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Abstract The Ehrhart ring of the edge polytope PG for a connected simple graph
G is known to coincide with the edge ring of the same graph if G satisfies the odd
cycle condition. This paper gives for a graph which does not satisfy the condition, a
generating set of the defining ideal of the Ehrhart ring of the edge polytope, described
by combinatorial information of the graph. From this result, two factoring proper-
ties of the Ehrhart series are obtained; the first one factors out bipartite biconnected
components, and the second one factors out a even cycle which shares only one edge
with other part of the graph. As an application of the factoring properties, the root
distribution of Ehrhart polynomials for bipartite polygon trees is determined.
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1 Introduction

1.1 Background

This paper studies explicit construction and factoring properties of Ehrhart series of
edge polytope for connected simple graphs. It is motivated by the root distribution of
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Ehrhart polynomials, which is one of the current topics on computational commutative
algebra. In particular, the conjecture of Beck et al. [1] attracts much attention.

Conjecture 1 [1] All roots α of Ehrhart polynomials of lattice D-polytopes satisfy
−D ≤ �(α) ≤ D − 1.

The author contributed to a recent paper [6] providing some computational evi-
dence of the conjecture. However, in the paper, rigorous proofs are shown only in a
few cases, because the Ehrhart polynomials are known only for a few families: such
as complete graphs or complete multipartite graphs.1

The Ehrhart polynomial is always related to the Hilbert series of a certain graded
K -algebra, called the Ehrhart ring. We call the Hilbert series of the Ehrhart ring the
Ehrhart series. The subject of this paper is those for the edge polytopes. An edge
polytope PG is an integral convex polytope defined for a graph G (see Sect. 1.2).
Associated with the graph G, there is a graded K -algebra K [G], called an edge ring,
which gives the Ehrhart series for G if the algebra is normal; the normality of K [G]
is equivalent to the “odd cycle condition” on the graph G [7,11]. The definition of the
odd cycle condition is as follows [2]:

Definition 1 The odd cycle condition is a condition for a graph G whereby any two
odd cycles in G share a vertex or they are connected by a path whose length is one.

In such cases, the Ehrhart series is explicitly computable from the Gröbner basis
of a toric ideal IG, called an edge ideal. However, if K [G] is not normal, there have
been no direct construction for the Ehrhart ring for the graph G; one has had to go
through the edge polytope and use other techniques. In such a way of construction,
it is hard to see the relationship between a graph and the corresponding Ehrhart ring.
This paper describes the Ehrhart ring directly from combinatorial information of the
graph.

1.2 Graphs, Edge Rings and Edge Polytopes

In this and the next subsections, we recall some known facts and prepare notations.
A graph is a triple (V, E, φ) of a finite set V, another finite set E disjoint with V,

and a map φ from E to the power set of V . An element of V is called a vertex and
an element of E is called an edge. The map φ sends an edge e ∈ E to a two-element
subset of V . As a consequence of this definition, any graphs have no loops. Besides,
throughout this paper, we assume that any graphs have no multiple edges, i.e., we only
consider simple graphs.

In order to handle graphs in a ring theoretical setting, it is convenient to inter-
pret a graph map as an algebra homomorphism between polynomial rings. Let K [V]
(respectively K [E]) be the polynomial ring over a field K of characteristic zero, whose
variables are vertices (respectively edges). Then, the map φ is linearly extended to a

1 During the submission and the revision of this paper, two preprints have appeared [4,9], which construct
counterexamples of Conjecture 1, though these counterexamples come from different polytopes than edge
polytopes.
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K -algebra homomorphism φ∗ : K [E] −→ K [V], where a subset of V is interpreted
as a product of them. The notation V (respectively E) is solely used to name the free
commutative monoid of monomials generated by V (respectively E) written multipli-
catively.

Now, let G be a connected simple graph. The edge ideal IG ⊂ K [E] is defined as:

IG = (
t − u | t, u ∈ E such that φ∗(t) = φ∗(u)

)
.

It is a homogeneous binomial ideal. The edge ring K [G] of G is the image of φ∗:

K [G] = φ∗(K [E]) ∼= K [E]/ ker φ∗,

and IG = ker φ∗. The generators of IG correspond to a certain class of even closed
walks on G. For example, the Graver basis of IG , which consists of the primitive
(Definition 4) even closed walks, is given in the following theorem of Tatakis and
Thoma [13].

Theorem 1 [13] Let G be a graph andw an even closed walk of G. The binomial Bw
is primitive if and only if

1. every block of w is a cycle or a cut edge,
2. every multiple edge of the walk w is a double edge of the walk and a cut edge

of w,
3. every cut vertex of w belongs to exactly two blocks and it is a sink of both.

As already mentioned in Sect. 1.1, the edge ring K [G] gives the Ehrhart series if
and only if G is an edge-normal graph; here, we mean by edge-normal graph, a graph
G which satisfies the odd cycle condition (Definition 1).

The edge polytope PG of a simple graph G = (V, E, φ) is defined as follows. Let
the vertex set V be {v1, . . . , vn}, and let a monoid homomorphism ε from V to Z

n be
defined by

ε :
∏

v
mi
i 	−→

∑
mi ei ,

where ei is the i th fundamental unit vector. Then, a map ρ from the edge set E to Z
n is

defined as the restriction of the composition ε ◦φ∗ to E . The edge polytope PG ⊂ R
n

is the convex hull of the image of ρ:

PG = CONV ρ(E)

=
⎧
⎨

⎩

∑

ei ∈E

λiρ(ei )

∣∣∣
∣∣∣

0 ≤ λi ≤ 1,
∑

ei ∈E

λi = 1, λi ∈ R

⎫
⎬

⎭
.

The Ehrhart polynomial iG = iPG of the edge polytope PG is the counting func-
tion of the integral points in dilated polytopes, that is, iG(m) = |mPG ∩ Z

n| . For
convenience, we define iG(0) = 1, and we call the generating function
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∞∑

m=0

iG(m)t
m

the Ehrhart series HG(t) = HPG (t) for PG .

1.3 Hypergraphs and Hyperedge Rings

A hypergraph is, as a generalization of a graph, a triple (V, E, φ) of a finite set V,
another finite set E disjoint with V, and a map φ from E to the power set of V . An
element of V is called a vertex and an element of E is called an edge or a hyperedge.
The map φ of a hypergraph sends an edge e ∈ E to a non-empty subset of V . The
same algebraic interpretation with graphs in sect. 1.2 is applied.

We construct a hypergraph for each connected non-edge-normal graph. Let G =
(V, E, φ) be a connected non-edge-normal graph with fixed numbering of its odd
cycles; let Ci denote the i th odd cycle. We say a pair of odd cycles in a graph is an
exceptional pair if any connecting path of the cycles are of length at least two. A set�
consists of symbols θi j each corresponding to an exceptional pair (Ci ,C j )with i < j.
Let F denote the union E ∪�, andψ the map extending φ,which sends θi j in F to the
subset of vertices on Ci and C j in V . Then, 
 = (V, F, ψ) is the hypergraph we need.

The K -algebra homomorphism ψ∗ is defined from ψ similarly to φ∗ from φ.

Accordingly, we define the hyperedge ideal I
 ⊂ K [F]:

I
 = (
t − u | t, u ∈ F such that ψ∗(t) = ψ∗(u)

)
.

We need a degree function on K [F], that is not a standard one.

Definition 2 For any monomial T in K [F], ψ∗-degree of T (denote degψ∗ T ) is half
the number of vertices multiplied in the image ψ∗(T ). Moreover, any non-zero ele-
ment f ∈ K [F] is a sum f = ∑k

i=1 ci Ti with ci �= 0, and the degree of f is
maxi=1,...,k degψ∗ Ti .

More precisely, each edge e ∈ E has ψ∗-degree one; each θi j ∈ � has ψ∗-degree
1
2 (ni + n j ) where ni (respectively n j ) is the number of vertices in the odd cycle
Ci (respectively C j ). Then, the binomial ideal I
 is homogeneous with respect to
ψ∗-degree. The hyperedge ring K [
] of 
 is the image of ψ∗:

K [
] = ψ∗(K [F]) ∼= K [F]/ kerψ∗,

and I
 = kerψ∗.
To describe generating sets of I
, we use the following notations of edge sets.

Suppose Ci and C j are an exceptional pair; then there are paths connecting the cycles,

all of which have lengths at least two. Let N (p)
i j denote the pth such path connect-

ing Ci and C j . Moreover, if N (p)
i j is (ek0 , ek1 , . . . , ekr ), let N (p)+

i j = ∏
l:even ekl and

N (p)−
i j = ∏

l:odd ekl . Similarly, C+
i and C−

i denote the alternating products of edges

on the cycles. The choice of the sign, C+
i or C−

i , depends on the sign of N (p)±
i j ; that
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Fig. 1 “bow-tie”

is, the shared vertex of Ci and N (p)
i j is incident to either edges of C+

i and an edge of

N (p)−
i j or edges of C−

i and an edge of N (p)+
i j . Finally, by abuse of notations, we let Ci

denote also the product of edges in Ci .

1.4 Example

The example below illustrates how to use the results of this paper, Theorem 2 in par-
ticular, to obtain the Ehrhart series and the Ehrhart polynomial from a given connected
simple graph.

Example 1 Let G be the “bow-tie” graph of Fig. 1. We take C0 as the left trian-
gle consisting of edges {e0, e1, e2} and C1 the right triangle. Since the length of the
path connecting triangles is two, (C0,C1) is an exceptional pair; we let θ = θ01 be
the corresponding hyperedge. Let N = N (0)

01 denote the path (e3, e4), then we have
N+ = e3 and N− = e4. The sign of edges on the triangles are determined accordingly
as C+

0 = e1,C−
0 = e0e2,C+

1 = e5e7 and C−
1 = e6.

Then, by Theorem 2, we pick up four generators in the ideal I
: (G1) a type (1):
e0e2e2

4e6−e1e2
3e5e7, (G2) a type (2): θ2−e0e1e2e5e6e7, (G3) a type (3): θe3−e0e2e4e6,

and (G4) another type (3): θe4 − e1e3e5e7. Here, “type (i)” means that it is a bino-
mial of i th form described in Theorem 2. For example, (G3) is of 3rd form, as it can
be expressed as θN+ − C−

0 C−
1 N− using the notations introduced in the previous

paragraph.
It is easy to see that these binomials immediately correspond to a Gröbner basis

of the ideal I
 for, say, a lexicographic order θ > e0 > · · · > e7. Then, the Ehrhart
series is obtained through a multivariate generating function as explained in Sect. 3.1.
Let ĤG denote the generating function obtained:

ĤG(e0, . . . , e7, θ)

= 1 − e0e2e2
4e6 − θ2 − θe3 − θe4 + θe0e2e2

4e6 + θe3e4 + θ2e3 + θ2e4 − θ2e3e4

(1 − θ)
∏7

i=0(1 − ei )

= 1 − e0e2e2
4e6 + θ(1 − e3)(1 − e4)
∏7

i=0(1 − ei )
.

Since the ψ∗-degree (Definition 2) of each ei is one and of θ is three, substituting
t for each ei and t3 for θ gives the Ehrhart series HG .
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HG(t) = ĤG(t, . . . , t, t3) = 1 − t5 + t3(1 − t)2

(1 − t)8
= 1 + t + t2 + 2t3

(1 − t)7
.

(
Notice the difference from the Hilbert series for K [G] : 1+t+t2+t3+t4

(1−t)7
)
.

Then, the Ehrhart polynomial iG(m) is

iG(m) =
(

m + 6

6

)
+

(
m + 5

6

)
+

(
m + 4

6

)
+ 2

(
m + 3

6

)

= 1

720
(m + 3)(m + 2)(m + 1)(5m3 + 21m2 + 94m + 120).

1.5 Structure of the Paper

In Sect. 2, motivated by the fact that the hyperedge ring K [
] is the Ehrhart ring
for a non-edge-normal graph G (Proposition 1), we prove the following main theorem
which gives a generating set of the hyperedge ideal I
 consisting of the crude elements
(Definition 3).

Theorem 2 The following elements form a generating set of I
:

1. a set of crude generators of IG;
2. θ2

i j − Ci C j for any θi j ∈ �;

3. θi j N (p)±
i j −C∓

i C∓
j N (p)∓

i j for any θi j ∈ � and N (p)±
i j without N (q)±

i j which properly

divides N (p)±
i j ;

4. θi j N (p)±
jk C±

k − θik N (p)∓
jk C∓

j for any θi j ∈ � and N (p)±
i j without N (q)±

i j which

properly divides N (p)±
i j ;

5. θi jθkl − θ̃ik θ̃ jl for any θi j , θkl ∈ � with i, j, k, l are different each other; and
6. θi jθik − θ̃ jkCi and θi jθl j − θ̃ilC j for any θi j , θik, θl j ∈ �.
Here, θ̃i j means either θi j if Ci and C j are an exceptional pair or C±

i C±
j otherwise.

Though Theorem 2 determines the Ehrhart series for any connected simple graphs,
computation becomes easier if the series is expressible with those of subgraphs. In
Sect. 3, we present two factoring properties of the Ehrhart series corresponding to a
decomposition into subgraphs; both properties are derived from properties of Möbius
sums on lcm-lattices.

Theorem 3 (First factoring property) The Ehrhart series HG of a graph G has a
factorization

HG(t) = HG0(t)
r ′∏

i=1

HBi (t),

where G0, B1, . . . , Br ′ are the biconnected decomposition of G with oddments.
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Theorem 4 (Second factoring property) Let G be a connected graph and G(1) and
G(2) be its subgraphs. Assume (1) each edge of G belongs either G(1) or G(2), except
exactly one edge e which is shared by both; (2) G(2) is a bipartite graph; and (3) e is
a part of a cycle in G(2). Then, the Ehrhart series HG(t) can be factored as

HG(t) = HG(1) (t)(HG(2) (t)(1 − t)).

Finally, Sect. 4 applies the lemma of Rodriguez-Villegas [10] to obtain the root
distribution of the Ehrhart polynomials for bipartite polygon trees (Proposition 4),
whose Ehrhart series are determined by using the second factoring property.

2 Non-Edge-Normal Graphs

2.1 Ehrhart Series

The Hilbert series HA of a graded K -algebra A is:

HA(t) =
∞∑

n=0

(dimK An)t
n .

The Hilbert series for the K -algebra K [G] is the Ehrhart series for PG if G is edge-nor-
mal. Unfortunately, it differs from the Ehrhart series for PG if G is a non-edge-normal
graph. However, we can overcome the gap. This is the motivation to consider the
hyperedge ring K [
].
Proposition 1 The hyperedge ring K [
] is a graded K -algebra with respect to ψ∗-
degree, whose Hilbert series is the Ehrhart series HG(t) for edge polytope PG .

Proof Let K [
]m denote the K -vector space generated by ψ∗-degree m elements in
K [
]. Then, K [
]i K [
] j ⊂ K [
]i+ j since the ideal I
 equates only elements of the
same ψ∗-degree.

It is shown in [7] that normalization of K [G] can be obtained with the exceptional
pairs of odd cycles.2 Thus, F contains all necessary elements, i.e., all the integer
points in mPG for any m are in ε ◦ ψ∗(F). There are integer points counted multiple
times in the image, but it is possible to count each of them only once by identifying
the preimage of each point. Thus, the monomials of K [
], which is isomorphic to
K [F]/I
, have one-to-one correspondence with integer points in mPG for some m.
Because all integer points of mPG correspond to degree m elements of K [
], the
Ehrhart polynomial iG(m) = dimK K [
]m .

This means that the Ehrhart ring for a non-edge-normal graph G is given as a
hyperedge ring K [
] of extended hypergraph 
.

2 In [7], it is claimed that the only exceptional pairs that have no vertex in common should be considered.
However, this is too restrictive; in fact, two exceptional pairs that, for example, have a cycle in common
correspond to independent integral points in PG .
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We have the Ehrhart series HG as

HG(t) =
∞∑

n=0

(dimK K [
]n)t
n =

∞∑

n=0

iG(n)t
n = i∗G(t)

(1 − t)D+1 ,

where D = dim PG and i∗G(t) ∈ Z[t] with deg i∗G ≤ D.

2.2 Crude Elements

A binomial θ2
i j − Ci C j is in the hyperedge ideal I
, because the product of edges

of Ci and C j in K [E] is sent by φ∗ (and ψ∗) to the square of ψ∗(θi j ). If N (p)
i j is a

path between an exceptional pair Ci and C j , then, θi j N (p)+
i j − C−

i C−
j N (p)−

i j is in I
.
Moreover, if there are plenty of exceptional pairs, one recognizes that θi jθkl − θikθ jl ,

θi jθklθmn − θilθknθmj , etc. are all in I
. How many exceptional pairs should we con-
sider at once as elements in a generating set of the hyperedge ideal? To answer the
question, this section introduces the notion of crude elements in a slightly generalized
ground. They form a special generating set of an ideal in a finitely generated K -algebra,
shown after the definitions.

Definition 3 For given a graded K -algebra R and a homogeneous binomial ideal I,
an element T − U of the ideal is crude if and only if T �= U and there are no Ti − Ui

(i = 1, . . . , k) in I satisfying all of the following conditions:

1. ∀i deg(Ti ) < deg(T ),
2. T1 and Uk are proper divisors of T and U , respectively,
3. ∃Vi ∈ R(i = 2, . . . , k) such that ViUi = Vi+1Ti+1 for i = 1, . . . , k − 1, with

V1 = T/T1.

The crudeness above is a tightening of the following primitiveness on graph walks
in [8], rephrased in terms of ideal:

Definition 4 An element T − U of an ideal I in a graded K -algebra R is primitive if
and only if T �= U and there is no T1 − U1 in I satisfying that T1 and U1 are proper
divisors of T and U , respectively.

The condition of primitiveness uses only 1 in place of k in the conditions of crude-
ness. Hence, if an element is crude then it is primitive.

Example 2 Consider the graph of Fig. 2. Let f0 = e1e3e5 − e2e4e6, f1 = e1e3 − e0e2
and f2 = e0e5 − e4e6. Each of them corresponds to an even closed walk in the graph
and is primitive. However, f0 is not crude:

1. deg f1 = deg f2 = 2 < 3 = deg f0.

2. e1e3|e1e3e5 and e4e6|e2e4e6.

3. Let V2 = e2, then with V1 = (e1e3e5)/(e1e3) = e5, we have V1e0e2 = V2e0e5.

In fact, f0 can be written as a sum e5 f1 + e2 f2.
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Fig. 2 Graph for Example 2

It is crucial from Proposition 1 to know a generating system of I
. The following
proposition is essential for the purpose of this section.

Proposition 2 A homogeneous binomial ideal I of a finitely generated graded K -
algebra R can be generated by crude elements.

Proof Assume X − Y is not a crude element, but is in a generating set S ⊂ I. Then,
there exist Xi − Yi (i = 1, . . . , k) in I and Vi (i = 2, . . . , k) in R satisfying the
conditions of Definition 3. Let I ′ = (Xi − Yi | i = 1, . . . , k). Then,

X − Y = (X/X1)X1 − Y

≡ (X/X1)Y1 − Y (mod I ′)
= V2 X2 − Y

≡ V2Y2 − Y (mod I ′)
· · ·
≡ VkYk − Y (mod I ′)
= (Vk − Y/Yk)Yk .

Thus, X − Y is in I ′ + (Vk − Y/Yk). Hence, I is generated by

S ∪ {Xi − Yi | i = 1, . . . , k} ∪ {Vk − Y/Yk} \ {X − Y }.

Since degrees strictly decrease on every replacement and R is Noetherian, this process
will eventually stop. The resulting generating set is a finite one consisting of crude
elements.

As a consequence of this proposition, it is sufficient to consider the crude elements
in I
 for giving a generating set. In order to determine whether an element in I
 is
crude or not, we prepare the following lemma.

Lemma 1 In the same situation with Proposition 2, assume for T − U in an ideal I
that there exist T1 − U1 and T3 − U3 in I such that T1 and U3 properly divides T and
U, respectively, and there exists a non-trivial common divisor for U1 and T3. Then,
T − U is not crude.
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Proof Let X be a non-trivial common divisor for U1 and T3. Then, V1 = T/T1 by
definition leads V1U1 = X V1(U1/X), and X (U/U3)(T3/X) = (U/U3)T3 is obvi-
ous. Now, since T − U ∈ I, X V1(U1/X) − X (U/U3)(T3/X) is also in the ideal.
However, because X is a monomial, it is not an element of the binomial ideal. Then,
V1(U1/X)− (U/U3)(T3/X) ∈ I. Let T2 = V1(U1/X),U2 = (U/U3)(T3/X), V2 =
X and V3 = U/U3. Verifying that deg(T2) < deg(T ) and other conditions is easy.

The last lemma means that if part of T and part of U are transformed by the ideal
to elements having a non-trivial common divisor, then T − U is ignorable.

2.3 Proof of the Main Theorem

Going back to K [
], we prove the main theorem by a series of lemmata.

Lemma 2 Let N (1) and N (2) are two connecting path between an exceptional pair of
odd cycles C1 and C2. If N (1)+ properly divides N (2)+, then θ12 N (2)+ −C−

1 C−
2 N (2)−

is not crude.

Proof Obviously, both θ12 N (1)+ − C−
1 C−

2 N (1)− and θ12 N (2)+ − C−
1 C−

2 N (2)− are in
I
. Since N (1)+ divides N (2)+, path N (2) branches at some vertex u from path N (1)

but joins again at the vertex v just an edge apart from u along with N (1). Moreover,
since the next edge is shared by both half paths, the number of edges on the subpath
P of N (2) from u to v is odd. Then, the edge e on N (1) connecting u and v forms
an even cycle with the subpath P. The even cycle corresponds to an element in IG :
P+e − P−, where P± are restrictions of N (2)± on P. By Lemma 1, the existence
of e as a common divisor of C−

1 C−
2 N (1)− and P+e is sufficient to conclude that

θ12 N (2)+ − C−
1 C−

2 N (2)− is not crude.

In Sect. 3.3, the lemma above will be generalized, but we continue the proof of the
theorem for now.

Lemma 3 The following elements in the ideal I
 are crude.

1. θ2
i j − Ci C j for any θi j ∈ �;

2. θi j N (p)±
i j − C∓

i C∓
j N (p)∓

i j for any θi j ∈ � and N (p)±
i j without N (q)±

i j which prop-

erly divides N (p)±
i j ;

3. θi j N (p)±
jk C±

k − θik N (p)∓
jk C∓

j for any θi j ∈ � and N (p)±
i j without N (q)±

i j which

properly divides N (p)±
i j ;

4. θi jθkl − θ̃ik θ̃ jl for any θi j , θkl ∈ � with i, j, k, l are different each other; and
5. θi jθik − θ̃ jkCi and θi jθl j − θ̃ilC j for any θi j , θik, θl j ∈ �.
Here, θ̃i j means either θi j if Ci and C j are an exceptional pair or C±

i C±
j otherwise.

Proof (1) Since θi j is an irreducible element, there is no monomial T in K [F] other
than itself that θi j ≡ T (mod I
).The proper divisor of θ2

i j is only θi j ; thus, θ2
i j −Ci C j

is crude.
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(2) Assume the contrary that θi j N (p)+
i j − C−

i C−
j N (p)−

i j is not crude. Then, there exists

a proper divisor T ∈ K [F] of θi j N (p)+
i j , which is congruent to some U. As in the

argument of (1), T cannot be θi j . Thus, there is a divisor of T which divides N (p)+
i j .

Let D be the greatest common divisor of T and N (p)+
i j . The degree of D is in a range

1 to deg(N (p)+
i j ) − 1. Thus, the number of edges in N (p)+

i j is more than one. Hence,

there are edges e(p)
2k in N (p)+

i j and e(p)
2k+1 in N (p)−

i j , where ψ(e(p)
κ ) = v

(p)
κ v

(p)
κ+1. Sup-

pose e(p)
2k does not divide D. Then, v(p)

2k+1 does not divideψ∗(T ).As assumed, T ≡ U

(mod I
), neither e(p)
2k nor e(p)

2k+1 divides U, and v(p)2k+2 does not divide ψ∗(U ). This

argument continues until all edges in N (p)
i j are excluded, or we find a shortcut path

directly connecting v(p)
2k to v(p)

2k+2l+1. The former contradicts with the existence of the
divisor T, and the latter contradicts with the assumption that there is no dividing path
from Lemma 2. Therefore, θi j N (p)±

i j − C∓
i C∓

j N (p)∓
i j is crude.

We omit the rest of the cases; the proof of (3) is similar to that of (2), while the
proofs of (4) and (5) are similar to (1).

Before proving the next lemma, we should introduce some terminology. A cycle
Ci (and C j ) semi-supports θi j . We define a T -induced subgraph G ′ of G for T, a
monomial of K [F] as a subgraph G ′ of G consisting of every edge dividing T and
every edge of cycle Ci semi-supporting θi j dividing T . Moreover, if a subgraph G ′′
of G is either a connected component with non-zero even semi-supporting cycles or
a pair of connected components both with odd semi-supporting cycles, we call the
subgraph G ′′ an even component; it corresponds to a connected subhypergraph of the
hypergraph 
.

Lemma 4 If T − U is in the ideal I
 but not in IG and an N (p)±
i j divides T, then

T − U is not a crude element unless itself is one of (2) and (3) of Lemma 3.

Proof Assume that a crude binomial T −U is not one of (2) and (3) of Lemma 3, and
that N (1)+

12 divides T . Then, N (1)+
12 does not divide U.

If both C1 and C2 semi-support θ ’s, then there exists X �= 1 such that T ≡
θ12 N (1)+

12 X (mod I
), by using (4) of Lemma 3 if necessary. Then, by (2) of Lemma 3,

we have T ≡ C−
1 C−

2 N (1)−
12 X (mod I
). If there is a vertex on N12 that does not divide

ψ∗(X), then since N (1)+
12 does not divide U, N (1)−

12 must divide U. Thus, Lemma 1
implies that T − U is not crude, contradicting the assumption. Otherwise, all the ver-
tices divide ψ∗(X). However, edges of X are impossible to be shortcut or detour of
N12 by Lemma 2. Then, T is divisible by θ12 N (1)+

12 and U by C−
1 C−

2 N (1)−
12 regardless

of X. Thus, T − U is not even primitive, and contradicting the assumption.
The case when both C1 and C2 do not semi-support θ ’s is just a reverse course of

the above.
We, then assume that C1 semi-supports a θ but C2 does not. Then, there exists

X �= 1 such that T ≡ θ13C+
2 N (1)+

12 X (mod I
). Then, by (3) of Lemma 3, we have

T ≡ C−
1 θ23 N (1)−

12 X (mod I
). Almost same argument applies to U to be divided by

N (1)−
12 , and it contradicts the assumption that T − U is crude.
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Lemma 5 If T − U is a crude element in the ideal I
, then T U-induced subgraph of
G has at most two disjoint even components.

Proof Without loss of generality, we can assume T U is not divisible by any product
of all edges in an even closed walk. Let G ′ denote the T U -induced subgraph of G.

Assume that G ′ has three disjoint even components G0,G1 and G2. Then, by
arranging θ in T and U with (4) or (5) of Lemma 3, we have T ′ ≡ T and U ′ ≡ U
(mod I
) satisfying the following condition: if an odd cycle in an even component Gi

semi-supports a θ, the other cycle semi-supporting the same θ is also in Gi for both T ′
and U ′. Then, each of T ′ and U ′ is decomposed into Gi parts T ′

i and U ′
i , respectively,

for i = 0, 1, 2 and possibly a G ′ \ (⋃ Gi ) part.
The decomposition implies that T ′ − U ′ is not primitive. Therefore, T − U is not

crude: this is a contradiction.

The above lemmata lead us to the main theorem.

Theorem 2 The following elements form a generating set of I
:

1. a set of crude generators of IG;
2. θ2

i j − Ci C j for any θi j ∈ �;

3. θi j N (p)±
i j −C∓

i C∓
j N (p)∓

i j for any θi j ∈ � and N (p)±
i j without N (q)±

i j which properly

divides N (p)±
i j ;

4. θi j N (p)±
jk C±

k − θik N (p)∓
jk C∓

j for any θi j ∈ � and N (p)±
i j without N (q)±

i j which

properly divides N (p)±
i j ;

5. θi jθkl − θ̃ik θ̃ jl for any θi j , θkl ∈ � with i, j, k, l are different each other; and
6. θi jθik − θ̃ jkCi and θi jθl j − θ̃ilC j for any θi j , θik, θl j ∈ �.
Here, θ̃i j means either θi j if Ci and C j are an exceptional pair or C±

i C±
j otherwise.

Proof Lemmata 3 through 5 determine the crude elements in the ideal I
. That is,
besides elements from IG of (1), if an N (p)±

i j appears in a crude element, that element
is of (3) or (4) by Lemma 4; otherwise there are only pure odd cycles with at most
four cycles by Lemma 5. Thus, the element is of (2), (5) or (6). From Proposition 2,
these crude elements generate the ideal I
. All monomials appearing in (2) through
(6) are not divisible by any monomial appearing in (1).

3 Factoring Properties

3.1 Möbius Sum on lcm-Lattice

There may be various methods to compute Ehrhart series from a Gröbner basis, but we
use multivariate series as a convenient tool. By Macaulay’s theorem, the dimension
of K [
]n can be computed by counting the monomials of degree n outside the initial
ideal. The main part of the computation is the Möbius sum on lcm-lattice, which is
a lattice on all least common multiples of monomials ordered by divisibility [3]. The
lcm-lattice of our case is defined on initial monomials { fi = in<(gi ) | gi ∈ G} of a
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Gröbner basis G with respect to a term order<; the elements of the lattice are least com-
mon multiples of initial monomials with 1 as the bottom element (the least common
multiple of empty set). Let L(X) denote the lcm-lattice on atoms X = {ξ1, . . . , ξs}.
Moreover, let M(L(X)) denote the Möbius sum on L(X)

M(L(X)) =
∑

x∈L(X)

μ(x)x,

where μ(x) = μ(1, x) is the Möbius function on L(X) of interval [1, x] (see [12], for
example). It is used to obtain a multivariate generating function ĤG :

ĤG(τ1, . . . , τs) = M(L(in<(G)))∏s
i=1(1 − τi )

,

where τi denote each elements of F. Finally, substituting tdeg τi to each τi ∈ F gives
the Ehrhart series HG .

In the following sections, the factoring properties of the Ehrhart series are discussed
based on the factorization of the Möbius sum.

Lemma 6 Let X and Y be two finite sets of monomials such that any pair x ∈ X
and y ∈ Y are coprime. Then, the Möbius sum M(L(X ∪ Y )) can be factored as
M(L(X ∪ Y )) = M(L(X))M(L(Y )).

Proof We claim that the Möbius function on a lcm-lattice is multiplicative; that is,
μ(1) = 1 and μ(xy) = μ(x)μ(y) if x ∈ X and y ∈ Y. If this claim is valid, the
lemma follows:

M(L(X ∪ Y )) =
∑

x∈X∧y∈Y

μ(xy)xy =
∑

x∈X∧y∈Y

μ(x)μ(y)xy

=
∑

x∈X

μ(x)x
∑

y∈Y

μ(y)y = M(L(X))M(L(Y )).

Thus, we prove the claim. First, by definition, μ(1) = 1. Second, assume that for
any x ′y′ < xy the claim is correct. Then,

μ(xy) = −
∑

x ′ y′<xy

μ(x ′y′) = −
∑

x ′ y′<xy

μ(x ′)μ(y′)

= μ(x)μ(y)−
⎛

⎝
∑

x ′≤x

μ(x ′)

⎞

⎠

⎛

⎝
∑

y′≤y

μ(y′)

⎞

⎠ = μ(x)μ(y).

Finally, by induction on the lattice order, the claim holds.
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3.2 First Factoring Property

The first factoring property of the Ehrhart series corresponds, roughly, to biconnected
decomposition of a graph. The main discrepancy presents with odd cycles, which are
always the most complicated part of the discussion of Ehrhart series of edge poly-
topes. We avoid digging deeper into the complications, parenthesize the hard part as
a whole. Let B1, . . . , Br be the biconnected decomposition of a graph G. If there are
odd cycle subgraphs in G, let G0 be the minimum connected subgraph containing all
biconnected components with odd cycle subgraphs of G. By renumbering, if neces-
sary, we have a decomposition of G as G0, B1, . . . , Br ′ . We call such decomposition
the biconnected decomposition of G with oddments.

We apply Lemma 6 to obtain the first factoring property.

Theorem 3 The Ehrhart series HG of a graph G has a factorization

HG(t) = HG0(t)
r ′∏

i=1

HBi (t),

where G0, B1, . . . , Br ′ are the biconnected decomposition of G with oddments.

Proof From Theorem 2, the only patterns that odd cycles affect the Ehrhart series are
in the oddments subgraph G0.

Let in<(G) be the initial monomials of Gröbner basis G of the ideal I
 with respect
to a term order < . The Ehrhart series is obtained through the multivariate generating
function: ĤG(τ1, . . . , τs) = M(L(in<(G)))∏

τi ∈F (1−τi )
, as in Sect. 3.1.

We know a generating set of I
 from Theorem 2, but do not know a Gröbner basis,
explicitly. If an initial monomial of the generating set is in a decomposed component,
then it is coprime to those in other components, since the non-initial monomial also
in the same decomposed component with the initial monomial. Then, the monomial
remains coprime to those from other components after the Buchberger algorithm by
Buchberger’s criterion. Therefore, we have a Gröbner basis whose initial monomials
are classified into each decomposed component.

By Lemma 6, the numerator of ĤG is factored along with the biconnected decompo-
sition with oddments. The denominator is also factored, because each edge is classified
into a decomposed component.

The Ehrhart series is obtained from ĤG by substituting tdeg τi to each τi ∈ F.

3.3 Second Factoring Property

The second factoring property focuses on an edge. As we have seen in Lemma 2, a
chordal path can be separated into shortcut path and an even cycle, if parity permits.
We generalize the property not only on a path but also on an even cycle. The key lemma
is Lemma 7 that explains phenomena like Example 2 that a binomial corresponding
to an even cycle with a chord can be a K [E]-linear combination of two binomials
corresponding to smaller even cycles.
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A separating pair of vertices of a graph G is a pair of vertices v1, v2 of G that the
number of connected components of G − {v1, v2} is greater than that of G. Let e be
an edge of G, and v1 and v2 be the end vertices of the edge e. Then, G − ẽ denotes
G − {v1, v2}.We call an edge with its end vertices a separating face, if the number of
connected components of G − ẽ is greater than that of G.

Lemma 7 Let G be a biconnected graph. If a separating face (e with u and v) decom-
poses G into at least two components one of which is bipartite, then, there is a gener-
ating set of the ideal I
 having no cycles stretching over the bipartite component and
another component.

Proof By assumption, we have two decomposed components G(1) and G(2), one of
which, say G(2), is a bipartite subgraph of G. In subgraphs G(i) for both i = 1, 2,
the vertices u and v are degree at least 2; one of the adjacent edges is e. Let Au and
Av denote ones of the other edges adjacent to u in G(1) and to v, respectively, and
similarly Bu and Bv in G(2).

Consider a big even cycle in G passing Au, Bu and Bv, Av. By assumption of bi-
partiteness of G(2), if we numbers Au the first and Bu the second on the cycle, then
the numbering of Bv is even and that of Av is odd. Hence we can name the other edges
on the cycle:

A1 = Au, B2 = Bu, A3, B4 . . . , B2k = Bv, A2k+1 = Av, B2k+2, . . . , A2m−1, B2m .

Then,

m∏

i=1

A2i−1 −
m∏

i=1

B2i

is in I
. We claim that this is redundant in a generating set of the ideal. If the claim
is valid, since the choice of even cycle is arbitrary, there is no need to include cycles
stretching over both G(1) and G(2) in the generating set of the ideal.

Now we prove the claim. Let A(i) = ∏
A j ∈E(G(i)) A j and B(i) = ∏

B j ∈E(G(i)) B j

for i = 1, 2. Then

m∏

i=1

A2i−1 −
m∏

i=1

B2i = A(1)A(2) − B(1)B(2).

There are cycles in G(1) and G(2), each corresponds to A(1)− B(1)e and A(2)e − B(2),
respectively: in other words, each half the big cycle with e. Then,

A(1)A(2) − B(1)B(2) = A(2)(A(1) − B(1)e)+ B(1)(A(2)e − B(2)).

Thus the binomial is generated by the small cycles, one of which is in G(1) and another
in G(2).
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Theorem 3 Let G be a connected graph and G(1) and G(2) be its subgraphs. Assume
(1) each edge of G belongs either G(1) or G(2), except exactly one edge e which is
shared by both; (2) G(2) is a bipartite graph; and (3) e is a part of a cycle in G(2).

Then, the Ehrhart series HG(t) can be factored as

HG(t) = HG(1) (t)(HG(2) (t)(1 − t)).

Proof By Theorem 3, we can assume that G(2) is a biconnected graph. If G(1) also is a
biconnected graph, by Lemma 7, there is a generating set consisting of binomials from
each subgraph. Moreover, even if G(1) is not a biconnected graph, the same argument
applies on any cycles stretching over both subgraphs. Hence, the remaining concerns
are connecting paths passing through G(2) between odd cycles, both of which are
in G(1). However, the condition of Theorem 2(3) based on Lemma 2 have already
excluded such paths.

Because G(2) is bipartite, one can chose a term order that the shared edge e does
not appear in the initial terms. Thus, the same argument with in the Theorem 3 applies,
i.e., initial monomials from different components are coprime, then the Möbius sum
is factored along with the decomposition.

Finally, since the shared edge e is counted in both HG(1) (t) and HG(2) (t),we should
cancel a (1 − t) from the denominator of HG(2) (t).

Note that both factoring properties are also applicable to the Hilbert series of edge
rings.

4 Bipartite Polygon Trees

4.1 Explicit Series

We apply the factoring properties to a few families of graphs to obtain explicit Ehrhart
series for them.

Recall a polygon tree is a connected simple graph defined recursively as follows
(see [5], for example). A polygon, or a cycle, is a polygon tree. If G is a polygon tree,
then picking an edge of it and make a new cycle graph G ′ share the edge with G, then
resulting graph is a polygon tree. We call a polygon tree a bipartite polygon tree, if all
involving cycles are even cycles.

Before proving the result of polygon trees, let us recall the basic examples of the
Ehrhart series.

Fact 1 The followings are well-known Ehrhart series of a few biconnected graphs.

1. 1
1−t if G is an edge;

2. 1+t+···+tn−1

(1−t)2n−1 if G is an even cycle with 2n edges;

3. 1
(1−t)2n−1 if G is an odd cycle with 2n − 1 edges.
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Proposition 3 The Ehrhart series HG(t) for a bipartite polygon tree graph G with e
edges and f2n cycles with 2n edges for n ≥ 2 is:

HG(t) =
∏
(1 + t + · · · + tn−1) f2n

(1 − t)e− f
(*)

with f = ∑
f2n .

Proof We show the proposition by induction on the number of even cycles. If the num-
ber of cycles is one, the graph is an even cycle with 2n edges, then, from Fact 1(2),
the Ehrhart polynomial is 1+t+···+tn−1

(1−t)2n−1 . It coincides with e = 2n and f = 1 case of
(*), as desired. Assume that (*) is valid for bipartite polygon trees with f − 1 cycles.
Then, a polygon tree G consisting of e edges and f even cycles is considered as an
even cycle C ′ of 2n edges and a polygon tree G ′ of e − (2n − 1) edges and f − 1 even
cycles sharing an edge. Since the sharing edge is a separating face, by Theorem 3, the
Ehrhart series can be factored as

HG(t) = HG ′(t)(HC ′(t)(1 − t)).

With the induction hypothesis and Fact 1(2), the degree of denominator in total is

(e − (2n − 1))− ( f − 1)+ (2n − 1)− 1 = e − f,

and the numerator is in the form of (*).

Since the graph G of Proposition 3 is bipartite, the dimension D of the edge poly-
tope is v − 2, as shown in [7]. The degree of denominator is equals to D + 1 for
any polytopes, thus it should be v − 1 in the current case. Since the polygon trees are
planar, the Euler characteristic of the graph gives the equation v − e + f = 1, i.e.,
v − 1 = e − f, which is equal to the degree of our formula.

Note that the formula (*) is valid by Theorem 3 for bipartite graphs whose bi-
connected components are all polygon trees, including bipartite cacti. Moreover, the
formula (*) is also valid if a single odd cycle is in a polygon tree; since we can start the
induction from the odd cycle, whose Ehrhart series is known as Fact 1(3). Note also
that since the outerplanar graphs are subfamily of the polygon tree, if it is bipartite or
with a single odd cycle as above, the formula applies to these cases as well.

Example 3 Ladders Lk are Cartesian products K2 × Pk, where K2 is the complete
graph of order two and Pk is the path graph of order k. It is an even outerplanar graph
and thus a bipartite polygon tree graph, consisting of k − 1 squares. Thus, the Ehrhart
series HLk (t) can be deduced from Proposition 3:

HLk (t) = (1 + t)k−1

(1 − t)2k−1 .

Example 4 We know the Ehrhart series of the “bow-tie” (Example 1) and the ladders
(Example 3). Then, for any combined graphs of a bow-tie and a ladder Lk, sharing a
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vertex or an edge, we know their Ehrhart series. In case sharing a vertex, it is given
by the first factoring property (Theorem 3) as

HG(t) = (1 + t + t2 + 2t3)(1 + t)k−1

(1 − t)2k+6 .

In case sharing an edge, it is given by the second factoring property (Theorem 3) as

HG(t) = (1 + t + t2 + 2t3)(1 + t)k−1

(1 − t)2k+5
.

4.2 Root Distribution

The root distribution of the Ehrhart polynomials can be obtained from the Ehrhart
series without explicit computation of the polynomials themselves in some cases. We
use the results of Rodriguez-Villegas [10]. For an integer a, let Sa be a set of non-zero
polynomials p(x) such that

p(x) = v(x)
a∏

i=1

(x + i)

where all roots of v(x) lie on �(x) = −(a + 1)/2. Then the following lemma holds.

Lemma 8 [10] Let α be a root of unity and f ∈ Sa for some a ∈ Z. Then

f (x − 1)− α f (x) ∈ Sa−1.

Proposition 4 The Ehrhart polynomial iG(m) for a bipartite polygon tree G with e
edges and f2n cycles with 2n edges for n ≥ 2 is in Se−1−∑

n f2n . In other words, the
roots of iG(m) are negative integers or on �(x) = −(e − ∑

n f2n)/2.

Proof Let E− denote the negative shift operator. Then f (x − 1) − α f (x) can be
rewritten as (E− − α) f (x). The Ehrhart polynomial iG(m) is related to i∗G(t), the
numerator of the Ehrhart series, as

iG(m) = i∗G(E−)
(

m + D

D

)

= ch

h∏

j=1

(E− − α j )

(
m + D

D

)
,

where h is the degree, α j are the roots and ch is the initial coefficient of i∗G(t). From
Proposition 3, all roots of i∗G(t) are roots of unity, and the initial coefficient is 1.More-

over, notice that
(m+D

D

)
is in SD. When applying each factor E− − α j , we track the

roots using Lemma 8. Then, the intermediate polynomials are in SD−1, SD−2, and so
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on, and finally the Ehrhart polynomial is in SD−h . As noted after the proof of Propo-
sition 3, D = e − f − 1. On the other hand, the degree of i∗G(t) is h = ∑

(n − 1) f2n .

Since f = ∑
f2n,

D − h = e − f − 1 −
∑

(n − 1) f2n = e − 1 −
∑

n f2n

as required.

Remark that the roots are on the strip of Conjecture 1, and in fact on the left half-
plane part of the region.
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