The Visual Computer
https://doi.org/10.1007/s00371-024-03395-2

ORIGINAL ARTICLE

Unfolding polyhedra via tabu search

Lars Zawallich'

Accepted: 28 March 2024
© The Author(s) 2024

Abstract

®

Check for
updates

Folding a discrete geometry from a flat sheet of material is one way to construct a 3D object. A typical creation pipeline first
designs the 3D object, unfolds it, prints and cuts the unfold pattern from a 2D material, and then refolds the object. Within this
work we focus on the unfold part of this pipeline. Most current unfolding approaches segment the input, which has structural
downsides for the refolded result. Therefore, we are aiming to unfold the input into a single-patched pattern. Our algorithm
applies tabu search to the topic of unfolding. We show empirically that our algorithm is faster and more reliable than other
methods unfolding into single-patched unfold patterns. Moreover, our algorithm can handle any sort of flat polygon as faces,

while comparable methods are bound to triangles.

Keywords Unfolding - Papercraft - Discrete Optimization - Computational Geometry

1 Introduction

Folding paper has a long history. The oldest known folded
piece of papyrus dates back to ancient Egypt and is a folded
road map [19]. Even though it is not certain that folding
paper as an art was invented in Japan, the oldest known
origami was created there in the sixth century [15]. The first
records dealing with the unfolding of polyhedra date back
to Albrecht Diirer in 1525 [8]. Today, folding and unfold-
ing can be found in many aspects of our lives. Be it a paper
plane, an origami, arts and crafts class in school, packaging,
or architectural prototyping, folding or unfolding is involved
in one way or another. A recent and prominent example of
folding and unfolding is the James Webb Space Telescope,
which had to be packed to fit into the delivering rocket and
then unfolded in space.

In recent years, the use of do-it-yourself decorations,
arts, and toys crafted from unfoldings has become firmly
established in commercial applications. Typically, these
unfoldings are single-patched and have a low polygon count.
Creating such a single-patched unfolding nowadays still
needs a lot of time and effort. Improving the underlying tech-
niques to create such a single-patched unfolding faster and
more reliably than current approaches would allow for faster

B Lars Zawallich
LarsZawallich@gmail.com

1 University of Zurich, Zurich, Switzerland

Published online: 17 May 2024

creation pipelines and finer polygonization in these applica-
tions.

Unfortunately, the problem of unfolding polyhedra is
complex and to this day, it is not even known if every polyhe-
dron can be unfolded at all [6]. On top of that, it is known that
non-convex polyhedra, the most common type in real-world
applications, cannot always be unfolded via edge unfolding,
the most intuitive unfolding technique. Current approaches
try to overcome this issue by segmenting the unfolding into
separate parts, which are unfoldable. In the most extreme
case, this can lead to “unfoldings” consisting of numer-
ous segments each containing a single or very few faces.
Especially in manufacturing, single-patched unfoldings are
preferable, since they allow for great efficiency [6, Section
22.1.1]. While it is proven that non-convex polyhedra are not
edge-unfoldable, in practice that issue rarely occurs.

Within this work, we present a simple algorithm which
edge-unfolds a given polyhedron fast and reliably—given it
is unfoldable. Our technique is more reliable and orders of
magnitudes faster than any comparable method. Moreover,
in contrast to comparable methods, our approach does not
need any special starting point for its optimization.

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s00371-024-03395-2&domain=pdf
http://orcid.org/0000-0001-5730-4361

L. Zawallich

Table 1 Status of main questions concerning non-overlapping
unfoldings; ?—Unknown; v'—Always possible; X—Known counter-
examples;[6, Table 22.1]

‘ Edge unfolding General unfolding
Convex ? v
Non-convex X ?

2 Background

Our algorithm is a tabu search algorithm [9], which has been
applied to edge unfolding. In the following, we briefly review
the basics for unfolding as well as the tabu search algorithm.

2.1 Unfolding

The following definitions are mostly covered in the book
Geometric Folding Algorithms: Linkages, Origami, Polyhe-
dra [6].

There are two main ways to unfold a polyhedron:

1. Edge unfolding
2. General unfolding

Edge unfolding only allows cutting the polyhedron along
its given edges. General unfolding allows arbitrary cuts.
After cutting, both approaches are then unfolding the cut-
open polyhedron along its edges, to flatten it into a plane.
When using edge unfolding the number of cuts and folds is
bound from above by the number of edges in the polyhedron.
When using general unfolding, the number of cuts and folds
can become arbitrarily high, resulting in tedious work when
refolding. One famous edge unfolding technique is Steepest
Edge Unfolding [22]. A general unfolding technique is Star-
Unfolding [6, Chapter 24.3]. In this work, we will only use
edge unfolding as a technique. To this day, it is unknown if
all polyhedra can be unfolded. An overview of this issue can
be seen in Table 1.

To unfold every face of a polyhedron, generally, at least
one cut is required at each vertex. The only exception occurs
at vertices with incident angles of 2, i.e., at vertices with
a Gaussian curvature of zero. In this case, no cut is needed
to unfold the surrounding faces into a plane. Doing the cut
nevertheless has the advantage of being able to separate
the coplanar faces in the unfolding. This separation can be
advantageous in resolving overlaps later on. For genus zero
polyhedra, the cut edges must form a spanning tree over its
vertices. If the cut edges would not form a spanning tree,
either some vertices were not reached, or the tree had a
cycle. In the first case, the faces around this vertex would not
be unfoldable into a plane—except for the above described
case. In the latter case the faces enclosed by the cycle would

@ Springer

be cut out completely, disconnecting it from the unfolding.
Such a spanning tree formed by the cut edges is called a
cut-tree. A single-patched overlap-free unfolding created by
using edge unfolding is called a net. Rarely, this term is also
used to name an overlap-free unfolding generated by general
unfolding. To avoid confusion, we will only use it in relation
to edge unfolding. A net can also be seen as a distortion-free
parameterization with non-convex boundary.

The net of an unfolded polyhedron itself is a polygon. This
polygon needs some indications on where to fold it and in
which direction, to regain the original polyhedron. We fol-
low the convention of dashed lines representing valley folds
and dash-dotted lines representing mountain folds. Figure 1
shows an example. To prevent overloading of our visualiza-
tions, we only use these fold-representations when it comes
to folding. If a polyhedron is not edge-unfoldable without
overlap, we will call it not-unfoldable. In the literature, this
term is also referred to as ununfoldable.

There are different ways to look at an unfolding. One is
to define it via its cutting of the graph (e.g., [25]). Another

(a) The folding pattern of a sand clock ~ (b) The cor-
shape. Dashed lines represent valley responding 3D
folds and dash-dotted lines represent shape.

mountain folds.

Fig.1 An example for line-styles representing different folding direc-
tions

(a) A folded icosphere.

(b) The corresponding
unfolding.

Fig.2 A folded and unfolded icosphere with 80 faces. The unfold-tree
is visualized in blue

Unfolding polyhedra via tabu search

way is to define the unfolding as a spanning-tree of the dual-
graph of the mesh (e.g., [10]). While any approach working
on the dual-graph will always have to find a spanning-tree,
approaches working on graphs can only work with cut-trees
in the genus zero case. With higher genuses the cutting needs
to be a cut-graph—instead of a cut-tree—with as many cycles
as the polyhedron’s genus. In this work, we use the approach
of spanning-trees of dual-graphs. Figure 2 shows an example
of such a spanning-tree. In the context of unfolding, we call
a spanning-tree of the dual-graph an unfold-tree.

2.2 Tabu search

Tabu search is a metaheuristic for optimization and has first
been introduced by Fred Glover [9]. The basic technique is
outlined in Algorithm 1.

Algorithm 1 Tabu Search

function TABUSEARCH(X, maxTabuSize)
> X is an initial state of parameters

tabuList = list()
while !stoppingCriterion() do
neighbors < getNeighbors(X)
neighbors <— removeTabus(neighbors, tabuList)
> Avoids undoing past steps
bestNeighbor < neighbors.best()
tabuList.push(x)
X < bestNeighbor
tabuList.shrinkToSize(maxTabuSize)
> Removes oldest entries first
end while
end function

As with other combinatorial optimization problems, com-
puting derivatives is hard to impossible in the context of
unfolding. Therefore, many known and prominent optimiza-
tion techniques (like gradient descent, or Newton’s method)
cannot be applied. Tabu search does not require any sort
of derivative. While other derivative free optimization tech-
niques in their basic variant, like hill climbing [16], are unable
to overcome local minima, tabu search is able to do so. This
is done by accepting the locally best neighbor instead of only
accepting improving neighbors. By then memorizing the past
states, the algorithm prevents falling back into a local mini-
mum. Two possible issues tabu search poses are to determine
when the optimum is reached and how many past steps to
remember. These two issues are addressed in Sects.4 and
4.4.

3 Related work

Besides the purpose of creating paper models or art, folding
and unfolding polyhedra appear in other areas of research

as well. In robotics, a recent publication suggested reconfig-
uring modular robots with folding and unfolding techniques
[30]. Also in the field of robotics, the review by Rus et al.
gives a great overview of so-called origami robots, which are
created from a flat material via folding [20].

The field of parameterization “only” differs from the field
of unfolding by allowing distortions. Poranne et. al [18]
optimized the cuts needed to parameterize. Sawhney and
Crane [21] focused on usability without sacrificing qual-
ity. An overview of the field of parameterization has been
given by Hormann et. al [12]. In contrast to parameteri-
zation, unfolding does not allow any distortion. Thus, any
unfolding will also be a distortionless parameterization, with
non-convex boundary.

Solving the big questions in unfolding (see Table 1) turned
out to be very hard. Instead, current works in this area focus
on special cases like orthogonal polyhedra [3, 4], or edge
unzipping [5].

One practical approach to create papercraft models was
presented by Tachi, who proposed to lay out the faces of a
mesh into a plane, connecting them with so-called tucking-
molecules [26]. These molecules get folded into the body
of the result, making them invisible from the outside. This
approach does not need to cut any paper, but only fold, which
can be advantageous. The approach has been extended in the
work by Demain et al. to use less filling-material, rendering
the algorithm more practical [7].

Another group of practical approaches for creating paper-
craft models are developable surfaces. The core idea is to find
developable patches—which means they have a zero Gaus-
sian curvature in each point—representing the input mesh
as well as possible. Then, these patches are cut out of paper
(or another developable material) and attached together. This
attachment may involve a bending of the patches. Differ-
ent approaches include e.g., optimizing cut-lines for strips,
which then are made developable [17], approximations with
cones and cylinders [23], optimizing for hinges [24] or mini-
mizing the number and complexity of patches while keeping
the approximation error low [13]. Developable surfaces can
be seen as a segmentation technique, which works with bends
instead of folds.

When working with folds, many practical approaches
(see next paragraphs) favor edge unfolding over general
unfolding. Unfortunately, for edge unfolding there are known
polyhedra, which cannot be edge-unfolded. To overcome
this issue, many approaches choose to segment the unfold-
ing into parts. One major drawback of most segmentation
approaches is the resulting segmentation being arbitrary in
both the shape and the number of segments. This oftentimes
leads to impractical segmentations, which are hard to recon-
nect. Our approach does not segment. Instead, it is applicable
to user-defined segmentations, giving the user full control
over the segmentation quality.

@ Springer

L. Zawallich

Straub et al. explored different heuristics to find cut-trees
by assigning a value to the edges of the mesh and then find-
ing a minimal spanning tree [25]. Their approach to remove
overlaps is to cut the unfolding into several parts [25, Sec-
tion 2.2], which is a segmentation. Instead of finding cut-trees
Haenselmann et al. explored different heuristics for spanning
a tree over the dual-graph of the mesh, which is equivalent
to laying out its faces in a specific order [10]. Takahashi et
al. proposed to start off with small patches and stitch them
together, using a genetic optimization algorithm [27]. While
they are trying to minimize the number of segments, it is still
possible and common for their algorithm to yield a segmented
result.

Instead of accepting segmentation as a necessity, Xi et al.
segmented a given mesh by analyzing overlaps in unfoldings
created by an easy-to-compute method [28]. The resulting
segments can then be unfolded without self-overlap via the
easy-to-compute method they used in their pipeline. Addi-
tionally, they considered the continuous foldability of the
unfolding, which is important for, e.g., self-folding.

The topics of self-foldability and continuous unfolding
have gained more interest in the past years, since it is an
important concept to automatically create robots and struc-
tures from 2D shapes, by exposing them to, e.g., heat [2]. This
possibility motivated recent publications (e.g., [11, 29]) to
focus on the continuous and self-folding property of unfold-
ings, rather than the question of unfoldability itself.

To the best knowledge of the authors, there are only two
published approaches aiming to edge unfold a given non-
convex mesh into a single-patched unfolding. One is the
aforementioned approach by Takahashi et al. which aims
to create a single-patched unfolding, but accepts segmented
results, if no single patch can be found [27]. The other
approach uses simulated annealing to unfold a given mesh,
while additionally considering gluetags [14]. In our experi-
ments, this approach scales poorly and lacks reliability (see
Figs.8 and 7).

Our method improves on all aforementioned shortcomings
current approaches have. For example, it scales better, while
also not relying on segmentation.

4 Methods

Unfolding a polyhedron can be seen as an optimization prob-
lem. As such, the function f to minimize takes the current
unfold configuration as an input and yields the number of
overlapping faces. Obviously, f will always yield a non-
negative integer and its minimum is reached with f(x) = 0.
Knowing the global minimum is especially advantageous for
optimization. Instead of hoping to have reached a global min-
imum, itis very easy to determine if a given minimum is local
or global.

@ Springer

The algorithm presented in this article applies tabu search
to the topic of unfolding. In particular, the algorithm can be
split into the following parts:

The input (Sects.4.1)

An initial unfolder (Sect.4.2)

A strategy to select the best step (Sect.4.3)

A strategy to overcome local minima (Sects. 4.4 and 4.5)
(Optional) Additional optimization parameters (Sect. 4.6)

S

Additionally, in Sect.4.7 efficient overlap detection, in
Sect. 4.8 the tabu mechanism, and in Sect. 4.9 data structures
are discussed.

4.1 Input

As input, our method takes an orientable mesh. This mesh
does not need to be triangular, but for the unfolding every
face needs to be planar. To allow for an input without pla-
nar faces, we implemented the planarization flow presented
by Alexa and Wardetzky [1]. The planarization is done as
a preprocessing step and is independent of the unfolding
algorithm presented in this paper. Besides the planarity of
faces, the mesh has to be a manifold. There are no con-
straints on the genus, convexity or other remaining properties
of the mesh. In theory, the mesh could even self-intersect.
This would make re-folding the result hard to impossible,
but does not hinder our algorithm from producing a valid
result.

4.2 The initial unfolder

For the initial unfolding it is acceptable to contain over-
laps. Furthermore, different initial unfoldings are needed,
to explore different areas of the unfolding space. There-
fore, we aimed for a non-deterministic algorithm quickly
producing different unfoldings, which may contain overlaps.
Our choice was the Steepest Edge Unfolding algorithm [22].
Originally designed to unfold convex polyhedra, it is also
applicable to non-convex polyhedra. The resulting unfold-
ings will very likely contain overlaps, but that is acceptable,
as mentioned above. Since the Steepest Edge Unfolding
uses a randomized direction as a cut direction, it is able to
create different unfoldings for the same polyhedron. More-
over, the time complexity is bound by O(V + F) (one cut
per vertex, plus setting up the unfold-tree, which scales
linearly with the number of faces). Finally, the resulting
unfoldings tend to have fewer overlaps than other methods
with comparable time complexity, like a random unfolding,
yield.

Unfolding polyhedra via tabu search

N N

(b) After attaching a node
to a new parent.

(a) Before attaching a node
to a new parent.

Fig. 3 Attaching a node in the unfolding to a new parent-node in the
unfold-tree. The spanning-tree is visualized in blue

4.3 Selecting the best step

We restrict the neighborhood search of our algorithm to one
parameter at a time. In particular, the algorithm picks a ran-
dom overlapping face and tries to attach it to another possible
neighbor in the dual-graph. For readability, the procedure of
attaching a face to another neighbor in the dual-graph will be
called a move. An example for a move can be seen in Fig. 3.
The goal of our algorithm is to move faces, such that the total
number of overlapping faces decreases. Please note that this
does not necessarily mean a face needs to be overlap-free
after a move. Since each non-leaf face in the unfold-tree rep-
resents a subtree, moving that face corresponds to moving
the subtree as a whole. Therefore, the moved face may still
overlap, while the total number of overlaps of the subtree has
been reduced.

It may happen that the randomly selected face cannot be
attached to a new parent-node. This can occur for several
reasons. The two main reasons are: there is no new parent-
node available, or the move would create more overlaps than
the current state has. The first case occurs for example when
a face is fully connected, all possible dual-graph neighbors
are located in its own subtree (see Fig.4), or all possible
dual-graph neighbors are in the tabu list (see Sect.4.4). If a
face cannot be attached to a new parent-node, our algorithm
recursively climbs up the tree and tries to move the parent-
node of the initially selected one instead, until the root node
is reached. In case the root node is reached, but no move
would improve the overall number of overlaps, we perform
the relative best move we found while climbing. Our exper-
iments showed that searching a path between overlapping
nodes can sometimes lead to a blocking situation. Therefore,
we decided to search on a path to a random node of the tree.
Since we reroot the tree in each iteration (see Sect.4.5), it is
convenient to pick the root node as this random node.

4.4 Local minima

Tabu search stores m past steps in a so-called tabu list.
Any step in the tabu list cannot be undone. Obviously, the
value of m is critical for this algorithm. A value that is
too large would make the algorithm block every possible
move, resulting in no direction left to go. For example, if
only two faces are overlapping, which are both close to
the root node (e.g., both having a distance of two to the
root node), there are at maximum eight possible moves.
If m was greater than eight, it is possible that all moves
are blocked by the tabu list. While too large values for m
may block every possible move, a value that is too small
would result in the algorithm to fall back into local min-
ima.
In our work, we used

m = val - log,,;(|F])

throughout. val is the average valence in the dual-graph
of the mesh and |F| is the number of faces. For triangle
meshes the valence of each node representing a face, which
is not located at a border, is 3 and thus val = 3 on average
as well. The minimal height of a tree grows logarithmi-
cally with the number of its entries. Degenerate cases exist,
but it is very unlikely to create one randomly. But even if
such a case occurs, it is even more unlikely for the whole
degenerate tree to be one local minimum. Still, in such a
case, higher values for m (up to the size of the configu-
ration space) might be necessary. The val term multiplies
the height of a tree with the number of neighbors it can be
applied to. Thus, val - log,,; (| F|) is the number of possible
moves one branch in a full tree can perform on average. This
value statistically allows the algorithm to test every possi-
ble move on a branch, before it can undo moves from that
branch.

Generally, it is better to slightly overshoot the value of m
by a bit, since it is easier to determine if the solver cannot
perform any moves, compared to detecting if the solver falls
back into a local minimum. Therefore, we are aiming for
a reasonable upper bound of steps to block, rather than an
exact value. It can always happen that the solver gets stuck
in a situation where every possible move gets blocked by
filtering out previous moves (see the example from above).
Detecting such a case is easy: If no move can be performed at
all anymore, the tabu list gets cleared, enabling the solver to
perform moves again. Empirically, we determined that this
situation occurs very rarely.

@ Springer

L. Zawallich

Fig.4 A blocking situation where no colliding node or parent-node can
be moved anymore. The root node is highlighted in orange, the unfold-
tree is marked with blue lines, and overlapping faces are marked in
red. In this case, the red faces are overlapping the root node. The root
node is overlapping as well, but for visibility is not marked in red.
Both overlapping faces have their only remaining dual-graph neighbor
within their own subtree. These dual-graph neighbors are connected to
the nodes via blue dashed lines. Moving either of the overlapping faces
to their dual-graph neighbor would disconnect them from the root node

4.5 Switching root nodes

In our data structure (Sect.4.9), the root node of the unfold-
tree is not movable to a new parent. This can lead to
constellations, where the solver gets stuck. Such a constel-
lation could occur if two nodes overlap and all dual-graph
neighbors are located in their own sub-trees. In such a sit-
uation, the overlapping nodes cannot get attached to any
neighbor, since such a move would cut the tree into two.
Also, if the nodes are high up in the unfold-tree, moving
their parent-nodes might not help either. Such a case could be
resolved by moving non-overlapping nodes up and reorder-
ing the tree, which is a very time-consuming operation. An
example for such a case is illustrated in Fig. 4.

Instead of solving this issue directly, we implement a
reroot method, which selects a new root node, when such a
situation is detected. From an implementation point of view,
rerooting is done by climbing up the tree from the new root
node to the current one and inverting each parent link, the
transformation, as well as the respective child entry in each
node. When the solver gets stuck in a situation like described
above, our algorithm reroots to a node located in the subtree

@ Springer

of the overlapping node. That way, the climbing direction
from this node is inverted and all dual-graph neighbors which
were unreachable before are now possible to move to.

The goal of our algorithm is to find a net of a polyhedron
and not a specific tree-structure. Therefore, we are free to
switch root nodes. While the tree structure is needed to com-
pute the unfolding, a fixed root also causes issues. E.g., when
the root node is overlapping another node, the issue might
be easy to solve by moving the root node to another position
(see Fig.4). But because the root node is not movable, in such
a situation the overlap needs to be solved by moving the rest
of the tree around the root node. Such an operation is very
difficult to perform for a highly randomized algorithm like
ours. Moreover, it is practically impossible to detect such a
situation and its correct solution. Since the whole idea of our
algorithm is to be built from simple but robust parts, detect-
ing these complex situations or even their solutions would
violate this major construction philosophy. Instead, we make
use of an important observation: One unfold pattern can be
created by many isomorphic unfold-trees.

Therefore, to prevent any issue related to a fixed root node,
we randomly reroot in every iteration, except if we detect a
blocking situation like described in the first paragraph of
this section. With this strategy, we mimic the behavior of
an unfold pattern, which can perform any move, while still
maintaining the simple tree-structure and all its benefits.

4.6 Optional optimization parameters

In its basic version our algorithm “just” unfolds polyhedra
and accepts the first output that is overlap-free. For some
polyhedra more than one net exists, though. Our algorithm
can be extended by additional optimization parameters, to
enforce other constraints on the resulting unfolding than just
being overlap-free. For example, a certain aspect ratio may
be desired, to better fit standard paper sizes.

Such additional constraints can be implemented by adding
them to the optimization function f. It is important for each
constraint to have a well-known and reachable minimum.
The stopping criterion then needs to be adjusted to the sum of
minimums of all constraints. Moreover, the selection strategy
discussed in Sect. 4.3 needs to be extended as well, to allow
selecting faces violating additional constraints. Lastly, the
memory discussed in Sect.4.4 needs to be adjusted appro-
priately.

When applying constraints, each constraint is guaranteed
to be met, but the runtime of the algorithm can worsen arbi-
trarily. Furthermore, there is no guarantee that any constraint
is combinable with being overlap-free. Therefore, great care
is advised when working with constraints.

Unfolding polyhedra via tabu search

4.7 Efficient overlap detection

After each change in the unfold-tree, it is necessary to deter-
mine the resulting number of overlaps. This is by far the
most time-consuming part of the whole algorithm. There-
fore, it is crucial to implement this part as efficiently as
possible. In a naive implementation, detecting all overlaps
would pose a time complexity of O (n?). Please note that in
the worst case, if every face overlaps every other face, the
time complexity cannot be better than O (n?). To improve
the average speed, we decided to implement a sweep line
algorithm, which reduces the average time complexity down
to O(nlogn). The algorithm is described in Algorithm 2.

Algorithm 2 Sweep Line Overlap Detection
Require: p
function DETECTOVERLAPS(D)
p' <« sort(p,d) -
> Sort by lower bounding box coordinate in dimension d
overlaps < 0
fori < Oto |p’'| do
fi < p;
for j < i+ 1to|p'|do
fi < P
if fj.bBox.lower;() > fi.bBox.upper;() then
break
end if
if fi.intersects(f;) then
overlaps < overlaps + 1
end if
end for
end for
return overlaps
end function

> p is a list of unfolded polygons

Since our algorithm only changes a part of the unfolding
at a time, it would be a waste to compute all overlaps again
after moving a small subtree. Whenever the moved subtree
contains less than log n polygons, we perform a naive overlap
test on these polygons. If the number of moved polygons is
larger, we recompute all overlaps using the sweepline algo-
rithm.

The polygon—polygon intersection test is done via line—
line intersection tests. To prevent neighboring faces or flat
regions from falsely being detected as overlaps, we add a
small tolerance to each endpoint of a line in these tests.

4.8 Tabu mechanism

Whenever a face is moved, its index and the index of its
former parent are memorized. If the number of memorized
index-pairs exceeds the maximum size (see Sect.4.4), the
oldestitems are removed. As long as an index-pair is stored in
the tabu memory, the respective face is prevented from being
connected to its former parent again. This implementation

is very robust and adds minimal overhead to the computa-
tional time. In our experiments, this approach showed better
performance and equal reliability compared to any approach
including the overall tree-structure.

4.9 Data structures

To unfold a mesh, we are using a tree structure over the
dual graph of the input mesh, which we call unfold-tree (see
Sect.2.1). Each tree-node stores the following values to make
navigation and unfolding easy:

A reference to the face it represents
A link to the parent-node

— A list of child nodes

A transformation

The mentioned transformation rotates the represented face
into the plane of the parent face along their shared edge. In
other words, the transformation of a node unfolds the mesh by
one step. The root node of the tree would contain an empty
parent link and the identity transformation. Unfolding the
whole mesh is then done by a tree-traversal, where the trans-
formations are applied successively. That way, unfolding has
a time complexity of O(]| F|) at maximum, with | F'| being the
number of faces in the mesh.

To efficiently find nodes in the tree, we store each node in
a list. The face-index is then equal to the index within that
list. In a naive tree-implementation, searching a tree scales
linear with the number of entries. By storing each node in a
list, we can find every tree-node in constant time instead.

The resulting faces are stored in a 2D face representation.
This data structure contains:

— A reference to the face it represents
— A list of 2D vertices
— A transformation

The transformation is the product of all small transformations
from the unfold-tree. That way, each unfolded face contains
information about how to transform the 3D face into 2D in
one step. This information is beneficial, since it is often nec-
essary to unfold just a small part of the whole mesh. When
traversing only a subtree of the unfold-tree, we do not need
to calculate the needed transformation for the subtree anew.

We implemented the tabu mechanism by using two differ-
ent data structures: a queue and a list of lists. The queue stores
pairs of indices, which are not allowed to be connected. For
each face, the list stores a list of indices which the face is not
allowed to be connected to. This setup avoids iterating over
the whole queue each time an element needs to be filtered,
which would scale logarithmically with the number of faces
in the mesh. Instead, each list entry can have, at most, as

@ Springer

L. Zawallich

Fig.5 Step-by-step visualization of our algorithm. Overlapping edges are marked in red. The unfold-tree is indicated with blue lines

many entries as there are edges on the respective face. This
value depends only on the type of face and is independent of
the number of faces.

4.10 Pseudocode

Our algorithm is summarized by the pseudocode in Algo-
rithm 3. Moreover, Fig.5 shows how our algorithm resolves
overlaps in an unfolding step by step.

Algorithm 3 Tabu Search for Unfolding Polyhedra

Require: X > X is the initial unfold-tree (see Sect. 4.2)
Require: f > f is the overlap detecting function
function TABUUNFOLDING(f, X)
while f(¥) > 0do
if stuckInRoot Lock() then
rerootIntoStuckSubTree(X)
else
random Reroot (X)
end if
if stuckInMemoryLock() then
clear Memory()
end if
by,xy < initHistoryValues()
x < select RandomColliding Face(X)
while x # root(X) do
n = filtered Neighbors(x)
b = bestNeighbor(n)
if f(move(X, x,b)) < f(X) then
X < move(x, x, b)
memorize(x, b)
continueQuterLoop
end if
if f(move(X, x,b)) < f(move(X,xy,by)) then
> Better history value found

> See Section 4.5

> See Section 4.4

> See Section 4.8

b[-[«~b
XH < X
end if
X < x.parent
end while

> See Section 4.3

> No improving solution found within the loop
X < move(X, xy,by)
memorize(xy,by)
end while
end function

@ Springer

5 Results

An illustrative display of the whole unfolding pipeline for
the Stanford Bunny can be found in Fig. 13 in Appendix A.
Other unfolding examples are shown in Figs. 6a and 6b.

We compared the performance of our algorithm with two
other methods (see Sect. 3): Optimized Topological Surgery
for Unfolding 3D Meshes [27] and Simulated Annealing to
Unfold 3D Meshes and Assign Glue Tabs [14]. We will refer
to these methods as OTS and SA. For both methods an imple-
mentation was provided in the supplemental materials of the
respective articles. To ensure fairness in our comparison, we
removed the glue tab addition from the SA method, reducing
it to an unfolding algorithm using simulated annealing. This
is done to ensure comparability, since we do not add any glue
tabs, which is a considerable overhead in computational time.
Moreover, in the same implementation, we exchanged the
naive overlap detection of the original implementation with
a sweepline algorithm (see Sect.4.7). This way, the overlap
detection in all three methods works comparably fast, allow-
ing for a better comparison between the actual approaches.
All three algorithms were implemented in C++ and compiled
with the same compiler, using the same compilation flags.

5.1 Outlier removal

To be able to determine a trend in our findings, we removed
outliers. We define an outlier as any value greater than the
mean plus three times the standard deviation of the underly-
ing data. The timings and iterations presented in Figs. 8 and 9
are filtered this way. For the unfiltered values, please refer to
Table 2 in Appendix A.

5.2 Performance and iterations

To compare the performance we measured the times each
algorithm needed to unfold a set of given meshes. As a test
set, we chose the ThingilOk [31] dataset. We filtered out
all meshes which were non-manifold, consisted of multiple
components or were unrepresentable with at least 100 faces,
resulting in 2,800 meshes. Each mesh has been tested in five

Unfolding polyhedra via tabu search

(a) The folded and unfolded Fertility model (800
faces).

(b) The folded and unfolded Dragon model (600
faces).

Fig.6 Different unfolding results

different resolutions (100, 200, 400, 600 and 800 faces), cre-
ated by quadric edge collapses. The success rates are plotted
in Fig.7, and the performances are plotted in Fig.8. More
detailed results are shown in Table 2 in Appendix A.

Our approach performs orders of magnitude faster than
the other two, while being more reliable. For lower numbers
of faces, the timings would permit to use our approach in
interactive or even real-time applications.

5.2.1 Iterations

Apart from the performance, we also measured the number of
iterations our algorithm needed to unfold the same dataset as
in Sect. 5.2. The mean values of the filtered data (see Sect. 5.1)
are shown in Fig.9.

A clear linear relationship is visible. Therefore, we con-
clude that our algorithm on average needs O(| F|) iterations
to find an overlap-free unfolding for a triangular polyhedron
with | F'| faces.

5.2.2 Complexity estimation

In each iteration, our method performs an overlap detection
for each possible move a selected face can do. For any face
the number of possible moves is determined by the number
of edges it has, which is independent of the number of faces.
Thus, we will assume this number to be a constant.

Even in a full tree the number of inner nodes and leaf
nodes is almost balanced—there is one more leaf node than
inner nodes. For every non-full tree this balance is shifted
toward inner nodes. In the most extreme degenerate case (a
list), there are n — 1 inner nodes and only one leaf node.
Therefore, we will assume the number of inner nodes to be
greater or equal to the number of leaf nodes on average.

Testing overlaps has a time complexity of O(n) for leaf
nodes, and O(n log(n)) for inner nodes on average. Since we
assumed to have at least as many inner nodes as leaf nodes
and the time complexity for inner nodes is asymptotically
worse, we will assume every overlap test to take O (n log(n))
time.

Within each iteration, our algorithm may climb up the tree
and test every node on its way to root. In the best case, each
branch of a tree has a height of log n and in the worst case it
has a height of n. To prevent underestimation, we will assume
the tree to have a height of n on average.

Thus, our time complexity is estimated as O (n? log) per
iteration on average. Combining this value with the findings

100 —

90 —

Success Rate (%)
o
)

\ \ \ \ \ \ \ \
0 100 200 300 400 500 600 700 800 900

Number of Faces

—_— SA OTS Ours

Fig.7 Success rates for three methods. See Table 2 for exact values

@ Springer

L. Zawallich

1,000

100

10

Time (s)

0.1

! ! ! !
0 100 200 300 400

! ! ! !
500 600 700 800 900

Number of Faces

—_ SA

OTS = Ours === cn®logn

Fig. 8 Mean filtered unfold timings of three methods. See Table 2 for exact values. To support our argumentation from Sect.5.2.2, a polygon
estimating the time complexity is plotted. The c represents a constant. Please note the log scale on the y-axis

1,800
1,600
1,400
1,200
1,000
800
600
400
200

Number of Iterations

0 \ \ \ \ \ \ \ \
0 100 200 300 400 500 600 700 800 900

Number of Faces
e QUI'S = = = CTY

Fig.9 Mean filtered iterations needed for our method. The ¢ represents
a constant. A clear linear relationship is visible

from Sect.5.2.1, the estimated average time complexity is
O3 logn).

This estimation overshoots the measured filtered timings
by a bit (see Fig.8). In our derivation, if we had to pick we
always assumed the case that was worse, which was more
conservative than it had to be. For example, it is possible that
the overlap detection worked in O (n) instead of O (n log n) in
the vast majority of cases, which would erase a log term from
the final result. This could have happened, if the majority
of overlaps were located close to the leaves of the unfold-
tree. Since on average half of the nodes of a tree are leaf
nodes, this assumption is reasonable. We still conclude that
our algorithm has a time complexity of

om’ log n)

on average.

@ Springer

5.3 Failed cases

In this section, we would like to highlight one case, where
the approach by Takahashi et al.[27] found a net and our
approach did not. The polyhedron is shown in Fig. 10a.

Unfolding this shape is particularly difficult, due to the
coarse triangulation of the flat areas in combination with the
holes, which are longer than they are wide. The latter property
makes it impossible to unfold the walls of the tubes into the
space defined by the opening of the tubes (see Fig. 10b).

A solution to this problem is to combine all triangles of the
tubes into a triangle strip. The cuboid then has to be unfolded
in a way that these strips can be placed at the outside. This
solution is visualized in Fig. 11.

Finding such a solution is highly unlikely for a random-
ized algorithm without any geometric awareness, like ours.
All models our algorithm was unable to unfold show similar
features like the one of this section. In some areas they have
spikes, dents or holes made from long triangles surrounded
by an almost flat area with large triangles. We were able to
manually unfold some of these models with a similar strat-
egy as described above. Both comparing methods failed on
most of these models as well. These are also the only mod-
els our algorithm failed to unfold, but comparing methods
succeeded. Aside from geometrically extreme cases, like the
one shown in this section, our algorithm is more reliable than
the other two, as shown in Fig.7 and Table 2.

Unfolding polyhedra via tabu search

(a) A cuboid with holes, (b) A zoom-in on one of the
which our algorithm failed holes in the unfolding. Red
to unfold. marks overlapping faces.

Fig.10 Left: A polyhedron (Thingi-ID: 105860) our approach failed to
unfold in our test. Right: The problem posed by the holes in the cuboid

e

Fig. 11 A net for the polyhedron shown in Fig. 10

(a) A folded Utah Teapot with many non-triangular faces.

5.4 Non-triangular input

Besides performing way faster than the other two methods,
our approach is also independent of the face type. While the
other two methods in their current implementation are bound
to triangles, we can process arbitrary face types, which can
even be mixed. Figure 12 shows an unfolded Utah Teapot
with different types of faces.

6 Conclusion and future work

In this work we presented an algorithm, which edge-unfolds a
given mesh into a single-patched unfolding using tabu search.
As input, our algorithm can process meshes with planar faces
of arbitrary type. The proposed algorithm outperforms every
known comparable algorithm by orders of magnitude. This
improvement of speed and the nature of the algorithm permit
interactive work with unfoldings of a few hundred faces. To
this day, this has not been possible.

The notable limitation of the proposed algorithm is its
inability to handle input meshes which are not-unfoldable. It
is up to future research to extend or modify the given algo-
rithm to detect and overcome not-unfoldability.

&D

(b) The corresponding unfolding.

Fig.12 A folded and unfolded Utah Teapot with 890 faces of different types

@ Springer

L. Zawallich

A Timings and unfolding results was given, when the method did not yield a result within a
given number of iterations [14, Section 5]. Due to the low
All timings of Table 2 were recorded on a Linux machine success rate on 400 faces, the times of that row for the SA
equipped with an i7-10700K CPU (3.8GHz) and 128GB approach should be seen as an indicator, rather than a reliable
RAM. A success was given, when a method was able to number.
unfold the given mesh into a single-patched unfolding. For
the OTS approach, a failure was given when the method
yielded a segmented result. For the SA approach, a failure

)

(b) The unfolding of 13a. The unfold-tree is the same
as in 13a.

(c) The unfold pattern of a simplified Stanford Bunny.
Dashed lines represent valley folds and dash-dotted lines
represent mountain folds. (d) The manually refolded bunny.

Fig. 13 Unfolding the Stanford Bunny with 370 faces. Top left: The unfold pattern, following the convention of dashed lines representing
input mesh with the corresponding unfold tree. Top right: The calcu- valley folds and dash-dotted lines representing mountain folds. Bottom
lated unfolding with the same unfold tree as in 13a. Bottom left: The right: The manually refolded bunny

@ Springer

Unfolding polyhedra via tabu search

Table 2 Detailed timings, as well as success rates for the method of
this article (Ours), as well as two similar approaches of the literature
(OTS [27] and SA [14])

Value IFI OTS SA Ours
Min time (s) 100 0.068 0.001 0.000
200 0.190 0.114 0.000
400 0.610 1.769 0.000
600 1.966 - 0.000
800 3.627 - 0.000
Mean time (s) 100 0.107 3.674 0.021
200 0.832 86.467 0.311
400 10.923 565.600 1.890
600 68.344 - 5.499
800 211.713 - 13.769
Mean time filtered (s) 100 0.103 3.014 0.017
200 0.660 75.106 0.174
400 7.992 562.719 1.178
600 47.895 - 3.729
800 142.361 - 8.699
Max time (s) 100 8.742 127.956 1.449
200 270.273 612.973 102.130
400 1,058.936 2,036.940 629.937
600 3,847.608 - 1,017.305
800 6,694.813 - 1,570.504
Success rate (%) 100 100.00 99.71 100.00
200 99.82 90.08 99.86
400 99.36 25.23 99.68
600 96.04 - 99.64
800 88.44 - 99.43

Acknowledgements I would like to thank Prof. Dr. Marc Alexa for
supervising my Master Thesis, which was the first step toward this
publication. Moreover, I would like to thank Prof. Dr. Renato Pajarola
for his support and very helpful discussions about local minima, as well
as for supervising my PhD.

Funding Open access funding provided by University of Zurich

Data availability statement The datasets generated and analyzed dur-
ing the current study are available upon request.

Declarations

Conflict of interest The authors declare that they have no Conflict of
interest. This work involved no human participants or animals.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material

is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Alexa, M., Wardetzky, M.: Discrete laplacians on general polygo-
nal meshes. ACM Transaction on Graphics 30(4), 102:1-10 (2011).
https://doi.org/10.1145/2010324.1964997

2. An, B., Miyashita, S., Tolley, M.T., Aukes, D.M., Meeker, L.,
Demaine, E.D., Demaine, M.L., Wood, R.J., Rus, D.: An end-to-
end approach to self-folding origami structures. IEEE Transactions
on Robotics 34(6), 1466-1473 (2018). https://doi.org/10.1109/
TRO.2018.2862882

3. Damian, M., Demaine, E.D., Flatland, R., O’Rourke, J.: Unfolding
genus-2 orthogonal polyhedra with linear refinement. Graphs and
Combinatorics 33(5), 1357-1379 (2017). https://doi.org/10.1007/
s00373-017-1849-5

4. Damian, M., Flatland, R., O’Rourke, J.: Epsilon-unfolding orthog-
onal polyhedra. Graphs and Combinatorics 23(1), 179-194 (2007).
https://doi.org/10.1007/s00373-007-0701-8

5. Demaine, E.D., Demaine, M.L., Eppstein, D., O’Rourke, J.:
Some polycubes have no edge zipper unfolding. In: Proceedings
Canadian Conference in Computational Geometry, pp. 101-105.
Saskatchewan, Saskatoon, Canada (2020)

6. Demaine, E.D., O’Rourke, J.: Geometric Folding Algorithms:
Linkages, Origami. Polyhedra. Cambridge University Press (2007).
https://doi.org/10.1017/CB0O9780511735172

7. Demaine, E.D., Tachi, T.: Origamizer: A practical algorithm for
folding any polyhedron. In: International Symposium on Com-
putational Geometry, vol. 77, pp. 34:1-16. Schloss Dagstuhl —
Leibniz-Zentrum fiir Informatik (2017). https://doi.org/10.4230/
LIPIcs.S0oCG.2017.34

8. Diirer, A.: Underweysung Der Messung Mit Dem Zirkel Und
Richtscheyt. Hieronymus Andreae, Niiremberg (1525)

9. Glover, F.: Future paths for integer programming and links to
artificial intelligence. Computers & Operations Research 13(5),
533-549 (1986). https://doi.org/10.1016/0305-0548(86)90048- 1

10. Haenselmann, T., Effelsberg, W.: Optimal strategies for creating
paper models from 3d objects. Multimedia Systems 18(6), 519—
532 (2012). https://doi.org/10.1007/s00530-012-0273-1

11. Hao, Y., Kim, Y., Xi, Z., Lien, J.M.: Creating foldable polyhedral
nets using evolution control. In: Robotics: Science and Systems 14,
7:1-9 (2018)

12. Hormann, K., Lévy, B., Sheffer, A.: Mesh parameterization: Theory
and practice. In: ACM SIGGRAPH 2007 Courses, p. 1-es. Asso-
ciation for Computing Machinery (2007). https://doi.org/10.1145/
1281500.1281510

13. Ion, A., Rabinovich, M., Herholz, P., Sorkine-Hornung, O.:
Shape approximation by developable wrapping. ACM Transac-
tions on Graphics 39(6), 200:1-12 (2020). https://doi.org/10.1145/
3414685.3417835

14. Korpitsch, T., Takahashi, S., Groller, E., Wu, H.Y.: Simulated
annealing to unfold 3d meshes and assign glue tabs. Journal of
WSCG 28(1-2), 47-56 (2020). https://doi.org/10.24132/JWSCG.
2020.28.6

15. Lang, R.J.: The Complete Book of Origami: Step-By-Step Instruc-
tions In Over 1000 Diagrams: 37 Original Models. Dover Publica-
tions, Dover Origami Papercraft (1988)

16. Lin, S., Kernighan, B.W.: An effective heuristic algorithm for the
traveling-salesman problem. Operations Research 21(2), 498-516
(1973). https://doi.org/10.1287/opre.21.2.498

@ Springer

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/2010324.1964997
https://doi.org/10.1109/TRO.2018.2862882
https://doi.org/10.1109/TRO.2018.2862882
https://doi.org/10.1007/s00373-017-1849-5
https://doi.org/10.1007/s00373-017-1849-5
https://doi.org/10.1007/s00373-007-0701-8
https://doi.org/10.1017/CBO9780511735172
https://doi.org/10.4230/LIPIcs.SoCG.2017.34
https://doi.org/10.4230/LIPIcs.SoCG.2017.34
https://doi.org/10.1016/0305-0548(86)90048-1
https://doi.org/10.1007/s00530-012-0273-1
https://doi.org/10.1145/1281500.1281510
https://doi.org/10.1145/1281500.1281510
https://doi.org/10.1145/3414685.3417835
https://doi.org/10.1145/3414685.3417835
https://doi.org/10.24132/JWSCG.2020.28.6
https://doi.org/10.24132/JWSCG.2020.28.6
https://doi.org/10.1287/opre.21.2.498

L. Zawallich

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Mitani, J., Suzuki, H.: Making papercraft toys from meshes using
strip-based approximate unfolding. ACM Transactions on Graphics
23(3), 259-263 (2004). https://doi.org/10.1145/1015706.1015711
Poranne, R., Tarini, M., Huber, S., Panozzo, D., Sorkine-Hornung,
O.: Autocuts: Simultaneous distortion and cut optimization for uv
mapping. ACM Transactions on Graphics 36(6) (2017). https://doi.
org/10.1145/3130800.3130845

Robinson, N.: The Origami Bible: A Practical Guide to The Art of
Paper Folding. North Light Books (2004)

Rus, D., Tolley, M.T.: Design, fabrication and control of origami
robots. Nature Reviews Materials 3(6), 101-112 (2018). https:/
doi.org/10.1038/s41578-018-0009-8

Sawhney, R., Crane, K.: Boundary first flattening. ACM Transac-
tions on Graphics 37(1), 5:1-5:14 (2017). https://doi.org/10.1145/
3132705

Schlickenrieder, W.: Nets of polyhedra. Diploma thesis, Technische
Universitét Berlin, Strale des 17. Juni 135, 10623 Berlin (1997)
Shatz, 1., Tal, A., Leifman, G.: Paper craft models from meshes.
The Visual Computer 22(9), 825-834 (2006). https://doi.org/10.
1007/s00371-006-0067-6

Stein, O., Grinspun, E., Crane, K.: Developability of triangle
meshes. ACM Transactions on Graphics 37(4), 77:1-14 (2018).
https://doi.org/10.1145/3197517.3201303

Straub, R., Prautzsch, H.: Creating optimized cut-out sheets for
paper models from meshes. Karlsruhe Reports in Informatics 36,
1-15 (2011). https://doi.org/10.5445/IR/1000025577

Tachi, T.: Origamizing polyhedral surfaces. IEEE Transactions
on Visualization and Computer Graphics 16(2), 298-311 (2009).
https://doi.org/10.1109/TVCG.2009.67

Takahashi, S., Wu, H.Y., Saw, S.H., Lin, C.C., Yen, H.C.: Optimized
topological surgery for unfolding 3d meshes. Computer Graphics
Forum 30(7), 2077-2086 (2011). https://doi.org/10.1111/j.1467-
8659.2011.02053.x

Z, Xi., Kim, Y.H., Kim, YJ., Lien, J.M.: Learning to segment
and unfold polyhedral mesh from failures. Computers & Graph-
ics 58(C), 139-149 (2016). https://doi.org/10.1016/j.cag.2016.05.
022

Xi, Z., Lien, J.M.: Continuous unfolding of polyhedra - a motion
planning approach. In: IEEE/RSJ International Conference on
Intelligent Robots and Systems, pp. 3249-3254 (2015). https:/
doi.org/10.1109/IROS.2015.7353828

Yao, M., Belke, C.H., Cui, H., Paik, J.: A reconfiguration strategy
for modular robots using origami folding. International Journal of
Robotics Research 38(1), 73-89 (2019). https://doi.org/10.1177/
0278364918815757

@ Springer

31. Zhou, Q., Jacobson, A.: ThingilOk: A dataset of 10,000 3d-printing

models. arXiv preprint arXiv:1605.04797 (2016). https://doi.org/
10.48550/arXiv.1605.04797

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Lars Zawallich recieved his B.Sc.
and M.Sc. in Computer Science
at the Technical University of
Berlin, in 2013 and 2016, respec-
tively. He is currently a PhD can-
didate at the computer science
department of the University of
Zurich. His research interests
include among others computer
graphics, especially geometry pro-
cessing, and optimization.

https://doi.org/10.1145/1015706.1015711
https://doi.org/10.1145/3130800.3130845
https://doi.org/10.1145/3130800.3130845
https://doi.org/10.1038/s41578-018-0009-8
https://doi.org/10.1038/s41578-018-0009-8
https://doi.org/10.1145/3132705
https://doi.org/10.1145/3132705
https://doi.org/10.1007/s00371-006-0067-6
https://doi.org/10.1007/s00371-006-0067-6
https://doi.org/10.1145/3197517.3201303
https://doi.org/10.5445/IR/1000025577
https://doi.org/10.1109/TVCG.2009.67
https://doi.org/10.1111/j.1467-8659.2011.02053.x
https://doi.org/10.1111/j.1467-8659.2011.02053.x
https://doi.org/10.1016/j.cag.2016.05.022
https://doi.org/10.1016/j.cag.2016.05.022
https://doi.org/10.1109/IROS.2015.7353828
https://doi.org/10.1109/IROS.2015.7353828
https://doi.org/10.1177/0278364918815757
https://doi.org/10.1177/0278364918815757
http://arxiv.org/abs/1605.04797
https://doi.org/10.48550/arXiv.1605.04797
https://doi.org/10.48550/arXiv.1605.04797

	Unfolding polyhedra via tabu search
	Abstract
	1 Introduction
	2 Background
	2.1 Unfolding
	2.2 Tabu search

	3 Related work
	4 Methods
	4.1 Input
	4.2 The initial unfolder
	4.3 Selecting the best step
	4.4 Local minima
	4.5 Switching root nodes
	4.6 Optional optimization parameters
	4.7 Efficient overlap detection
	4.8 Tabu mechanism
	4.9 Data structures
	4.10 Pseudocode

	5 Results
	5.1 Outlier removal
	5.2 Performance and iterations
	5.2.1 Iterations
	5.2.2 Complexity estimation

	5.3 Failed cases
	5.4 Non-triangular input

	6 Conclusion and future work
	A Timings and unfolding results
	Acknowledgements
	References

