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Abstract A proper edge-coloring of a graph defines at each vertex the set of colors
of its incident edges. This set is called the palette of the vertex. In this paper we are
interested in the minimum number of palettes taken over all possible proper colorings
of a graph.
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1 Introduction

Let G be a finite simple graph, let C be a set of colors and let f : E(G) → C be an
edge-coloring of G. We shall always assume that f is proper, i.e., any two adjacent
edges get distinct colors. The palette of a vertex v ∈ V (G) with respect to f is the set
S f (v) of colors of edges incident to v.

Two vertices of G are distinguished by a coloring f if their palettes are distinct.
There are many papers discussing colorings distinguishing vertices in a graph, that is,
colorings with maximum possible number of pallettes (see, e.g., [1–3], and references
given there). To our knowledge, this paper is the first one dealing with an opposite
problem. Namely, we are interested in the minimum number of palettes taken over
all possible proper (edge-) colorings of a graph. For a given graph G, we denote this
number by š(G) and call the palette index of G.

The minimum number of colors required in a proper coloring of a graph G is called
the chromatic index of G and is denoted by χ ′(G). Recall that, by Vizing’s theorem, the
chromatic index of G equals either �(G) or �(G) + 1. A graph with χ ′(G) = �(G)

is called class 1, while a graph with χ ′(G) = �(G) + 1 is called class 2. Our first
result on the palette index is (almost) obvious.

Proposition 1 The palette index of a graph G is 1 if and only if G is regular and
class 1. ��

A proper coloring of G using χ ′(G) colors is called minimum. In general, however,
minimum colorings do not provide the minimum number of palettes. In our analysis
the following lemma will be useful.

Lemma 2 If a graph G is regular, then š(G) �= 2.

Proof Suppose that G = (V, E) is r -regular with š(G) = 2, and let f be the cor-
responding coloring of G. Denote by P1 and P2 the palettes induced by f and let
Vi = {x ∈ V : S f (x) = Pi }, i = 1, 2. Without loss of generality, we may suppose
that f is chosen in such a way that the set P1\ P2 is as small as possible. Since P1 �= P2
and |P1| = |P2|, there exists a color α ∈ P1\ P2, as well as a color β ∈ P2\ P1. Clearly,
the edges colored with α form a perfect matching of the subgraph G[V1] (induced in
G by the set V1) and the same is true for the edges colored with β and the subgraph
G[V2]. Since {V1, V2} is a partition of V , by replacing α with β we get a coloring that
induces also two palettes P ′

1, P ′
2, but with |P ′

1 \ P ′
2| = |P1 \ P2|−1, a contradiction. ��

A set of edges E ′ of a graph G with a coloring f : E(G) → C is called f -rainbow
if | f (E ′)| = |E ′|, that is, if each edge of E ′ has different color. The following lemma
deals with class 1 graphs K2k and K2k+1,2k+1.

Lemma 3 (a) For every minimum coloring f of a complete graph K2k with k �= 2,
there exists an f -rainbow perfect matching in K2k .

(b) There exists a minimum coloring f of K2k+1,2k+1 such that there is an f -rain-
bow perfect matching in K2k+1,2k+1.

Proof The part (a) follows, for instance, from results given in [4].
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To prove the part (b), assume that V (K2k+1,2k+1) = X ∪ Y , where X = {x0, x1,

. . . x2k} and Y = {y0, y1, . . . y2k}. In order to construct an appropriate coloring f , color
the edges xi+ j yi+2 j , j = 0, 1, . . . 2k (where indices are taken modulo 2k + 1), with
the color i . An f -rainbow perfect matching consists of the edges xi yi , i = 0, 1, . . . 2k.

��

2 Complete Graphs

Since the graphs K1 and K2k are class 1, we have š(K1) = š(K2k) = 1. On the other
hand, it is easy to see that the minimum coloring of Kn for odd n induces n distinct
palettes. Indeed, each palette has n − 1 colors. That means that at each vertex exactly
one color is missing. Further, since n is odd, each color misses at least one vertex.
Consequently, each color misses exactly one vertex and missing colors are distinct
for distinct vertices. However, by increasing the number of colors we can reach the
number of palettes 3 or 4.

The aim of this section is to determine palette indices of complete graphs:

Theorem 4

š(Kn) =
⎧
⎨

⎩

1, if n ≡ 0 (mod 2) or n = 1
3, if n ≡ 3 (mod 4)

4, if n ≡ 1 (mod 4)

The proof follows from five partial results, namely Proposition 1, Proposition 5,
Theorem 6, Theorem 7 and Proposition 8.

2.1 Complete Graphs with Palette Index 3

First, we deal with the case of orders in congruence class 3 modulo 4.

Proposition 5 If k ≥ 0, then š(K4k+3) = 3.

Proof We begin with showing the existence of a coloring f inducing three palettes.
Partition the vertex set V of the graph K4k+3 into three sets: two sets X and Y , each
having 2k + 1 elements, and one one-element set, say {u}.

We first color the edges of the complete graph induced by X using 2k + 1 colors
from the set A = {a1, a2, . . . , a2k+1} to obtain a minimum coloring of K2k+1. Thus,
there is exactly one color of A missing at each vertex of X .

Next, we color the edges of the complete graph induced by Y using 2k + 1 colors
from the set B = {b1, b2, . . . , b2k+1} to obtain a minimum coloring of K2k+1. Thus,
there is exactly one color of B missing at each vertex of Y . We assume that A and B
are disjoint.

Now, we color each edge ux joining the vertex u to a vertex x ∈ X in such a way
that ux gets the color from the set A missing at x . Analogously, we color each edge
uy joining u to a vertex y ∈ Y in such a way that uy gets the color from the set B
missing at y. Therefore, in this moment, the (partial) palettes of vertices of X coincide
with the set A and those of vertices of Y coincide with B.
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Finally, we color the edges between X and Y using the colors from a set C with
|C | = 2k +1 and C ∩ (A∪ B) = ∅, in order to get a minimum coloring of the bipartite
graph K2k+1,2k+1.

Then all vertices of X have the palette A ∪ C , all vertices of Y have the palette
B ∪ C and the vertex u has the palette A ∪ B.

The above defined coloring shows that š(K4k+3) ≤ 3. However, by Lemma 2,
š(K4k+3) �= 2, and, by Proposition 1, š(K4k+3) �= 1. ��

The next theorem provides a full characterization of complete graphs with the
palette index 3.

Theorem 6 The palette index of the complete graph Kn equals 3 if and only if n ≡ 3
(mod 4).

Proof Suppose that š(Kn) = 3. By Proposition 1 then Kn is class 2, so that n is odd
and n ≥ 3. There is a coloring of Kn inducing three distinct palettes Pi , i = 1, 2, 3.
Let Vi be the set of all vertices of Kn with palette Pi and let ni = |Vi |, i = 1, 2, 3.
Clearly, we have |Pi | = n − 1 and |Pi \ Pj | = |Pj \ Pi |, i, j = 1, 2, 3.

Observe first, that there is no color belonging to all three palettes. Indeed, otherwise
this color would induce a perfect matching of G, which is impossible (n is odd). Con-
sequently, a color of any edge joining Vi and Vj , i �= j , induces a perfect matching of
the graph G[Vi ∪ Vj ]. Therefore, ni + n j with i �= j is always even. So, all ni ’s are
of the same parity, and, since n = n1 + n2 + n3 is odd, all ni ’s are odd. This implies
in particular, that there is no color belonging to exactly one palette. Hence, each color
belongs to exactly two palettes.

Set ξ = |P1 \ P2| and η = |P1 ∩ P2|. Thus, ξ + η = n − 1. Moreover, since
P3 = (P1 \ P2) ∪ (P2 \ P1) and |P2 \ P1| = |P1 \ P2| = ξ , we have 2ξ = n − 1 and,
as a consequence, we obtain ξ = η = n−1

2 . Of course, by symmetry it holds

|Pi \ Pj | = |Pi ∩ Pj | = n − 1

2
for i, j = 1, 2, 3, i �= j.

Let Ei, j denote the set of all edges joining Vi and Vj . Since all ni ’s are odd, |Ei, j |
is odd, too. Moreover, for every color α from Pi ∩ Pj , the number eα of edges in Ei, j

colored with α is odd (otherwise, ni − eα is odd and then color α is missing at some
vertex in Vi ). Thus the total number of colors in Pi ∩ Pj is odd, what implies n−1

2 ≡ 1
(mod 2), and finally n ≡ 3 (mod 4).

The reverse implication has been proved as Proposition 5. ��

2.2 Complete Graphs K4k+5 with k �= 1

Theorem 7 If n = 4k + 5, k �= 1, then š(Kn) = 4.

Proof By Proposition 1, Lemma 2 and Theorem 6 we see that š(Kn) ≥ 4. Therefore,
it will be sufficient to find a coloring of Kn inducing four palettes.

Partition the vertex set V of the graph Kn with n = 4k +5 into four sets: two sets X
and Y , each having 2k +1 elements, one one-element set, say {u} and one two-element
set, say {v,w}. Let X = {x0, x1, . . . , x2k} and Y = {y0, y1, . . . , y2k}.
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Fig. 1 After step 1

Fig. 2 After step 2

Step 1. Let A = {a0, a1, . . . , a2k}, B = {b0, b1, . . . , b2k} and C = {c0, c1, . . . , c2k}
be three pairwise disjoint sets of 2k + 1 colors. Consider (arbitrary) minimum color-
ings f A : E(Kn[X ∪ {u}]) → A and fB : E(Kn[Y ∪ {u}]) → B. By Lemma 3 a)
there exists an f A-rainbow perfect matching MA in the graph induced by X ∪ {u} and
an fB-rainbow perfect matching MB in the graph induced by Y ∪ {u}. If H is the
subgraph of Kn isomorphic to K2k+1,2k+1 with bipartition {X, Y }, by Lemma 3 b)
there is a minimum coloring fC : E(H) → C such that H has an fC -rainbow perfect
matching MC .

Without loss of generality we may assume that MA consists of k + 1 edges ux0,
x1x2k , …, xk xk+1 colored with colors a0, a1, . . . , ak , respectively; MB consists of k+1
edges uy0, y1 y2k , …, yk yk+1 colored with colors b0, b1, . . . , bk , respectively; and MC

consists of 2k + 1 edges xi yi , i = 0, 1, . . . , 2k colored with colors c0, c1, . . . , ck ,
respectively.

We uncolor the edges belonging to MA ∪ MB ∪ MC (see Fig. 1).
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Fig. 3 After step 3. For the sake of clarity of the drawing edges xi yi , colored with γ , are not presented

Step 2. For each i , 1 ≤ i ≤ k we color the four edges joining the vertices v,w to
the vertices xi , x2k−i+1, as well the four edges joining the vertices v,w to the vertices
yi , y2k−i+1 in the following way (see Fig. 2):

– the edges vxi and wx2k−i+1 are colored with ai , the color missing at both vertices
xi and x2k−i+1;

– the edges wyi and vy2k−i+1 are colored with bi , the color missing at both vertices
yi and y2k−i+1;

– the edges wxi and vyi are colored with ci , the color missing at both vertices xi

and yi ;
– the edges vx2k−i+1 and wy2k−i+1 are colored with c2k−i+1, the color missing at

both vertices x2k−i+1 and y2k−i+1;

Observe that after this step all vertices of X except for x0 have the (partial) palette
A ∪ C , while all vertices of Y except for y0 have the palette B ∪ C .

Step 3. In this step we color all the edges containing the vertices v and w which were
not colored yet, as well as the edges uncolored in Step 1.

First, the edges vu and wx0 are colored with a0, the edges wu and vy0 are colored
with b0, and the edges vx0 and wy0 are colored with c0.

Next, we pick three distinct colors α, β, γ so that {α, β, γ } ∩ (A ∪ B ∪ C) = ∅ and
color the edges of MA with α, the edges of MB with β and the edges of MC with γ .
Finally, we color the last edge not colored yet, vw, with γ .

Observe that the vertices of X have the palette A ∪ C ∪ {α, γ }, the vertices of Y
have the palette B ∪ C ∪ {β, γ }, and both vertices v and w have the palette {ai , bi :
i = 0, 1, . . . , k} ∪ C ∪ {γ }. The fourth palette, that of the vertex u, is A ∪ B ∪ {α, β}.

This finishes the proof of the theorem. ��
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2.3 The Complete Graph K9

To complete the proof of Theorem 4, it is enough to settle the palette index of K9.

Proposition 8 š(K9) = 4.

Proof For the same reason as in the Sect. 2.2, it suffices to define a coloring f of
edges of K9 inducing four palettes.

Suppose that V (K9) = {xi : i = 1, 2, . . . , 9} and let f be a coloring of K9 with
13 colors, described by the following symmetric 9 × 9 matrix A = (ai j ), namely by
setting f (xi x j ) = ai j , i, j = 1, 2, . . . , 9, i �= j (the empty diagonal corresponds to
the fact that in K9 there are no loops):

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 2 3 4 0̄ 6 1̄ 5
1 3 2 6 4 0̄ 5 1̄
2 3 1 5 1̄ 4 6 0̄
3 2 1 2̄ 9 7 0̄ 8
4 6 5 2̄ 8 1̄ 9 7
0̄ 4 1̄ 9 8 5 7 6
6 0̄ 4 7 1̄ 5 8 9
1̄ 5 6 0̄ 9 7 8 4
5 1̄ 0̄ 8 7 6 9 4

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Clearly, the elements of the i-th row (as well as those of the i-th column) of the
matrix A form the palette of the vertex xi with respect to f . Hence, the palettes are:
{1, 2, 3, 4, 5, 6, 0̄, 1̄} for the vertices x1, x2, x3, {1, 2, 3, 7, 8, 9, 0̄, 2̄} for the vertex
x4, {4, 5, 6, 7, 8, 9, 1̄, 2̄} for the vertex x5, and {4, 5, 6, 7, 8, 9, 0̄, 1̄} for the vertices
x6, x7, x8, x9. ��

3 Cubic Graphs

Theorem 9 Let G be a connected cubic graph.
If G is class 1, then š(G) = 1.
If G is class 2 and has a perfect matching, then š(G) = 3.
If G is class 2 without a perfect matching, then š(G) = 4.

Proof The first statement follows from Proposition 1.
Suppose now that G is class 2 and has a perfect matching M . Then the graph

G − M is the union of disjoint cycles with at least one of an odd length. Each mini-
mum coloring of this graph induces exactly three palettes (partial in G). Observe that
by coloring the edges of M with a new color each palette acquires the new color, hence
the number of palettes is three as before and š(G) ≤ 3. On the other hand, š(G) ≥ 3
by Proposition 1 and Lemma 2, so we are done.

Suppose finally that G is class 2, but does not contain a perfect matching. Observe
that, since all palettes have three elements, each minimum coloring of G (which uses
four colors) induces at most four palettes. For the same reason as above we have
š(G) ≥ 3. Thus, it suffices to show that it is impossible to have three palettes.
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So, assume there exists a coloring f of G inducing three palettes P1, P2 and P3.
Denote by V1, V2 and V3 the corresponding sets of vertices of G. Observe first that
there is no color belonging to all three palettes (otherwise G would have a perfect
matching).

Since G is connected, we may suppose without loss of generality that there are
edges joining V1 to V2, and, consequently, P1 ∩ P2 �= ∅. For any color a ∈ P1 ∩ P2
the edges colored with a form a perfect matching Ma of the graph G[V1 ∪ V2]. This
implies, in particular, that there is no color belonging just to P3. Indeed, suppose that
b ∈ P3 \ (P1 ∪ P2). Then the edges colored with b form a perfect matching Mb of
the graph G[V3] and Ma ∪ Mb is a perfect matching of G, a contradiction. Thus,
P3 = (P1 \ P2) ∪ (P2 \ P1).

Recall that in a cubic graph all palettes are of size three. Therefore, |P1 \ P2| =
|P2 \ P1| and |P3| = |(P1 \ P2) ∪ (P2 \ P1)| ≡ 0 (mod 2), a contradiction. ��
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