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Abstract
Image quality assessment (IQA) of fundus images constitutes a foundational step in automated disease analysis. This process
is pivotal in supporting the automation of screening, diagnosis, follow-up, and related academic research for diabetic retinopa-
thy (DR). This study introduced a deep learning-based approach for IQA of ultra-widefield optical coherence tomography
angiography (UW-OCTA) images of patients with DR. Given the novelty of ultra-widefield technology, its limited preva-
lence, the high costs associated with equipment and operational training, and concerns regarding ethics and patient privacy,
UW-OCTA datasets are notably scarce. To address this, we initially pre-train a vision transformer (ViT) model on a dataset
comprising 6 mm × 6 mm OCTA images, enabling the model to acquire a fundamental understanding of OCTA image char-
acteristics and quality indicators. Subsequent fine-tuning on 12 mm × 12 mm UW-OCTA images aims to enhance accuracy
in quality assessment. This transfer learning strategy leverages the generic features learned during pre-training and adjusts the
model to evaluate UW-OCTA image quality effectively. Experimental results demonstrate that our proposed method achieves
superior performance compared to ResNet18, ResNet34, and ResNet50, with an AUC of 0.9026 and a Kappa value of 0.7310.
Additionally, ablation studies, including the omission of pre-training on 6 mm× 6 mm OCTA images and the substitution of
the backbone network with the ViT base version, resulted in varying degrees of decline in AUC and Kappa values, confirming
the efficacy of each module within our methodology.
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1 Introduction

Diabetic retinopathy (DR) is a global leading cause of irre-
versible blindness, with the patients’ number projected to
increase from 103 million in 2020 to 161 million by 2040
[1]. Regular screening and timely treatment are essential for
DR [2].However,DRscreening largely depends on the exper-
tise of ophthalmologists, where a lack of sufficient training
could lead to misdiagnoses and low accuracy. Moreover, the
public health economic burden is substantial, particularly
in resource-limited areas. Thus, the implementation of an
efficient artificial intelligence (AI) system is invaluable for

4 Department of Computer Science and Engineering, Shanghai
Jiao Tong University, Shanghai, China

5 Sports Engineering, School Exercise and Health, Shanghai
University of Sport, 650 Qingyuan Ring Road, Yangpu
District, Shanghai 200438, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00371-024-03383-6&domain=pdf
http://orcid.org/0000-0003-0601-4342


Y. Jin et al.

aiding accurate DR diagnosis and alleviating the workload
of ophthalmologists [3, 4].

Diagnosis of DR relies on imaging manifestations such
as microaneurysms (MA), intraretinal microvascular abnor-
malities (IRMA), and neovascularization (NV) [5]. Ultra-
widefield optical coherence tomography angiography (UW-
OCTA) serves as a commonly used non-invasive technique
that provides a three-dimensional, intuitive representation
of pathological changes in all retinal layers [6]. UW-OCTA
provides a broader range of peripheral retinal areas than tra-
ditional OCTA.UW-OCTA, generally capable of providing a
field of view (FOV) up to 100 degrees ormore, offers a signif-
icantly broader range of peripheral retinal areas compared to
traditionalOCTA,which typically provides a FOVof 30 to 50
degrees. This broader perspective is instrumental in the early
detection of lesions, such as MA, facilitating timely treat-
ment and intervention [7]. Such early diagnostic capability
is crucial for preserving patients’ vision, highlighting the sig-
nificant advantage of UW-OCTA inmanaging andmitigating
the progression of retinal diseases. Moreover, OCTA enables
reproducible measurements of retinal pathological parame-
ters and the evaluation of treatment efficacy and follow-up
through quantifiable, intuitive, and repeatable values [8, 9].
However, the practicality of DR screening systems is hin-
dered by low-quality fundus images due to certain problems,
such as patient non-cooperation, operator skill, or equipment-
related factors, which may affect the numerical values of
OCTA-generated parameters [10, 11]. Such images, marred
by significant artifacts and poorly lit areas, pose challenges to
subsequent AI diagnosis and staging tasks, impacting model
performance. Therefore, it is necessary to filter out poor qual-
ity images before conducting any DR analysis, such as lesion
segmentation and DR grading.

The quality assessment for medical images is complex.
Unlike natural images, the quality grading capability of med-
ical images is not solely dependent on pixels, signal, noise,
or distortion, but also on the specific visibility and inter-
pretability of clinically relevant features. Even images with
acceptable signal strength may still present challenges in
assessing other OCTA image quality issues, such as off-
centration, out of registration, signal loss, motion artifacts,
and projection artifacts [11–13]. Image quality assessment
(IQA) requires trained operators and interpreters with oph-
thalmic clinical knowledge, a significant challenge due to
clinic staffing and training time constraints. Moreover, man-
ual evaluation of each OCTA scan by human assessors is
impractical, time-consuming, and tedious within the busy
clinical workflow [14]. Additionally, subjective differences
may arise even among experienced ophthalmologists. Fur-
thermore, judgment of human assessors on whether the
overall image quality is sufficient for disease detection or

needs further analysis is crucial for distinguishing medi-
cal image grading. For instance, despite acceptable overall
image quality or satisfactory noise levels in non-vascular
areas, if the vascular quality, in terms of contrast or con-
tinuity, is poor and insufficient for the clear identification
of MA, such an image would be deemed of poor quality,
failing to meet the clinical diagnostic requirements. Con-
versely, images where vascular imaging appears blurred or
poor due to retinal disease states, such as edema or exuda-
tion, yet the lesionmanifestations are recognizable by clinical
physicians, are considered clinically usable. The judgment of
human assessors in manually evaluating image quality forms
the foundation of training algorithmic models that can auto-
matically assess large image datasets with less human effort
and lower costs. This is key for automated tasks like disease
diagnosis, grading, and lesion segmentation.

Following the introduction of optical coherence tomog-
raphy (OCT) equipment, the advent of the split-spectrum
amplitude-decorrelation angiography (SSADA) in 2012
marked a significant milestone [15]. Optovue, Inc. swiftly
integrated OCTA into their commercial SD-OCT platform
as a research tool for the broader ophthalmic community
[16]. Subsequently, OCTA technology matured and found
its application in clinical practice [17]. UW-OCTA, a later
development based on OCTA, is relatively new and has
only begun to be utilized clinically in recent years, with its
widespread adoption still emerging. Additionally, the high
cost of ultra-widefield equipment and the significant opera-
tion and training expenses have limited its use, particularly
in resource-constrained regions. The need for specialized
operational skills and experience to acquire high-qualityUW-
OCTA images, coupled with the novelty of the technology,
means that comprehensive training for relevant person-
nel may not yet be widespread, potentially affecting the
efficiency and quality of data collection. The ethical and
privacy standards required for collecting and sharing med-
ical imaging data necessitate time to establish appropriate
data sharing mechanisms for emerging imaging technolo-
gies. These factors contribute to the scarcity of UW-OCTA
datasets compared to OCTA datasets.

To address this, we developed an algorithm that utilizes
a standard 6 mm × 6 mm OCTA dataset for model pre-
training, followed by fine-tuning with a 12 mm × 12 mm
ultra-widefield OCTA dataset, ultimately applying it for the
quality assessment of UW-OCTA images. Therefore, this
research aims to develop a deep learning system (DLS) for
the quality assessment of UW-OCTA images, which enhanc-
ing the accuracy and efficiency of IQA and improving the
precision of human judgment in the screening, diagnosis,
and monitoring of DR, leveraging advanced image analysis
techniques.
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2 Related work

2.1 The application of deep learning
in ophthalmology

In recent years, the application of deep learning in ophthal-
mology has been increasingly prevalent [18]. The study by
De Fauw et al. demonstrated significant advancements in the
application of deep learning for the diagnosis and referral
of retinal diseases. Their system, trained on OCT datasets,
autonomously analyzed and diagnosed various retinal dis-
eases, including age-related macular degeneration (AMD)
and DR, with remarkable accuracy. The model is capable
of prioritizing patients for referral based on the severity and
urgency of their condition, performing comparably to or even
surpassing human experts [19]. Dai and colleagues devel-
oped a DLS named DeepDR, trained on 466,247 fundus
images from 121,342 diabetic patients, for real-time IQA,
lesion detection, and grading. It can detect DR lesions such as
MA, cottonwool spots, hard exudates, and hemorrhages [20].
In glaucoma, Berchuck et al. developed a DLS to improve
the estimation of progression rates and predict future pat-
terns of visual field loss [21]. Li and colleagues developed a
convenient DLS based on a smartphone application to detect
changes in the visual field for glaucoma [22]. Yoo et al. devel-
oped a method using fundus photographs to detect anterior
chamber depth, a critical risk factor for angle closure glau-
coma, thereby screening for the condition [23]. InAMD,Yim
et al. used deep learning to predict the progression of the sec-
ond eye in patients with wet AMD. The system can predict
conversion to wet AMD within a clinically viable 6-month
window, outperforming five out of six experts and showcas-
ing the potential of using AI to predict disease progression
[24]. Hwang and colleagues developed an AI-based system
for diagnosingAMDbased onOCT images, achieving detec-
tion accuracy comparable to ophthalmologist, and providing
treatment recommendations on par with experts. Further-
more, anoperational cloud computingwebsitewasdeveloped
based on this AI platform, allowing patients to upload OCT
images to verify if they haveAMDand require treatment. The
use of AI-based cloud services represents a genuine solution
for medical imaging diagnosis and telemedicine [25].

2.2 Transfer learning

Transfer learning is an effective strategy when the dataset for
the target task is too small to train a model from scratch [26].
Transfer learning leverages theknowledge (features,weights,
and biases) a model has learned from a large and compre-
hensive dataset to enhance its performance on another, often
smaller dataset [27]. This approach has become increasingly
popular in various domains, including natural language pro-
cessing, computer vision, and medical imaging, due to its

ability to improve model performance with minimal com-
putational resources and data requirements. In recent years,
the development and improvement in transfer learning algo-
rithms have been significant. For instance, in computer
vision, pre-trained models like VGGNet, ResNet, and Incep-
tion have been widely adopted for tasks such as image
classification and object detection by fine-tuning the mod-
els on specific datasets [28]. In natural language processing,
models like bidirectional encoder representations from trans-
formers (BERT) [29] and generative pre-trained transformer
(GPT) have revolutionized the field by providing a robust
foundation for tasks like text classification, sentiment anal-
ysis, and question-answering systems. The advancements in
transfer learning algorithms have also made a substantial
impact on medical imaging, where models pre-trained on
general images are fine-tuned to detect and diagnose dis-
eases from medical scans with high accuracy [30–32]. This
approach has proved particularly beneficial in areas with lim-
ited labeled medical datasets.

2.3 ViT in image analysis

The ViT has emerged as a groundbreaking architecture in
computer vision, marking a significant departure from the
convolutional neural networks (CNNs) that have dominated
the landscape for the past decade. Introduced by Dosovitskiy
et al., ViT applies the transformer model, originally designed
for natural language processing tasks, to image analysis by
treating images as sequences of patches [33]. This approach
allows ViT to capture global dependencies within an image,
a feat that traditional CNNs achieve through extensive depth
or complex architectures.

The benefits of ViT are manifold. Firstly, it demonstrates
an exceptional ability to scale with increased data and com-
putational resources, often surpassing the performance of
state-of-the-art CNNs on benchmark datasets. Secondly, ViT
offers a more flexible architecture that is inherently capable
of handling various input sizes, making it adaptable to a wide
range of vision tasks without significant modifications [34].

Recent works have leveraged the ViT architecture for
large-scale image recognition tasks, showcasing its poten-
tial as a foundation model in the realm of visual data. For
instance, the application of ViT in models like BigGAN and
DALL-E underscores its versatility and efficiency in gener-
ating high-fidelity images and understanding complex visual
concepts [35, 36]. Furthermore, the integration of ViT into
foundation models has set new benchmarks in tasks such as
image classification, object detection, and semantic segmen-
tation, highlighting its robustness and scalability.
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Fig. 1 Overview of the
methodology. Initially, the ViT
model is initialized with
ImageNet-derived weights,
followed by the pre-training with
the 6 mm × 6 mm OCTA
images. Subsequently, the ViT
model is finetuned on 12 mm ×
12 mm UW-OCTA images and
output the image quality levels

Fig. 2 Representative images for
distinct quality labels:
a illustrates an image categorized
under label 0, denoting poor
quality. b showcases an image
classified as label 1, signifying
good quality. c displays an image
attributed to label 2, indicative of
excellent quality

3 Methods

3.1 Overview

Our methodology initiates with the pre-training phase of a
ViT model on a dataset consisting of 6 mm × 6 mm OCTA
images. This preliminary stage allows the model to acquire
a foundational comprehension of OCTA image character-
istics and quality indicators. Subsequently, we employ a
fine-tuning phase on a higher field of viewdataset of 12mm×
12 mm UW-OCTA images, aimed at enhancing the model’s
accuracy in quality assessment. This transfer learning strat-
egy leverages the generic features learned during pre-training
and adapts the model to perform the specialized task of UW-
OCTA image quality assessment. An illustrative overview of
this methodology is presented in Fig. 1.

3.2 Data augmentation

In the data augmentation, we employed a series of transfor-
mations to enrich our dataset and enhance the robustness of
our model against various imaging conditions. These trans-
formations include random horizontal and vertical flips to
simulate different orientations of the images, introducing
variability in the dataset. Color jittering is also utilized to
adjust the brightness, contrast, saturation, and hue of the
images, further augmenting the diversity of the dataset. To

introduce a range of rotational perspectives, we implement
random rotations with a degree range of -180 to 180. Sub-
sequently, all images are normalized using mean values and
standard deviations of ImageNet dataset, aligning with com-
mon practice and ensuring consistency in image input to the
model. These data augmentation steps are instrumental in
developing a model that is adaptable and performs consis-
tently across a UW-OCTA image presentations.

3.3 Classification architecture

In selecting the architecture for our model, we considered
the strengths and limitations of two prominent architectures:
Residual Networks (ResNet) and ViT. ResNet is renowned
for its deep architecture that effectively addresses the vanish-
ing gradient problem using skip connections. These connec-
tions allow the network to learn identity functions, ensuring
that deeper layers can at least perform as well as shal-
lower ones, which prevents performance degradation with
increased depth. The ability of ResNet to leverage deep con-
volutional layers makes it adept at capturing hierarchical
features in images [28]. However, its reliance on convolu-
tional operations can limit its ability to learn the global image
features within an image, which may be crucial for under-
standing complex scenes or contextual information.

ViT utilizes the transformative capabilities of transform-
ers, a paradigm initially conceived for natural language
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Fig. 3 ROC curves for various methods applied to image quality
assessment of UW-OCTA images, including ResNet-18, ResNet-34,
ResNet-50, and our model

Table 1 Performance comparison of image quality assessment in the
test dataset

Methods AUC Kappa

ResNet18 0.8667 0.6624

ResNet34 0.8688 0.6668

ResNet50 0.8850 0.7048

Ours 0.9026 0.7310

processing, and adeptly repurposes them within the visual
domain. By segmenting an image into discrete patches and
subsequently processing these patches as sequential entities
analogous to words in textual analysis, ViT introduces a
novel methodology for image interpretation. This segmen-
tation and sequential processing facilitate the capacity to
assimilate global features dispersed throughout the entirety
of the image, thereby rendering ViT exceptionally proficient
for tasks necessitating a comprehensive understanding of the
image context. Central to ViT’s architecture is the incorpora-
tion of an attention mechanism, which strategically allocates
focus to the most salient segments of the input. Through this
innovative adaptation of transformers to the visual sphere,
ViT emerges as a potent tool, offering nuanced insights
and enhanced analytical capabilities for image-based assess-
ments [37, 38].

Considering these aspects, we chose the ViT as our clas-
sification model due to its superior capability in capturing
global image contexts and features, which is critical for
assessing the quality of OCTA images that have diverse and
complex retinal structures.

3.4 Training strategy

Transfer learning represents a formidable strategy within
the domain of machine learning, wherein a model devised
for a primary task is repurposed as the foundational model
for a secondary task. This methodology proves exception-
ally advantageous in contexts where the dataset pertinent
to the target task is relatively diminutive, yet related, more
extensive datasets exist for the initial task. Motivated by
this paradigm, we employ transfer learning to surmount the
challenge posed by the limited availability of 12 mm ×
12 mm UW-OCTA images. Despite the scarcity of datasets
for 12 mm × 12 mm UW-OCTA images, there exists a
relatively ample collection of traditional 6 mm × 6 mm
OCTA images. Consequently, our approach entails initially
pre-training ourmodel on the abundant 6mm× 6mmOCTA
images, utilizing ImageNet weights for model initialization
to harness features learned from a broad spectrum of natural
images. This pre-training phase equips the model with the
capability to discern general features and patterns pertinent
to OCTA images. The subsequent phase involves fine-tuning
themodelwith the rarer 12mm× 12mmUW-OCTA images,
with a specific focus on enhancing the proficiency of this
model in assessing the quality of OCTA images across a
wider field of view.

By implementing this two-step training regimen,we effec-
tively utilize OCTA data across different fields of view,
thereby augmenting efficacy of this model in appraising the
quality of UW-OCTA images. This methodological frame-
work not only optimizes the utilization of available data but
also significantly enhances the precision of quality assess-
ments for UW-OCTA images.

4 Experiments

4.1 Dataset

This study utilized a dataset from the Diabetic Retinopa-
thy Analysis Challenge (DRAC2022) website [39], captured
using the VG200D ultra-wide swept source OCTA (UW SS-
OCTA) device, manufactured by SVision Imaging, Ltd. This
dataset encompasses a total of 1103 images, segmented into
two subsets: 665 images designated for training and 438 for
testing purposes. Each image within the training subset was
annotated with a corresponding label, delineating the image
quality into one of three categorically distinct levels: label 0
denotes poor quality, label 1 signifies good quality, and label
2 is indicative of excellent quality. The representative images
are shown in Fig. 2.

During the training, we divide 20% of the images from the
original training set to be used as the validation set, while the
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Fig. 4 Confusion matrix (CM) of each method evaluated in the context
of UW-OCTA image quality assessment. a delineates the CM for the
original ResNet18 model. b depicts the CM for ResNet34 model, illus-
trating its performance metrics. c displays the CM for the ResNet50

model. d elucidates the CM for our proposed method, showcasing
enhanced IQA precision

remaining images serve as the training set. Themodel perfor-
mance is evaluated on the test set. For the pre-training images
of 6 mm× 6 mm images, we collected a total of 278 images
from the Shanghai General Hospital, using anUWSS-OCTA
device, manufactured by SVision Imaging, Ltd. The inclu-
sion criteria were patients diagnosed with diabetes mellitus,
possessing OCTA images, regardless of the imaging qual-
ity. The exclusion criteria included patients who declined to
participate in the study or were non-cooperative during the

examination process. This research adhered to the Declara-
tion of Helsinki’s principles and underwent ethical review by
the committee of Shanghai General Hospital, affiliated with
Shanghai Jiao Tong University School of Medicine (ethical
approval number: 2023–263). These images are divided into
training set, validation set, and test set with a ratio of 6:2:2.
All images were labeled aligned with the standards set by
the Diabetic Retinopathy Analysis Challenge (DRAC2022)
[39]. An image is considered “poor quality” if it is not suf-
ficient for analysis, with high level of artifacts and blurred
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Fig. 5 Representative examples
of the saliency maps and
corresponding original
UW-OCTA images. Heatmaps
highlight the areas that contribute
to IQA of this model, with red
color indicating high contribution

vascular details, and there are 10 poor quality images (label
0), 26 good quality images (label 1), and 242 excellent quality
images (label 2).

4.2 Implemental details

In this investigation, the ViT large variant was selected,
with the patch size configured to 16. To accommodate input
requirements of the network, images were resized to dimen-
sions of 224 × 224 pixels. The optimization of the network
was facilitated through the employment of the Adam opti-
mizer, with an initial learning rate meticulously set at 0.005.
To further refine the training process, a multi-step learn-
ing rate adjustment strategy was implemented, characterized
by predetermined milestones at the 20th and 40th epochs,
accompanied by a gamma adjustment factor of 0.1. The train-
ing regimen spanned 50 epochs, maintaining a batch size of
4, and utilized the cross-entropy loss function as the criterion
for networkoptimization.Model performancewas rigorously
evaluated against the validation set upon the completion of
each epoch. The epoch demonstrating optimal performance
on the validation set was subsequently designated as the final
model configuration. This model was then applied to assess
performance metrics on the test set, ensuring a comprehen-
sive evaluation of its diagnostic capabilities.

4.3 Evaluationmetrics

Within the scope of our methodological approach, two crit-
ical evaluation metrics were employed to assess model
performance: the area under the receiver operating char-
acteristic curve (AUC) and the quadratic weighted Kappa
(QWK). TheAUCmetric serves as a comprehensivemeasure
of the model to discriminate between classes across all pos-
sible thresholds. It is calculated as the area under the curve

plotted with the true positive rate (sensitivity) against the
false positive rate (1-specificity) at various threshold settings.
Mathematically, the AUC can be expressed as:

AUC =
∫ 1

x=0
TPR(x)dFPR(x) (1)

where TPR is the true positive rate and FPR is the false pos-
itive rate.

On the other hand, QWK is a more sophisticated sta-
tistical measure that evaluates the agreement between two
raters who each classify N items into K mutually exclusive
categories. Unlike simple agreement measures, the QWK
accounts for the possibility of agreement occurring by chance
and introduces aweighting scheme to penalize disagreements
proportionally to the squared distance between categories.
The QWK is calculated using the formula:

QWK = 1−

∑
i , j

wi j Oi j

∑
i , j

wi j Ei j
(2)

where Oi j is the observed count of items in category i pre-
dicted to be in category j ,Ei j is the expected count of items
in category i predicted to be in category j under the assump-
tion of chance agreement, and Wi j is the weight assigned
to the disagreement between categories i and j , typically
calculated as (i − j)2/(K − 1)2.

These metrics, AUC and QWK, collectively provide a
robust framework for evaluating the performance of predic-
tive models, offering insights into both the discriminative
power of the model and the consistency of its predictions
with respect to a standard or another rater, respectively.
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4.4 Quantitative results

To substantiate the efficacy of our proposed methodology
in the domain of image quality assessment for UW-OCTA
images, we conducted a comparative analysis against estab-
lished benchmarks, including ResNet18, ResNet34, and
ResNet50. The quantitative outcomes of this evaluation are
delineated in Table 1. It is evident from the analysis that our
approach outperforms the comparativemodels in terms of the
AUC andKappametrics, registering improvements of 1.76%
and 2.62% over the second-best performingmethod for AUC
and Kappa, respectively. The Receiver Operating Character-
istic (ROC) curves, illustrating the diagnostic ability of our
method alongside the baselinemodels, are presented inFig. 3.
Additionally, the classification accuracy and misclassifica-
tion patterns are encapsulated within the confusion matrix
(CM), depicted in Fig. 4.

4.5 Explainability analysis

To better understand how this DLS performs quality assess-
ment of UW-OCTA images, we conducted a heatmap analy-
sis to gain insight into regions of the retinal fundus image that
mayaffectDLSpredictions.Basedon the techniqueproposed
by Chefer et al., we employ Layer-wise Relevance Propaga-
tion (LRP)-based correlations to compute scores for each
attention head within every layer of the transformer model
[40]. The method combines these scores across the attention
graph, usingboth relevance andgradient data to progressively
eliminate negative impacts. This process leads to a visual-
ization that is specific to each class for self-attention models,
offering a fresh perspective on the model’s interpretability
and reliability. Figure 5 shows some representative exam-
ples of original UW-OCTA images and the corresponding
heatmap maps. In these images, the red regions represent
areas of high contribution. The visualization results suggest
that our DLS can discriminate image quality based on signal
deficiencies and artifacts.

4.6 Ablation study

Anablation studywas conducted to ascertain the contribution
of individual components within our proposed methodol-
ogy. Initially, the pre-training phase on 6 mm × 6 mm
OCTA images was omitted, restricting the model training
exclusively to 12 mm × 12 mm UW-OCTA images. This
modification led to a decrement of 1.11% in the AUC and
2.39% in the Kappa metric, underscoring the significance of
the pre-training step. Subsequently, the architectural founda-
tion was altered by substituting the original network with the
ViT basic model. This adjustment resulted in a reduction of
2.42% in AUC and 2.27% in Kappa, as detailed in Table 2.

Table 2 Ablation analysis of the proposedmethodology for image qual-
ity assessment utilizing UW-OCTA images

Method AUPR Kappa

w/o pre-training 0.8915 0.7071

w/ ViT-B 0.8964 0.7083

Ours 0.9026 0.7310

w/o, without; w/, with; Vit-B, vision transformer base

These findings unequivocally demonstrate that each compo-
nent integrated into our framework plays a pivotal role in
enhancing the overall performance of image quality assess-
ment, thereby validating the efficacy of our comprehensive
approach.

5 Conclusion

This study introduces a robust DLS that significantly
advances the automated IQA of UW-OCTA images, particu-
larly for DR patients. The complexity is inherent in medical
image quality assessment, where evaluation criteria extend
beyond mere pixel quality to encompass the visibility and
interpretability of clinically relevant features. The manual
evaluation of each fundus scan, especially in clinics lacking
experienced personnel, is both inefficient and impractical.
Our methodology, leveraging a ViT model pre-trained on
standard 6 mm × 6 mm OCTA images and fine-tuned on
12 mm × 12 mm UW-OCTA scans, addresses these chal-
lenges by enhancing the accuracy and efficiency of IQA
processes.

Our approach, utilizing transfer learning and data aug-
mentation strategies, effectively navigates the limitations
imposed by the scarcity of UW-OCTA datasets—a scarcity
driven by the novelty of ultra-widefield technology, associ-
ated high costs, and ethical considerations. The experimental
results, showcasing superior performance over conventional
models with an AUC of 0.9026 and a Kappa value of 0.7310
(in Table 1 and Fig. 3), alongside ablation studies, underscore
the critical importance of each component in our framework.

Recently, some DLS have been developed using OCTA
images, including the diagnosis of diabetic macular edema
and choroidal neovascularization, disease progression and
vision prediction in DR patients, retinal vessel segmen-
tation, and retinal layering [41–46]. These advancements
underscore the potential of deep learning to reduce the
interpretative costs associated with fundus image diseases.
Consequently, the necessity for IQA to pre-emptively fil-
ter out unusable images for enhanced accuracy is evident.
However, the manual filtration of poor-quality images cur-
rently demands significant human, material, and financial
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resources, with research on UW-OCTA remaining scarce.
Therefore, our DLS holds the potential for integration with
other systems to further disease detection. A significant
future application of our DLS is its embedded installation in
UW-OCTA machines, enabling operators to be notified and
immediately reacquire images when the device classifies an
image as of poor quality. This integrationwould substantially
alleviate the manual burden of image quality control and effi-
ciently provide higher-quality images for further analysis,
marking a significant stride toward automating and enhanc-
ing the precision of medical imaging in the diagnosis and
management of retinal diseases.

The broader implications of our research extend well into
the field of medical imaging, offering a scalable and effi-
cient solution for the automated quality assessment of fundus
images. This advancement not only facilitates early detection
and intervention in diabetic retinopathy but also potentially
improves patient outcomes by ensuring high-quality image
analysis for accurate diagnosis and grading. As the field
of ophthalmology continues to develop DLS for various
OCTA-based diagnostics, our study contributes significantly
to reducing the manual burden of image quality control and
enhancing the reliability of disease detection and progression
monitoring through improved image quality assessment.
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