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Abstract
Accurate training of deep neural networks for semantic segmentation requires a large number of pixel-level annotations of
real images, which are expensive to generate or not even available. In this context, Unsupervised Domain Adaptation (UDA)
can transfer knowledge from unlimited synthetic annotations to unlabeled real images of a given domain. UDA methods are
composed of an initial training stage with labeled synthetic data followed by a second stage for feature alignment between
labeled synthetic and unlabeled real data. In this paper, we propose a novel approach for UDA focusing the initial training
stage, which leads to increased performance after adaptation. We introduce a curriculum strategy where each semantic class
is learned progressively. Thereby, better features are obtained for the second stage. This curriculum is based on: (1) a class-
scoring function to determine the difficulty of each semantic class, (2) a strategy for incremental learning based on scoring
and pacing functions that limits the required training time unlike standard curriculum-based training and (3) a training loss
to operate at class level. We extensively evaluate our approach as the first stage of several state-of-the-art UDA methods for
semantic segmentation. Our results demonstrate significant performance enhancements across all methods: improvements of
up to 10% for entropy-based techniques and 8% for adversarial methods. These findings underscore the dependency of UDA
on the accuracy of the initial training. The implementation is available at https://github.com/vpulab/PCCL.

Keywords Semantic Segmentation · Unsupervised Domain Adaptation · Curriculum learning · Synthetic data

1 Introduction

Semantic Segmentation (SS) refers to the task of classify-
ing each pixel in a given image to its semantic category.
Convolutional Neural Networks (CNN) have achieved sig-
nificant advances in SS [1–5]. However, effective training of
CNN-based architectures requires a large number of labeled
images. The annotation process is a time-consuming task,
taking an average of 90min per image [6], hindering the
development of large-scale datasets. Furthermore, standard
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deep learning models are prone to overfit to small-scale
datasets with few labeled images [7]. To confront these limi-
tations, abstracting knowledge from automatically annotated
synthetic images to real images has become popular in recent
years [8–13].

However, a model trained from a source domain typically
presents a significant drop in performancewhen evaluated on
a target domain. This is commonly known as domain gap. To
minimize the effects of domain gap, Unsupervised Domain
Adaptation (UDA) considers knowledge transfer from a large
set of annotated source data (e.g., synthetic) to target data
where labels are not available (e.g., real). Typically, UDA
in SS considers the synthetic-to-real adaptation and follows
a two-stage training [10–15], where first the architecture of
choice is trained using only synthetic images and their ground
truth labels until convergence. Secondly, an alignment to real
images is performed. Many works focus on the alignment of
the learned features from synthetic images to real images, as
this stage drives the final performance of the model. How-
ever, we argue that if better and more general features are
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learned from synthetic data in the first stage, the subsequent
alignment process will inherently be more effective.

To that end, we propose a curriculum-based learning (CL)
strategy [16]. We divide the training set into subsets for a
gradual introduction of semantic classes in terms of increas-
ing difficulty. The per-class difficulty is based on self-taught
learning (defined by a scoring function), which is obtained
from the performance of the same model trained in a stan-
dard manner employing source data. Moreover, our proposal
also includes a pacing function for easy-to-hard introduction
of classes in training while maintaining comparable training
times. Finally, the per-class training loss is adapted from the
traditional image segmentation loss for operating at class
level while maintaining the spatial context of each pixel.
Defining this incremental difficulty order is unattempted
for SS, probably due to the additional complexity of hav-
ing multiple labels per image, as this precludes estimating
the difficulty for the whole image (as in classification [17]).
The validity of the proposal is demonstrated by improving
the performance of the main adversarial-based and entropy-
based UDA methods [10–13] on the GTAV-to-Cityscapes
synthetic-to-real setup. The performance gain is specially
notable for the less represented semantic classes in the source
annotated data.

Our contribution is threefold:

• Highlighting the significance of training for the first stage
in UDA. We shed light on a crucial but often overlooked
aspect in UDA research: the importance of the initial
model weights that will be used for feature alignment
(second stage in UDA). This contribution underscores
the impact of well-tailored initial weights on UDA per-
formance, a topic that has not received adequate attention
in the existing literature.

• Introducing a novel curriculum learning framework. We
propose to leverage curriculum learning for improving
the initial training with synthetic data. This proposal is
decomposed into a scoring function, pacing strategy and a
per-class loss, showcasing improvements across multiple
UDA methods.

• Extensive empirical validation. Through our experi-
ments, we not only validate the effectiveness of our
proposed framework but also achieve better-performing
models fromentropy-basedmethods than the usually top-
performing adversarial-based methods. Furthermore, we
propose a unified analysis between methods with homo-
geneous hyperparameter settings.

The paper is organized as follows. Section2 reviews the
state-of-the-art on UDA and CL. Section3 describes the
proposed per-class curriculum. Section4 presents the exper-
imental results, including a comparison with the state of the
art. Finally, conclusion remarks are described in Sect. 5.

2 Related work

In this section, we review different techniques for UDA in SS
and CL. As per-class curriculum methods, to the best of our
knowledge, have not yet been proposed for SS, we discuss
the general aspects on other related tasks in Sect. 2.2.

2.1 Unsupervised Domain Adaptation for semantic
segmentation

CNN-based UDA follows a two-stage scheme [10–13],
where first the model is solely trained employing source
images in a standard manner. The so-trained weights are
later refined by a second stage of alignment to learn domain-
invariant features so that the discrepancy across source
and target domains is reduced. To quantify the discrepancy
between the source and the target feature distributions, dif-
ferent alignment metrics are proposed to drive this second
stage [10–13, 18]. Minimizing a defined metric aims at pro-
ducing domain-agnostic features, which can be used to train
a classifier capable of generalizing to both domains indistin-
guishably [15]. Twomainmethods exist for this second stage
based on Adversarial Networks and Entropy minimization.
To the best of our knowledge, the initial training has not been
the aim of study of previous research.

Adversarial UDA Adversarial training follows the typi-
cal adversarial scheme of Generative Adversarial Networks
(GANs) [12, 19, 20]. This scheme defines a min-max game
where the segmentation network has two tasks: perform-
ing a good segmentation on source images and fooling the
discriminator into believing that its output on the target
images comes from source images. Meanwhile, the discrim-
inator tries to differentiate if the output of the segmentation
results from the analysis of an image from the source or
the target dataset. Domain alignment is facilitated by ren-
dering the features indiscernible to a discriminator, thereby
assisting the classifier in making decisions that are extrapo-
lable across domains. The pioneering adversarial approach
for UDA was introduced by [19], with [21] extending this
methodology to SS. They achieved this by leveraging the seg-
mentation’s final features within the discriminator. This was
later extended by including a pixel-level domain classifica-
tion [12]. By employing the output of the segmentation head
instead of the final feature, the adaptation is expected to be
performed across all levels of the segmentation, thus improv-
ing the results. Additionally, visual-style classifier has been
proposed to produce a closer alignment on visually similar
images [15]. Currently, it is believed that the domain discrim-
ination power is deeply correlated to the semantic category
a pixel represents [11]. Therefore, proposals include the pre-
dicted class into the discriminator loss [11, 22]. Entropy
minimization UDA Visual discrepancies present on source
and target data hinder the confidence of the model on the tar-
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get data, promoting the learning of close-to-uniform output
probability distributions per sample [10]. This is alleviated
through entropy minimization by sharpening the probability
distribution of the model on the target data so high probabili-
ties are predicted for fewer classes. Recent efforts employ the
output probabilities of the model to modify the loss to speed
up training [13], or reduce the impact of high confidence
mis-classifications [11]. MaxSquare [13] demonstrated that
the entropy loss gradient decreases the more uniform a prob-
ability distribution is, thus making the initial stages of the
training sub-optimal. Therefore, they proposed to employ a
quadratic formulation to increase the slope of the gradient
in the initial stages. Current works propose to minimize the
relative entropy of the predicted probabilities to a smoothed
version of the source semantic labels. This smoothing pro-
vides better generalization to the target dataset by penalizing
mis-classifications and overly confident classifications [23].

The efficacy of both domain alignment mechanisms is
intricately linked to the model’s initial performance. Entropy
minimization approaches focus on refining the model’s
classifications on the target dataset, indicating that a supe-
rior initial model can lead to more effective final training
outcomes. However, should the model’s initial predictions
on the target data be largely inaccurate, it risks reinforc-
ing these misclassifications, significantly hindering perfor-
mance. Conversely, adversarial methods strive to make the
feature representations fromdifferent domains indistinguish-
able. This approach necessitates a feature extractor that is
inherently robust and capable of comprehending both source
and target datasets effectively.

Concluding our comparative analysis, while entropy-
based methods offer valuable insights within probability-
based frameworks, their applicability remains limited to
scenarios where probabilistic interpretations are feasible.
In contrast, adversarial methods emerge as more versatile,
extending their utility beyond mere probabilistic contexts
to encompass a broader spectrum of machine learning
paradigms, including clustering and regression.

2.2 Curriculum learning

CL is conceived as a protocol to gradually increase the com-
plexity of the data employed during training [16]. It requires
to define subsets of the training set that present similar com-
plexity and include them into the training based on this
complexity. Curriculum-based learning can be defined by
two functions for scoring the data employed and pacing how
the data are fed for training [24]. The following subsections
describe these functions.

2.2.1 Scoring function

The scoring function estimates the learning difficulty of the
samples. Methods employing scoring functions can be con-
sidered as continuationmethods [25]. A continuationmethod
is an established non-convex optimization protocol, where
the optimization fine tunes from a simpler, smooth objective
function to the goal non-convex objective function. For the
context of deep learning, one expects that employing easy
training samples would result in smaller training losses com-
pared to training with the whole training set. Formally this
expectation is because the objective function (typically cross-
entropy) should be smoother on those easy samples [16]. As
the complexity of the samples is increased, the objective func-
tion becomes less smooth, thus making CL a more effective
and efficient learning framework compared to standard train-
ing. CL has proved its efficacy in various machine learning
tasks [26, 27]. In order tomeasure the difficulty, existing scor-
ing functions can be categorized into the so-called self-taught
scoring, which is employing the experience of training the
network in a standard manner [17, 24, 28], or scoring based
on data transformations [27, 29].

Self-taught scoring These functions are based on the
results of training themodel employing randommini-batches
from the full dataset. This is a particularization of scoring
based on the objective function. For example, [24] proposed
to train a vanilla network to define a scoring function. Then,
the loss of that network on each image defines the scoring:
the lower the loss, the easiest an image is considered. How-
ever, this direct association is not straightforward in SS, as
each pixel in an image has its individual loss. Therefore,
there is no such assignment like the one proposed for image
classification [24].

Scoring based on data transformationsDifferently, some
works define a manual scoring based on data transforma-
tions to increasingly generate more complex versions of the
images. As an example for object localization, [30] proposed
to employ increasingly smaller scales and bigger rotation
angles of 3D models of objects to implicitly define an easy-
to-hard curriculum. Alternatively, the features produced by
the model can be the subject of the transformation. One can
define a curriculum by progressively increasing the learning
capacity of the model. For instance, this can be achieved by
blurring the convolutional activation maps during training
(e.g., at each epoch) with Gaussians of progressively smaller
variance [31].

Our scoring proposal builds upon the self-taught scor-
ing strategy. By gradually learning the classes, we impose
a smooth version of the loss which is gradually sharpened as
more classes are included based on the previously estimated
class difficulties. Therefore, as more classes are included, the
loss is gradually sharpened from a few-classes problem to the
complete multi-class one. However, our proposal separates
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from previous work as we estimate difficulty at pixel level
instead of globally for the whole image, which allows us to
apply the proposal for semantic segmentation.

2.2.2 Pacing function

The pacing function determines the curriculum’s update fre-
quency, dictating when a new subset should be introduced
into the training process. These functions can be classified
into fixed-step and variable-step pacing [24].

Fixed-step pacing function This function defines a fixed
amount of iterations to train on every subset. Current class-
incremental methods in image classification propose to
iteratively train a model G by adding a new class every T
epochs, where T is the number of epochs to fully train the
model G [32]. This process takes T · C epochs, where C is
the number of classes. In SS, this protocol requires a huge
amount of computational resources and longer training times,
which may be unfeasible for resource-constrained settings.
Typically, self-taught scoring and scoringbasedondata trans-
formations proposals must manually define when to update
the pacing function, thus reducing the pacing function to a
scheduled update [24, 30, 31].

Variable-step pacing function This function dynamically
selects when to sample from the next subset in the curriculum
order, therefore defining an individual training time for each
training set based on the evolution of the loss [33, 34] or by
gradually increasing a fixed initial training time [24].

Our proposal lays between fixed and variable step pacing
functions. A fixed training time is defined for each subset.
However, prior knowledge on the amount of training sam-
ples available on each subset is used to filter out samples in
each subset, thereby reducing the total training time without
harming and even improving performance.

3 Per-class curriculum for semantic
segmentation

In this section, we introduce the proposed curriculum-based
learning for SS, and Fig. 1 provides an overview. We first
discuss the SS framework, and later we focus on the key
elements of the proposal: scoring function, pacing function
and per-class loss.

3.1 Semantic segmentation

Let us consider training data for SS as the set X =
{(Xi ,Yi )}Ni=1, where N is the number of images, Xi ∈
R

H×W×3 is a H × W color image, Yi ∈ {1,C}H×W×1 is
the associated pixel-level label map and C is the number of
semantic classes.

Moreover, letG(Xi ; θ)be the segmentationmodel defined
by the parameters θ and fed by an image Xi , which
predicts a C-dimensional probability map by virtue of a
final softmax layer P(G(Xi ); θ) ∈ [0, 1]H×W×C , so that
∑C

c=1 P(G(Xi ))
h,w,c = 1 for any h ∈ [1, H ] and w ∈

[1,W ]. G(Xi ; θ) is trained by optimizing a loss Lseg on X,
where typically the cross-entropy loss is employed to mini-
mize the difference between the predicted probabilities and
the pixel-level labels for each image Xi [35].

3.2 Curriculum

Our proposed per-class curriculum is based on a self-taught
approach using a teacher–student framework [24]. First, a
teacher model provides a scoring function to estimate the
learning difficulty of each semantic class. Later, a student
model is trained using the proposed per-class curriculum
strategy, guided by the teacher model and a pacing function
that determines how classes are injected in the iterative learn-
ing process.Moreover, our proposal employs a per-class loss
that minimizes error impact on difficult classes, and progres-
sively amplifies their importance as the model advances in
curriculum learning. For simplicity, we consider that both the
student and teacher have the same architecture, yet this has
no implications on the generality of the proposed solution.

Scoring functionWe estimate the learning difficulty of each
semantic class y j as the corresponding Intersection-over-
Union (IoU) performance obtained by a pre-trained model,
which acts as our class-scoring function f : [1,C] → R.
Specifically, the higher the performance score f (c), the eas-
ier the class is considered. Later,we determine the curriculum
learning order by sorting the classes from easiest to hardest
estimated class difficulty (i.e., ordered by decreasing IoUper-
formance), where the sorted classes are identified as {ϕi }Ci=1
and ϕ1 is the easiest and first class to be learned.

To define our scoring function f (·), two self-taught scor-
ing functions are proposed (see Fig. 2): Single-teacher and
Multi-teacher. For Single-teacher, a unique teacher model
M(·) is obtained by training the model for the C-class seg-
mentation problemwith uniformly sampled batches from the
entire source data. Then, we employ the so-trained model
M(·) as the unique scoring function f (·). Multi-teacher
refers to training C models Mc(·), where each one corre-
sponds to a binary segmentation problem (i.e., one semantic
class versus all the other classes). Therefore, each Mc(·) acts
as the score function for the c-class. For both Single-teacher
and Multi-teacher, the lower the performance, the higher the
class difficulty.

Pacing function
We propose a strategy to incrementally include classes while
maintaining a bounded training time. Formally, our pacing
strategy considers a number steps t ∈ T , where one or mul-
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Fig. 1 Overview of the proposed per-class curriculum learning (PCCL)
for Unsupervised Domain Adaptation in Semantic Segmentation. First,
we define our scoring function in a self-taught framework to obtain the
class-level scoring (scoring function). Second, this class-level scoring

is employed to train gradually the student model (iterative curriculum-
based learning). Finally, stage two performs adaptation to unlabeled
real data by employing the weights obtained from stage one

Fig. 2 Graphical illustration of the proposed scoring functions f (·),
which act as teacher models in the proposed approach to define the
class-ordered list {ϕi }Ci=1 from easiest to hardest classes. We propose

two strategies for the score function: In Single-teacher, we train a single
model to predict all classes (top row), and inMulti-teacher we train one
model for each class in a binary classification manner (bottom row)

tiple classes can be introduced for each learning step. To
maintain simplicity and validate the utility of the scoring
function, we assume that one class is introduced in each
learning step, except during the initialization phase where
one may consider multiple classes to speed up and increase
the accuracy of the learning process.

For each step t , let us assume that class ϕi=t is chosen for
introduction into the learning process, requiring the collec-
tion of data associated with this class. A direct application of
the resource-intensive standard CL [32] may progressively
utilize sets of increasing size �t , each one including every
pixel for all images with annotated classes {ϕi }ti=1. As the

sizes of these subsets �t can grow substantially during the
steps, our approach focuses on constraining the number of
selected images while facilitating the learning of the new
class. In particular, our proposal only utilizes subsets of
images �̃t from images Xk where there exist pixels (xl , yl)
related to the new class ϕi=t for learning:

(Xk,Yk) ∈ X | ∃(xl , yl) ∈ (Xk,Yk) ∧ yl = ϕi=t . (1)

As for the labels Yk associated with the chosen images
Xk at step t , we include labels corresponding to class ϕi=t

as well as those belonging to classes learned in prior training

123



R. Alcover-Couso et al.

steps (i.e., {ϕi }t−1
i=1) to prevent forgetting them. It is important

to emphasize that labels from previously learned classes are
exclusively considered in the selected images Xk , and this
selection may not encompass all images containing these
classes, as used in previous iterations. Specifically, label sets
are incremental, but image sets are not.

Figure3 illustrates the process of gathering different sub-
sets �t and �̃t for a four-image source dataset, where the
subsets for the three first steps are displayed. The first step
t = 1 considers the data for the easiest class g1 (e.g., sky).
The second step t = 2 accounts for the data of the two classes
with lower learning difficulty, being g1 and g2 (e.g., sky and
vegetation). The last step t = T includes the data for all
classes.

After every pixel in �̃t has been employed for training,
the learning process for the t step is completed and the pac-
ing function moves to the next step t + 1. Therefore, a new
subset �̃t+1 is gathered for the next training step, similarly
as previously described.

In this proposal, the initial step may be a critical design
choice to optimize the learning process, so we may consider
the simultaneous learning of several classes. As previously
stated in Sect. 2.2, the benefit of employing a scoring function
is to simplify the learning task. Thus, if the initial number of
classes is too large, the initial associated optimization task
may be too complex, thus diminishing the potential benefit
compared to not applying any curriculum. Moreover, a small
initial number of classes will require longer training times
as compared to start with one single class. For example, the
number of selected pixels is expected to change when start-
ing with one or two classes, as the number of images Xk

containing one or two classes may differ. Then, we consider
that the curriculum strategy can start with the first n classes,
so the training subset for the first step is defined as

�̃1 =
n⋃

i=1

(Xk,Yk) ∈ X | ∃(xl , yl) ∈ (Xk,Yk) ∧ yl = ϕi ,

(2)

and the labels Yk apply to all images where the classes
{ϕi }ni=1 appear. The rest of subsets �̃t=2...C−n in the curricu-
lum correspond to the learning of the classes {ϕi }Ci=n+1, and
they are selected as previously described in this subsection.
This initial number of classes �̃1 enables to control the trade-
off effect between efficiency and efficacy; a smaller-set initial
step will theoretically provide better final performances at
the cost of additional computational overhead compared to
larger-set initial steps. In Sect. 4.2, different values for n are
analyzed.

Per-Class curriculum loss
The training of SS architectures needs to employ full images,
due to the impossibility of identifying the semantic class of
a given pixel without its context. However, the proposed cur-
riculum strategy relies on learning from pixels of selected
classes instead of all the classes in the images of the source
data. It is noteworthy to mention that the spatial context of
selected classes is maintained as we consider the full RGB
content of the selected images Xk at each step of the cur-
riculum and learned incrementally by controlling the chosen
labelsYk asmore classes are added to the curriculum.Hence,
the cross-entropy loss cannot be directly applied to our cur-
riculum using its standard definition [35]:

Lseg = −
C∑

c=1

Ŷi
c · log(P(G(Xi ))

c, (3)

where Ŷi ∈ {0, 1}H×W×C is the one-hot encoding of the
pixel-level labels Yi corresponding to Xi . Therefore, we
need to modify the classical cross-entropy loss, to account
for individual pixel information while maintaining the struc-
ture of feeding the full image to the training process. To do
so for each step t , we define a per-class weighting factor
vt = {vct }Cc=1, where each element vct selects the class to
consider (vct = 1) or discards (vct = 0) for the computa-
tion of the loss. This vt is updated depending on the scoring
function and the current step as

vt+1 = vt + eg(t), (4)

where eg(t) is a zero vector of length C with a single one
value in the position c = ϕi=t . Our proposal for the per-class
loss at pixel level is defined as:

LPCCL
t = −

∑C
c=1 vct · Ŷi

c · log(P(G(x))c
∑C

c=1 vct · Ŷi
c . (5)

Building from the cross-entropy loss inEq.3,wemarginal-
ize the learning to the selected classes. Furthermore, with the
denominator, we normalize the loss to present a stable slope
as new classes are included.

Figure4 illustrates how the learning process advanceswith
the curriculum first classifying the whole image as a single
label to then sequentially refine the prediction with different
semantic instances. Please note how it first learns coarsely
different areas where the first classes can be located to later
enhance the prediction with each new class. This allows the
network to learn that the sky is usually on top, vegetation in
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Fig. 3 Illustrative example of the sets of pixels�t selected for each step
t. The columns correspond to the selected pixels for four sample images
using the Cityscapes color codes [6] (sky:light blue, vegetation:green
and car:dark blue), the non-selectedpixels aremarked in black.The rows
correspond to the sets for the first (�1), second (�2), third (�3) and last
(�19) training steps for the C = 19 classes of the Cityscapes dataset.
Our pacing proposal �̃t filters out the images that do not contain pixels
representing the target class to learn. The filtered images are highlighted
in red. Excluding the highlighted images, the second row represents �̃1

composed of the pixels represented as the sky (i.e., the images contain-
ing pixels labeled as the sky; the third image is excluded). The third row
represents �̃2, composed of the pixels represented as sky or vegetation
of images containing pixels labeled as vegetation. Therefore, the four
images are included. Subsequentially, the process is repeated for the 19
classes. Note that the same image can be included in several updates,
but its knowledge contribution increases by expanding the previous one
with that of the new classes

the lateral margins and cars are usually located around the
center of the image— to name just some of the inductive
biases characteristic of the Cityscapes dataset. Then, as the
global position of previous semantic classes has already been
learned, the focus of the training is to refine with the new
classes rather than globally learning the specifics of each
class.

4 Experiments

In this section, we present the experimental procedure and
results for our proposal (PCCL): First, we introduce the
datasets, evaluationmetrics and implementation details. Sec-
ond, we present the results of training with only synthetic
data (stage one): validating the effectiveness of the pacing
strategy and comparing the performance achieved with other
alternatives. Finally, we discuss the downstream effects of
our proposal when employing different state-of-the-art UDA
methods (training with annotated synthetic data and unla-
beled real color images).

4.1 Setup

Datasets To evaluate our proposal, we employ two popular
UDA datasets for SS: GTAV [36] and Synthia [37] as source
synthetic datasets and the Cityscapes [6] dataset as the target
dataset.

GTAV is a synthetic dataset with urban scenes composed
of 25K images from the game Grand Theft Auto V. GTAV
shares 19 semantic classes with Cityscapes and is used as
source training data.

Synthia is a collection of different synthetic urban scenes
datasets for semantic segmentation; we pick its subset
SYNTHIA-RAND-CITYSCAPES. Synthia is composed of
9,5K images rendered from a virtual environment. Synthia
shares 16 semantic classes with Cityscapes and is employed
as source training data.

Cityscapes is a real dataset with urban scenes gener-
ated by filming with a camera inside of a car while driving
through different German cities. It consists of 3K images
for training and 0.5K images for validation. Evaluation met-
rics The main metric employed for evaluation is consistent

123



R. Alcover-Couso et al.

…

( )

…

Φ2

( ) ( ) ( )

Φ19Φ3Φ1

Fig. 4 Illustrative example of expected output (top) and output (bottom)
of the network at the first three and last curriculum stages. The first col-
umn represents the GT and the color image, respectively. The following
columns represent the pixels from the sample image belonging to each
of the pacing sets �̃t and the prediction of the network at the end of

each curriculum step (taking as input the color image represented in the
first column). Note how for a single image the knowledge of previous
classes has been already acquired; thus, the learning is targeted toward
understanding the new semantic class

Table 1 Performance comparison of different scoring functions and with the analyzed pacing training sets for the proposed PCCL approach (with
n = 3 for the initial stage)

Scoring Pacing set Iterations (K) mIoU �mIoU (%) �precision (%) �recall (%) �F1 (%)

ST �t 80 35.7 0 0 0 0

�̃t 32 40.2 12.6 10.3 14.5 13.1

MT �t 80 34.6 0 0 0 0

�̃t 32 37.0 6.9 3.4 9.5 6.5

Borders [45] �t 80 33.9 0 0 0 0

�̃t 32 36.1 6.4 2.8 9.0 5.8

# Images [46] �t 80 33.7 0 0 0 0

�̃t 32 35.0 3.6 2.6 3.7 3.1

Our proposed scoring functions are the Single-teacher andMulti-teacher scoring functions. The compared training sets denote the employment of
�̃t , i.e., our proposal for constrained data training, or �t for training, i.e., the baseline pacing set selection [24]. All models are trained with source
data without any domain adaptation (i.e., only GTAV dataset) and evaluated on the target validation set (Cityscapes dataset). This evaluation setup
ensures that there is no dependency on the UDA strategy. (KEY. ST: Single-teacher, MT:Multi-teacher, Borders: number of shared Borders of each
semantic class, # Images: number of images including each semantic class)

with the SS task: the PASCAL VOC per-class intersection
over union (IoU) [38], between the model prediction and the
ground-truth label. IoU measures at pixel-level the relation-
ship between True Positives (TP), False Positives (FP) and
False Negatives (FN): I oU = T P

T P+FP+FN . As a global per-
formance evaluation metric, the mean IoU (mIoU) over all
classes is employed. For the GTAV-to-Cityscapes problem,
classes are shared between both datasets, whereas for the
Synthia-to-Cityscapes problem,we evaluate themIoU across
the shared classes following the standard protocol [10, 12,
39]. Additionally, we present the precision: Pr = T P

T P+FP ,

recall: Rc = T P
T P+FN and F1-score: F1 = 2RcPr

Rc+Pr results on
the Cityscapes validation set.

Implementation detailsWeemployDeeplabv2 [40] as the SS
architecture, consistent with the state-of-the-art UDA meth-

ods [10–13, 15]. For the stage one of UDA in Sect. 4.2, we
employ the GTAV dataset for training and evaluate with
the Cityscapes validation set. For the stage two of UDA
in Section 4.3, we employ the GTAV dataset or the Syn-
thia dataset as the labeled source domain and the training
images of Cityscapes as the unlabeled target domain. We
evaluate the trained models on the Cityscapes validation set.
All experiments employ up to four Titan RTX GPU with
24GB memory. Our models are trained using stochastic gra-
dient descent optimizer with momentum of 0.9 and weight
decay of 10−4 for a fair comparison with the selected state-
of-the-art methods [10, 12, 21, 41–44]. For each of these
methods, the training hyper-parameters are those reported in
their respective papers [10, 42, 43].
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s) 4.2 Results for synthetic training (stage one)

Scoring and Pacing functions First, we want to validate
the effectiveness of our scoring functions:Multi-teacher and
Single-teacher. To that end, we adopt two alternative scoring
functions based on the number of sharedBorders [45] and the
number of images including each semantic class [46]. Table
1 compares the global performance and total training itera-
tions of different scoring functions and pacing sets employed.
Across both pacing functions, our scoring functions Multi-
teacher and Single-teacher present better performance than
the adapted scoring functions. Similarly, the filter-out pac-
ing function �̃t provides improvements to all of the studied
scoring functions of up to 12% of mIoU. This enhancement
is primarily attributed to an increase in the model’s recall,
suggesting a reduction in False Positives and more accurate
classification of less prevalent classes.

These results are disentangled at a per-class level in
Table 2.We find thatMulti-teacher scoring function presents
a greater improvement in some classes such as fence, pole
and train, at the cost of worse performance in coarser classes
such as road, sky and car. We believe this to be because
the Multi-teacher assumes the semantic class bus to be one
of the easiest classes to be abstracted. However, it is one
of the hardest classes to generalize from synthetic data [10,
42].We attribute this drop in performance to the introduction
of a hard class in an initial curriculum stage disrupting the
curriculum principle, thus resulting in worse global perfor-
mance, as described by the so-called anti-curriculum [24].
On the other hand, Single-teacher defines a sorting seem-
ingly more aligned with the difficulty of the network to learn
each class, thus presenting a greater performance in 11 out
of the 19 classes. Across all scoring functions, our pacing
function notably enhances model accuracy for train, bicycle,
light, rider and sign—classes that typically present signifi-
cant adaptation challenges in state-of-the-art methods.

In order to compare the pacing proposals, global perfor-
mance is not the only measurement. A good CL scheme
should mainly drive performance gains to harder subsets
[24], (i.e. subsets added last in the training). In Fig. 5, we
compare the per-class performances obtained from the two
pacing functions sorted by the place in the curriculum, that is,
employing �̃t with respect to employing �t across the dif-
ferent scoring functions. It can be seen how the position in
the scoring function correlates with the improvement in our
proposal, having a greater impact on the last classes added
to the curriculum. Therefore, �̃t seems to perform a better
CL scheme as the main goal is to improve the performance
of “hard classes."

Initial number of classes
As mentioned in Sect. 3, our PCCL proposal depends on

the initial number of classes n. This hyper-parameter affects
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Table 3 Analysis of the
hyper-parameter n representing
the initial number of classes

Method Initial classes mIoU Recall Precision F1-score Iterations (K)

NCL [11]-reported 19 37.0 47.8 65.4 55.2 20

NCL [11]-retrained 19 37.7 49.4 66.2 56.6 32

PCCL 1 40.2 53.7 68.2 60.1 40

PCCL 2 40.2 52.3 68.7 59.4 36

PCCL 3 40.2 52.1 68.9 59.3 32

PCCL 4 39.7 50.8 67.6 58.0 29

The performance is measured by the stage one training of only synthetic data with a Single-teacher scoring
function. The “NCL" corresponds to the results of stage one in FADA [11] a state-of-the-art method that does
not employ curriculum. Moreover, we also retrain [11] to increase the number of training iterations, while
keeping the setup as [11]. All models are trained with source data without any domain adaptation (i.e., only
GTAV dataset) and evaluated on the target validation set (Cityscapes dataset). This evaluation setup ensures
that there is no dependency on the UDA strategy

Fig. 5 Relative performance comparison for different scoring functions
in our PCCL proposal. All models are trained with source data without
any domain adaptation (i.e., only GTAV dataset) and evaluated on the
target validation set (Cityscapes dataset). This evaluation setup ensures
that there is no dependency on the UDA strategy. Results represent the
percentage change of employing �̃t or �t for training each round of
the iterative learning process. Positive (negative) values indicate per-
formance gain (loss). Notably, each scoring function defines a different
order—wherein the nth class differs based on the scoring criteria—thus
the lack of specific class names. (KEY. ST: Single-teacher, MT:Multi-
teacher, Borders: number of shared Borders of each semantic class, #
Images: number of images including each semantic class)

both the training time and the performance (see Table 3).
There is a significant gain in performance regardless of the
initial number of classes. However, less or equal training
time is only achieved with n ≥ 3. Therefore, for the follow-
ing experiments, n = 3 is selected as the initial number of
classes.

Comparison with the absence of curriculum Figure6 com-
pares the per-class performance of the two proposed scoring
functions to the current state-of-the-art for synthetic-only
trained models FADA (stage one) [11]. We outperform in
most classes the reported results for stage one. This improve-
ment is especially notable in classes included in the final
stages of the curriculum. In Fig. 7, we present a compar-
ison of some class losses for the model trained with our
proposed Single-teacher PCCL and employing �̃t as our

Fig. 6 Relative performance improvement in the proposed scoring
functions in the PCCL approach as compared to the reported results
of stage one in FADA [11]. All models are trained with source data
without any domain adaptation (i.e., only GTAV dataset) and evaluated
on the target validation set (Cityscapes dataset). This evaluation setup
ensures that there is no dependency on the UDA strategy. Positive (neg-
ative) values indicate performance gain (loss). Notably, each scoring
function defines a different order—wherein the nth class differs based
on the scoring criteria—thus the lack of specific class names

training sets against the losses obtained from the reported
synthetic only model [11] on the GTAV dataset. Note that
both models are frozen during computation and both losses
are computed equally. Our guided learning allows the model
to better learn small (pole) and low-populated (wall) semantic
classes (in the source training set) while maintaining similar
or even better performances on coarse and highly populated
semantic classes such as sky, sidewalk and vegetation. For
the remaining experiments, Single-teacher is selected as the
default scoring function.

Impact on the backbone employed To conclude this sub-
section, Table 4 showcases the enhancement in performance
afforded by our PCCL across a variety of segmentation archi-
tectures (Deeplabv2 and FCN as segmentation head and
VGG, ResNet50 and ResNet101 as backbones) when trained
on the GTAV dataset and validated on the Cityscapes val-
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Fig. 7 GTAV per-class loss comparison of our PCCL proposal against
the retrained loss of [11] for the initial training stage where only syn-
thetic data is employed (GTAV train set [36]). Loss computed, CE Loss
(see Eq.3) employing the frozen models on all the GTAV dataset

idation set. This improvement across different backbones
indicates that PCCL boosts the model’s ability to adapt from
source domain training to the target data, despite the model
not having direct exposure to target images during training.
On a detailed level, while performance gains are observed
across all semantic classes, they are particularly pronounced
for low-represented categories. However, FCN-based mod-
els, tend to misclassify smaller objects such as Rider or
Bicycle as coarser classes like Road. Therefore, improving
the identification of vehicles and Rider contributes to reduc-
ing False Positives, thereby elevating the Roads mIoU.

4.3 Results for Unsupervised Domain Adaptation
(stage two)

Exploring source performance transfer to target As the
source datasets (GTAV and Synthia) do not present a val-
idation set, we generate a partition 80–20 from the GTAV
training set (20k Images for train and 5k images from vali-
dation) preserving the original class distribution. This split
was used for training two models, one with a state-of-the-art
baseline semantic segmentation learning strategy [11] and
another with our proposed PCCL framework (Both models
are trained on a Deeplabv2 with a ResNet101 backbone).
Table 5 compiles the experimental results for the source val-
idation set (GTAV dataset), the target validation set at stage
1 (Cityscapes) and the target validation set at stage 2 using
both labeled source data and unlabeled target data (GTAV-to-
Cityscapes). Our experimental results suggest that our PCCL
globally obtains better performance in the analyzed domains:
source (67.6 vs 68.1), target without UDA (32.2 vs 38.7) and
target after UDA (39.3 vs 42.8).We significantly improve the
least represented classes in the source dataset (e.g., train and Ta
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bicycle). Conversely, more prevalent classes are introduced
earlier in our PCCL curriculum, and we observed a slight
decrease in performance as compared to the model trained
without PCCL.Moreover, our PCCL shows a more even per-
formance across all classes. This helps to avoid overfitting to
dominant classes in the source domain,which couldmake the
model to wrongly classify pixels in unseen/target domains as
the dominant classes in the source domain.

Application to popular Unsupervised Domain Adaptation
methods

Table 6 compiles the results for employing our PCCL pro-
posal in popular alignment methods based on adversarial
training (Advent [10], AdaptSegNet [12] and FADA [11])
and entropy (MinEnt [10] and MaxSquare [13]). In partic-
ular, we compare the performance of the selected methods
with and without our PCCL pretraining, that is, employing as
initial weights for the stage two our Single-teacher model, or
employing weights from training without CL. Results show
a performance improvement for all methods, thus demon-
strating the effectiveness of the initial training stage. While
adversarial training tends to be unstable and less reliable [10],
entropy minimization techniques rely largely on the weights
obtained on stage one. Therefore, our proposal greatly ben-
efits the latter.

Setting equal training hyper-parameters for all methods
A major drawback found in existing literature is the

disparity in the experimental conditions (e.g., hyperpa-
rameters). Therefore, a significant inconsistency is present
when comparing these methods, due to different batch
sizes (Advent = 1, FADA=8), different data augmenta-
tions (Advent= None, FADA= Random Horizontal Flip and
Color jitter, MaxSquare= RandomHorizontal Flip, Color jit-
ter and Random Blurr), different amount of iterations for
stage two training (FADA=40k, MaxSquare= 80K, Adapt-
SegNet=150K) and different amount of iterations for stage
one training (FADA=20k, MaxSquare= 80K). Note that all
the selected methods employ the same network architecture
and these parameters are not part of their proposal; therefore,
the methods should be compared in a similar matter. How-
ever, we acknowledge that larger training times may hinder
the performance of the models; therefore, we always com-
pare the best performance obtained throughout the training,
not the final performance. For fair comparisons, we propose
to retrain these methods using the provided source codes
to homogenize the hyper-parameters, with a batch size of
4 and 120K total training iterations and accuracy effective
data augmentation (color jitter and random horizontal flip).
As our stage one requires 12K additional iterations, we train
12K less iterations in the stage two to compensate the initial
computational overhead. All our retrained methods employ
for the stage two the weights obtained from the retrained
model of stage one for [11], see Table 3. Ta

bl
e
5

Pe
rf
or
m
an
ce

co
m
pa
ri
so
n
of

so
ur
ce

an
d
ta
rg
et
pe
rf
or
m
an
ce

of
st
ag
e
1
tr
ai
ni
ng

(s
yn
th
et
ic
on
ly
)
w
ith

a
ra
nd
om

su
bs
et
of

th
e
G
TA

V
da
ta
se
t

M
et
ho
d

m
Io
U
pe
r
cl
as
s

R
oa
d

Si
de
w
al
k

B
ui
ld
in
g

W
al
l

Fe
nc
e

Po
le

L
ig
ht

Si
gn

V
eg
et
at
io
n

Te
rr
ai
n

Sk
y

Pe
de
st
ri
an

R
id
er

C
ar

T
ru
ck

B
us

T
ra
in

M
ot
or
cy
cl
e

B
ic
yc
le

m
Io
U

So
ur
ce

pe
rf
or
m
an
ce

(G
TA

V
da
ta
se
t)

w
/o

PC
C
L

94
.4

71
.3

93
.4

51
.6

46
.8

48
.5

55
.9

61
.0

91
.5

40
.4

92
.0

72
.1

38
.3

91
.8

74
.3

77
.9

59
.1

49
.2

47
.4

67
.6

PC
C
L

91
.1

69
.5

88
.9

55
.2

49
.9

52
.6

58
.6

64
.4

88
.4

44
.3

89
.7

73
.4

44
.5

89
.5

77
.3

80
.5

66
.4

54
.9

55
.3

68
.1

Ta
rg
et
pe
rf
or
m
an
ce

(C
ity

sc
ap
es

da
ta
se
t)

w
/o

PC
C
L

71
.1

23
.0

78
.1

22
.0

17
.2

12
.3

5.
3

0.
0

79
.7

27
.6

81
.4

45
.3

1.
1

79
.3

22
.3

41
.3

0.
0

2.
1

0.
0

32
.2

PC
C
L

80
.3

27
.8

79
.8

24
.6

19
.0

16
.8

20
.6

7.
3

82
.1

30
.5

80
.1

51
.6

17
.6

80
.3

31
.1

42
.1

2.
1

26
.3

14
.8

38
.7

U
D
A
pe
rf
or
m
an
ce

[1
0]

(G
TA

V
-t
o-
C
ity

sc
ap
es

se
tu
p)

w
/o

PC
C
L

84
.4

23
.5

83
.8

23
.0

19
.7

15
.2

21
.1

14
.4

84
.3

30
.9

85
.5

55
.1

17
.2

81
.7

30
.8

41
.0

0.
0

20
.6

15
.3

39
.3

PC
C
L

88
.1

31
.6

82
.8

25
.7

27
.3

18
.7

23
.7

16
.3

84
.4

35
.7

82
.7

55
.0

20
.0

82
.1

40
.2

46
.9

0.
6

26
.5

25
.0

42
.8

Ta
rg
et
pe
rf
or
m
an
ce

ev
al
ua
te
d
on

th
e
C
ity

sc
ap
es

va
lid

at
io
n
se
t.
PC

C
L
-t
ra
in
ed

m
od

el
em

pl
oy
s
Si
ng
le
-t
ea
ch
er

as
th
e
sc
or
in
g
fu
nc
tio

n,
an
d
th
e
in
iti
al
nu
m
be
r
of

cl
as
se
s
is
se
tt
o
3.
Im

pr
ov
em

en
ts
ar
e

in
di
ca
te
d
w
ith

bo
ld

ch
ar
ac
te
rs

123



Per-class curriculum for Unsupervised Domain Adaptation in semantic...

Ta
bl
e
6

Pe
rf
or
m
an
ce

co
m
pa
ri
so
n
of

th
e
U
ns
up
er
vi
se
d
D
om

ai
n
A
da
pt
at
io
n
se
tu
p
fr
om

G
TA

V
-t
o-
C
ity

sc
ap
es

ag
ai
ns
tt
he

re
po
rt
ed

re
su
lts

of
th
e
6
pr
op
os
ed

m
et
ho
ds

M
et
ho
d

m
Io
U
pe
r
cl
as
s

R
oa
d

Si
de
w
al
k

B
ui
ld
in
g

W
al
l
Fe
nc
e

Po
le

L
ig
ht

Si
gn

V
eg
et
at
io
n

Te
rr
ai
n

Sk
y

Pe
de
st
ri
an

R
id
er

C
ar

T
ru
ck

B
us

T
ra
in

M
ot
or
cy
cl
e

B
ic
yc
le

m
Io
U

A
da
pt
Se
gN

et
[1
2]

86
.5

36
.0

79
.9

23
.4

23
.3

23
.9

35
.2

14
.8

83
.4

33
.3

75
.6

58
.5

27
.6

73
.7

32
.5

35
.4

3.
9

30
.1

28
.1

42
.4

PC
C
L
+
A
da
pt
Se
gN

et
90
.7

48
.1

82
.2

37
.7

19
.4

27
.2

28
.9

16
.2

83
.3

34
.3

82
.6

53
.4

16
.0

84
.2

32
.3

45
.8

2.
0

35
.7

1.
6

43
.2

A
dv
en
t[
10

]
89
.9

36
.5

81
.6

29
.2

25
.2

28
.5

32
.3

22
.4

83
.9

34
.1

77
.1

57
.4

27
.9

83
.7

29
.4

39
.1

1.
5

28
.4

23
.3

43
.8

PC
C
L
+
A
dv
en
t

89
.8

43
.5

82
.4

36
.1

24
.5

30
.1

32
.1

21
.4

83
.4

35
.5

76
.8

55
.7

14
.4

84
.3

42
.6

48
.5

6.
1

32
.0

6.
8

44
.5

FA
D
A
[1
1]

86
.9

38
.0

83
.4

36
.9

24
.6

31
.1

35
.4

22
.0

82
.8

36
.3

82
.9

58
.1

34
.0

82
.8
8

31
.5

35
.7

23
.3

33
.5

31
.6

46
.9

PC
C
L
+
FA

D
A

90
.2

44
.8

82
.9

28
.0

26
.0

29
.7

40
.8

30
.5

83
.4

36
.5

83
.3

62
.7

30
.3

86
.7

37
.4

34
.7

11
.6

30
.9

27
.9

47
.3

M
in
E
nt

[1
0]

84
.4

18
.7

80
.6

23
.8

23
.3

28
.4

36
.9

23
.4

83
.2

25
.2

79
.4

59
.0

29
.9

78
.5

33
.7

29
.6

1.
7

29
.9

33
.7

42
.3

PC
C
L
+
M
in
E
nt

88
.7

34
.5

82
.4

35
.9

18
.3

21
.4

28
.9

17
.9

83
.7

38
.8

83
.8

55
.7

20
.1

83
.2

47
.4

50
.1

0.
5

29
.5

20
.9

44
.3

M
ax
Sq

ua
re

[1
3]

89
.4

43
.0

82
.1

30
.5

21
.3

30
.3

34
.7

24
.0

85
.3

39
.4

78
.2

63
.0

22
.9

84
.6

36
.4

43
.0

5.
5

34
.7

33
.5

46
.4

PC
C
L
+
M
ax
Sq

ua
re

76
.4

32
.7

85
.6

41
.0

27
.5

30
.6

37
.1

26
.0

86
.0

41
.1

84
.8

59
.7

20
.6

83
.0

55
.1

55
.5

2.
7

35
.1

27
.1

47
.8

m
Io
U
is
co
m
pu
te
d
on

th
e
C
it
ys
ca
pe
s
va
lid

at
io
n
se
t.
Im

pr
ov
em

en
ts
ar
e
in
di
ca
te
d
w
ith

bo
ld

ch
ar
ac
te
rs

Table 7 summarizes the obtained results for the equal train-
ing setup. We also include the originally reported result as
a reference. First, we would like to address that our PCCL-
trainedmodels outperform their respective reported baselines
in the range of 1.8−10.5%. Note that our proposal surpasses
the reported results of [11] with less memory requirements
(half batch size). Second, it is worth addressing how entropy
minimization methods (MinEnt and MaxSquare) benefit
greater from our proposed initial pre-training than adversar-
ial methods (Advent, AdaptSegNet, FADA), as we discuss
later. Finally, on the same conditions, the alignment metric
employed has little impact when compared to the batch size
and the data augmentations employed.This canbe seenby the
relatively comparable performance acrossmethods,while the
reported results differ drastically (e.g., MinEnt present better
results than FADAwhile having a reported result of less than
10%). Note that our results from Table 6 differ from the ones
in Table 7 as in the former the hyper-parameters employed
are the ones from each specific paper and in the latter are the
unified ones.

Figure8 compares the per-class results of models trained
with and without our PCCL. For FADA (the best reported
result) and MinEnt, we outperform the results for all classes
in the range 0.25–150%. In line with the previous discus-
sion, the better initial weights obtained from our proposal
for stage one yield better performances for every class in
the case of entropy minimization (MinEnt). Compared with
MaxSquare, another entropy minimization framework, the
nature of the proposed alignment imposes a strong bias to
the low-represented classes in the source training set. As our
initial PCCL training amplifies drastically the classification
capabilities of those classes, our final model tends to expand
the sets of samples predicted as bike, train and rider, there-
fore reducing the number of TP in surrounding coarser areas
(road) and increasing the number of FP of low-represented
classes (truck, wall, bus and train). However, overall, PCCL
provides an improvement to 14 out of the 19 classes in the
range of 5–50% mIoU. Regarding the adversarial methods
(Advent and FADA), using PCCL for stage one yields final
models with better performances for low-represented classes
of the source dataset (truck, wall, bus and train), in the range
of 40-200%, while presenting a consistent performance for
the other 15 classes.

Figure9 presents a qualitative comparison of reported
models trained with adversarial adaptation (Advent) and
entropy adaptation (MinEnt) against our models trained first
with PCCL and then employing the same adaptation. Models
trained without our PCCL training present similar mistakes
due to the domain gap: the increased light reflection of white
surfaces in the real domain (see the white building in the first
column of Fig. 9), the reflection of the windows in vehicles
(see the back window of the white car in the second column
of Fig. 9) and the shape and size discrepancy to the source
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Table 7 Performance comparison of the five selected UDA methods trained with and without our PCCL on the same experimental conditions in
terms of pretraining time, data augmentations, batch size and testing protocol

Compared methods Training setting mIoU �mIoU

Stage two alignment Stage one synthetic training BS DA Iterations (K) Single scale Multi scale �mIoUSingle �mIoUMulti

AdaptSegNet [12] NCL [11]-reported 2 0 150 42.4 – 0% –

NCL-retrained 4 2 120 45.1 46.0 6.5% 0%

PCCL 4 2 120 46.0 46.6 8.5% 1.2%

Advent [10] NCL [11]-reported 2 0 120 43.8 – 0% –

NCL-retrained 4 2 120 44.8 45.3 2.3% 0%

PCCL 4 2 120 46.4 46.9 6.1% 3.6%

FADA [11] NCL [11]-reported 8 2 60 – 46.9 – 0%

NCL-retrained 4 2 120 45.5 46.3 0% −1.2%

PCCL 4 2 120 46.7 47.2 1.8% 0.58%

MinEnt [10] NCL [11]-reported 2 0 120 42.3 – 0% –

NCL-retrained 4 2 120 45.6 46.2 7.8% 0%

PCCL 4 2 120 46.7 47.3 10.5% 2.3%

MaxSquare [13] NCL [11]-reported 4 3 160 45.2 46.4 0% 0%

NCL-retrained 4 2 120 44.7 45.2 −1.2% −2.6%

PCCL 4 2 120 47.0 47.6 4.0% 2.6

(KEY.Reported: paper published results, Retrained: retrained results under homogeneous conditions. PCCL: proposed per-pixel curriculum learning,
NCL: no curriculum learning, BS: batch size, DA: data augmentations (2 = horizontal flip + color jitter, 3 = 2 + Gaussian Blur). mIoU computed
using single-scale testing (mIoUSingle) or multi-scale testing (mIoUMulti ), following respective papers testing protocol. In this vein, performance
for validation setups not reported in the papers is indicated with an “–"

Fig. 8 Per-class performance
comparison on the
GTAV-to-Cityscapes problem of
models trained with and without
our PCCL training under the
same experimental conditions
(batch size of 4, horizontal flip
and color jitter as data
augmentation and multi-scale
testing)

data (see the bus in the third column of Fig. 9). PCCL espe-
cially benefits both baseline models for small classes (poles,
traffic signs and traffic lights) and low-represented classes in
the source dataset (rider, bus and terrain)

Comparison with the state-of-the-art UDA methods In
Table 8, we provide a comprehensive comparison between
our PCCL-trainedmodels and state-of-the-artmethods utiliz-
ing DeepLabV2. We categorize these methods into two dis-
tinct groups: entropy-based [12, 13, 47–49] and adversarial-
based [8, 10, 12, 15, 22, 39, 50] methods.

Notably, our PCCL-trained models consistently improve
all evaluated methods, with particularly impressive results
observed for the entropy-based approaches across the two
studied sourcedatasets. Evenwhen taking theworst-performing
framework, MinEnt [47], as the baseline, our PCCL-trained
models achieve superior performance compared to signif-
icantly better-performing methods. This outcome strongly
underscores the substantial benefits our PCCL pretraining
approach brings to the model performance.
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Fig. 9 Qualitative comparison of reported models and our models
trained with PCCL on the Cityscapes validation set. First and second
rows present the color and label images, respectively. Third and fifth
rows present the reported models for Advent and MinEnt, respectively.

Fourth and sixth rowspresent our results of applyingPCCL for the initial
training (only synthetic data) and thenAdvent andMinEnt, respectively,
for the adaptation stage (labeled synthetic data and unlabeled real data)
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Table 8 State-of-the-art
performance comparison of the
GTAV-to-Cityscapes (G2C) and
Synthia-to-Cityscapes (S2C)
problems of methods employing
DeeplabV2

Alignment type Framework mIoU (G2C) mIoU (S2C)

Adversarial AdaptSeg [12] 42.4 46.7

ADVENT[10] 43.8 47.6

DAOT [51] 44.3 48.8

CBST [50] 45.9 48.4

CRA [39] 46.7 51.2

LSR+ [8] 46.9 –

ASDM [15] 46.9 –

FADA [11] 46.9 52.5

CRST [22] 47.1 48.7

FADA+PCCL 47.2 53.7

Entropy MinEnt [10] 42.3 44.2

SAN-SAW [47] 45.3 51.8

WildNet [48] 45.8 –

MaxSquare [13] 46.4 48.2

SHADE[49] 46.7 –

MinEnt+PCCL 47.3 53.9

mIoU is computed on the Cityscapes validation set. Results not reported in their original papers are marked
with “–"

We posit that the initial weights of themodel play a pivotal
role in Unsupervised Domain Adaptation (UDA) and should
be given due consideration in UDA research. Specifically,
the superior performance of our PCCL-trained models, espe-
cially within entropy-based methods, suggests that starting
with better-suited initialweights contributes tomore effective
training and better predictive capabilities during the training
process. In contrast, adversarial-basedmethods rely on auxil-
iarymodels that are less affected by our PCCL initial training,
resulting in comparatively smaller performance gains.

5 Conclusion

In this paper, we tackle the challenge of Unsupervised
Domain Adaptation for Semantic Segmentation by introduc-
ing a novel approach called per-class curriculum learning
(PCCL). Ourmethod is founded on the principle that enhanc-
ing initial model weights through the use of synthetic data
alone can lead to improved overall model performance for
inter-domain feature alignment. We demonstrate the effec-
tiveness of PCCL by showcasing superior performance
across all semantic classes compared to conventional initial-
ization methods. These advantages are subsequently trans-
ferred to the adaptedmodels when applied to real-world data.

We validate our approach by a series of experiments
and ablation studies as well as evaluating it under five
state-of-the-art methods for Unsupervised Domain Adapta-
tion. Our results consistently show significant performance
enhancements across all selected methods. To ensure a fair
and robust evaluation, we conduct additional experiments

where we retrain all selected methods under uniform train-
ing conditions, including batch size, training duration, data
augmentations and testing protocols. In these experiments,
we observe that our proposal consistently delivers substantial
improvements, particularly for semantic classes introduced
in the later stages of the curriculum. Remarkably, these
classes often correspond to underrepresented categories,
underscoring the robustness and versatility of our approach.

In summary, our work offers a novel and effective solu-
tion for enhancing the performance of semantic segmentation
models in Unsupervised Domain Adaptation scenarios, with
a particular focus on improving underrepresented semantic
classes.
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