorem 3

We prove a slightly stronger theorem than Theorem 3. For a graph G and S ⊆ V (G)

with |S| ≥ k, let �k(S; G) := max
{∑

x∈X dG(x) : X is a subset of S of order k
}
. If

there is no confusion, then we abbreviate �k(S; G) to �k(S).

Theorem 4 Let k ≥ 2 be an integer, and let G be a connected graph. Let u and v be
two nonadjacent vertices of G. Suppose that there exists no independent set of order
k + 1 containing both u and v, or �k(S) ≥ |V (G)| − 1 for every independent set S
in G of order k + 1 such that u, v ∈ S. Then G has a spanning k-tree if and only if
G + uv has a spanning k-tree.

1. The degree condition of Theorem 4 is best possible in the following sense.
Let G be a complete bipartite graph Kn,n(k−1)+2 with partite sets X and Y such
that |X | = n and |Y | = n(k − 1) + 2, where n ≥ 1 and k ≥ 2. Let u and v be
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two vertices of Y . Then �k(S) = nk = |V (G)| − 2 for every independent set S
of order k + 1 such that u, v ∈ S, and G + uv has a spanningk-tree. But G has
no spanning k-tree, because if G has a spanning k-tree T , then |V (G)| − 1 =
|V (T )| − 1 = |E(T )| ≤ k|X | = kn = |V (G)| − 2, a contradiction.

2. The closure cl�(G) obtained from Theorem 4 is well-defined.
Let G1 and G2 be graphs obtained from G by recursively joining pairs of nonad-
jacent vertices which satisfy the condition of Theorem 4 until there exists no such
a pair. Let e1, e2, . . . , em and f1, f2, . . . , fn be the sequences of edges added to
G in obtaining G1 and G2, respectively. Suppose that e1, e2, . . . , el ∈ E(G2)

and el+1 �∈ E(G2). Let el+1 := uv and H := G + e1 + · · · + el . Then, by the
definition of G2, there exists an independent set S in G2 of order k + 1 such
that u, v ∈ S and �k(S; G2) ≤ |V (G2)| − 2 = |V (G)| − 2. Since H is a
subgraph of G2, S is an independent set in H and �k(S; G2) ≥ �k(S; H). By
the choice of el+1, we have �k(S; H) ≥ |V (H)| − 1 = |V (G)| − 1. Hence
|V (G)| − 2 ≥ �k(S; G2) ≥ �k(S; H) ≥ |V (G)| − 1, a contradiction. Hence
e1, e2, . . . , em ∈ E(G2). Similarly, we can obtain f1, f2, . . . , fn ∈ E(G1). This
implies that G1 = G2, and so cl�(G) is well-defined.

3. Theorem 4 implies a result due to Neumann-Lara and Rivera-Campo.
Neumann-Lara and Rivera-Campo [5] obtained an independence number condi-
tion for the existence of spanning k-trees. (In fact, they proved a stronger result
as we mention in Sect. 3.)

Theorem 5 (Neumann-Lara and Rivera-Campo [5]) Let k ≥ 2 be an integer, and let
G be a connected graph. If there exists no independent set of order k + 1, then G has
a spanning k-tree.

If a graph G satisfies the hypothesis of Theorem 5, then cl�(G) is complete, and
hence Theorem 4 implies Theorem 5.

Proof of Theorem 4 For a subgraph H of a graph G and a vertex v ∈ V (H), we
denote the set of neighbors of v in H by NH (v), and let dH (v) := |NH (v)|.

If G has a spanning k-tree, then trivially also G + uv has a spanning k-tree. Hence
we prove the converse.

Suppose that G + uv has a spanning k-tree T and G does not have a spanning
k-tree. Then T − uv consists of two trees T1 and T2 such that u ∈ V (T1) and
v ∈ V (T2). Note that for i = 1, 2, Ti is a k-tree in G, and dTi (w) = dT (w) for
w ∈ V (Ti ) \ {u, v}, dT1(u) ≤ k − 1 and dT2(v) ≤ k − 1. Since G is a connected
graph, there exist w1 ∈ V (T1) and w2 ∈ V (T2) with w1w2 ∈ E(G). Choose w1
and w2 such that dT1(w1) + dT2(w2) is as small as possible. Since G does not have a
spanning k-tree, it follows that for some i = 1, 2, there exists no k-tree Si such that
V (Si ) = V (Ti ) and dSi (wi ) ≤ k − 1. Without loss of generality, we may assume that

there exists no k-tree S1 such that V (S1) = V (T1) and dS1(w1) ≤ k − 1. (1)

Hence we have dT1(w1) = k. Then w1 �= u because dT1(u) ≤ k − 1.
Let T3 :=T1∪T2+w1w2 and let F0, . . . , Fk be k+1 components of T3−w1. Since

Fi is a tree, there exists a vertex xi of Fi with dT1∪T2(xi ) ≤ k − 1 for 0 ≤ i ≤ k. Let
X :={x0, x1, . . . , xk}. We can choose X so that u, v ∈ X , because dT1(u) ≤ k − 1 and
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dT2(v) ≤ k−1. Without loss of generality, we may assume that dG(x0)=min{dG(xi ) :
0 ≤ i ≤ k}. Let {zi } := NT3(w1)∩V (Fi ) for each 0≤ i ≤k. We regard F0 as a rooted
tree with root z0 and Fi as a rooted tree with root xi for 1 ≤ i ≤ k.

Claim 1 Let i, j be integers with 0 ≤ i �= j ≤ k. Then dT1∪T2(y) = k for all
y ∈ NG(xi ) ∩ V (Fj ).

Proof Suppose that dT1∪T2(y) ≤ k −1 for some y ∈ NG(x p)∩ V (Fq), where p, q are
integers with 0 ≤ p �= q ≤ k. If v ∈ {x p, xq}, then T ′ := T1 ∪ T2 + x p y is a spanning
k-tree in G, a contradiction. Hence v �∈ {x p, xq}. Then S1 := T1 − w1zq + x p y is a
k-tree with V (S1) = V (T1) and dS1(w1) = k − 1. This contradicts (1). ��

By Claim 1 and the choice of x0, we obtain the following.

Claim 2 X is an independent set in G, and �k(X) = ∑k
i=1 dG(xi ).

We define

Y j :=
⋃

1≤i �= j≤k

(
NG(xi ) ∩ V (Fj )

)
for 1 ≤ j ≤ k

and

Y0 :=
⋃

1≤i≤k−1

(
NG(xi ) ∩ V (F0)

)
.

For 0 ≤ i ≤ k and z ∈ V (Fi ), we denote the parent and the children of z in Fi by z−
and ch(z), respectively and we let Y +

i := ⋃
y∈Yi

ch(y).

Claim 3 Y +
i ∩ NG(xi ) = ∅ for each 1 ≤ i ≤ k, and Y +

0 ∩ NG(xk) = ∅.

Proof First, suppose that there exists y ∈ Y +
p ∩ NG(x p) for some 1 ≤ p ≤ k.

Then y− ∈ NG(xq) for some 1 ≤ q �= p ≤ k. If v ∈ {x p, xq}, then T1 ∪ T2 −
yy− + x p y + xq y− is a spanning k-tree in G, a contradiction.Otherwise, S1 :=
T1 − yy− − w1z p + x p y + xq y− is a k-tree and dS1(w1) = k − 1. This contradicts
(1). Next, suppose that there exists y ∈ Y +

0 ∩ NG(xk). Then y− ∈ NG(xr ) for some
1 ≤ r ≤ k − 1. If v ∈ {x0, xr }, then T1 ∪ T2 − yy− + xk y + xr y− is a spanning k-tree
in G, a contradiction. Assume that xk = v. Then xk ∈ V (T2) and y ∈ V (T1), and
the minimality of dT1(w1) + dT2(w2) and dT1(y) + dT2(xk) ≤ k + k − 1 yields that
dT2(w2) ≤ k − 1. Therefore T3 − w1z0 − yy− + xk y + xr y− is a spanning k-tree in
G, a contradiction. If v �∈ {x0, xr , xk}, then S′

1 := T1 − w1z0 − yy− + xk y + xr y− is
a k-tree with V (S′

1) = V (T1) and dS′
1
(w1) = k − 1. This contradicts (1).

Claim 4 zi /∈ NG(x j ) for each 0 ≤ i �= j ≤ k.

Proof Suppose that z p ∈ NG(xq) for some 0 ≤ p �= q ≤ k. Assume that x p = v.
Then z p = w2 and the minimality of dT1(w1) + dT2(w2) yields that k + dT2(w2) =
dT1(w1)+ dT2(w2) ≤ dT1(xq)+ dT2(z p) ≤ k − 1 + dT2(w2), a contradiction. Assume
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that xq = v. Then note that dG(w2) ≤ k − 1 by the choice of w1 and w2. Thus,
T3 − z pw1 + xq z p is a spanning k-tree in G, a contradiction. If v �∈ {x p, xq}, then
S1 := T1 − z pw1 + xq z p is a k-tree with V (S1) = V (T1) and dS1(w1) = k − 1, which
contradicts (1).

Claim 5 |Y +
i | = (k − 1)|Yi | for each 0 ≤ i ≤ k.

Proof By Claim 4, zi �∈ Yi for all 0 ≤ i ≤ k, and hence dFi (y) = dT1∪T2(y) for all
y ∈ Yi . It follows from Claim 1 that |ch(y)| = dFi (y) − 1 = k − 1 for all y ∈ Yi .
Since Fi is a tree, ch(y1) ∩ ch(y2) = ∅ for every y1, y2 ∈ Yi with y1 �= y2. Therefore
we obtain |Y +

i | = ∑
y∈Yi

|ch(y)| = (k − 1)|Yi | for each 0 ≤ i ≤ k.

By Claims 3–5, for 1 ≤ h ≤ k, we obtain

|NG(xh) ∩ V (Fh)| ≤ |V (Fh)| − |{xh}| − |Y +
h |

= |V (Fh)| − 1 − (k − 1)|Yh |
≤ |V (Fh)| − 1 −

∑

1≤i≤k,i �=h

|NG(xi ) ∩ V (Fh)|

and

|NG(xk) ∩ V (F0)| ≤ |V (F0)| − |{z0}| − |Y +
0 |

= |V (F0)| − 1 − (k − 1)|Y0|
≤ |V (F0)| − 1 −

∑

1≤i≤k−1

|NG(xi ) ∩ V (F0)|.

Therefore we deduce that

k∑

i=1

|NG(xi ) ∩ V (Fj )| ≤ |V (Fj )| − 1 for each 0 ≤ j ≤ k. (2)

Since dG(xi ) ≤ |{w1}| + ∑k
j=0 |NG(xi ) ∩ V (Fj )| for each 1 ≤ i ≤ k, it follows

from the inequality (2) that

�k(X) =
k∑

i=1

dG(xi )

≤
k∑

i=1

⎛

⎝|{w1}| +
k∑

j=0

|NG(xi ) ∩ V (Fj )|
⎞

⎠

≤ k +
k∑

j=0

(|V (Fj )| − 1)

≤ |V (G)| − 2,

a contradiction.
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3 Problem

In this section, we propose a problem concerning a closure involving the independence
number and the connectivity. Let α(G) and κ(G) be the independence number and
the connectivity of G, respectively. Neumann-Lara and Rivera-Campo [5] obtained
the following result.

Theorem 6 (Neumann-Lara and Rivera-Campo [5]) Let k ≥ 2 be an integer, and let
G be a graph. If α(G) ≤ (k − 1)κ(G) + 1, then G has a spanning k-tree.

We can consider the following problem as a closure result for Theorem 6. For a
graph G and u, v ∈ V (G) with uv �∈ E(G), let α(u, v; G) be the cardinality of a
maximum independent set containing u and v. For a graph G and u, v ∈ V (G), the
local connectivity κ(u, v; G) is defined to be the maximum number of internally-
disjoint paths connecting u and v in G.

Problem 7 Let k ≥ 2 be an integer, and let G be a graph. Let u and v be two
nonadjacent vertices of G. Assume that α(u, v; G) ≤ (k − 1)κ(u, v; G) + 1. Then G
has a spanning k-tree if and only if G + uv has a spanning k-tree.

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and
the source are credited.
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