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Abstract
Employing cognitive robots, capable of throwing and catching, is a strategy aimed at expediting the logistics process within
Industry 4.0’s smart manufacturing plants, specifically for the transportation of small-sized manufacturing parts. Since the
flight of mechanically thrown objects is inherently unpredictable, it is crucial for the catching robot to observe the initial
trajectory with utmost precision and intelligently forecast the final catching position to ensure accurate real-time grasping.
This study utilizes multi-camera tracking to monitor mechanically thrown objects. It involves the creation of a 3D simulation
that facilitates controlled mechanical throwing of objects within the internal logistics environment of Industry 4.0. The
developed simulation empowers users to define the attributes of the thrown object and capture its trajectory using a simulated
pinhole camera, which can be positioned at any desired location and orientation within the in-plant logistics environment of
flexible manufacturing systems. The simulation facilitated ample experimentation to be conducted for determining the optimal
camera positions for accurately observing the 3D interception positions of a flying object based on its apparent size on the
camera’s sensor plane. Subsequently, a variety of calibrated multi-camera setups were experimented while placing cameras
at identified optimal positions. Based on the obtained results, the most effective multi-camera configuration setup is derived.
Finally, a training dataset is prepared for 3000 simulated throwing experiments where the initial part of the trajectory consists
of observed interception positions, through derived best multi-camera setup, and the final part consists of actual positions.
The encoder–decoder Bi-LSTM deep neural network is proposed and trained on this dataset. The trained model outperformed
the current state-of-the-art by accurately predicting the final 3D catching point, achieving a mean average error of 5mm and
a root-mean-square error of 7mm in 200 real-world test experiments.

Keywords Smart manufacturing systems · Robotic throw-catch approach · Automated in-plant logistics 4.0 · Cognitive
robots · Multi-camera simulation · Encoder–decoder Bi-LSTM
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1 Introduction

A Flexible Manufacturing System (FMS) is a modern
computer-controlled production system having automated
material handling and semi-dependent workstations respon-
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sible for efficiently manufacturing parts ranging from low to
medium volume [8]. In the manufacturing industry, incor-
porating computer-controlled machines and robots into the
production process offers a multitude of advantages, includ-
ing improved utilization rates and increased productivity
levels [22]. The fast growing trend of using robots in industry
is evident by recent world robotics report [19] whose statis-
tics are taken to show the graph in Fig. 1.

The in-plant logistics by throwing and catching robots
should be the fastest transportation means due to the direct
connection between two workstations. Implementing this
throw-catch transportation approach in production systems
can result in fully automated processes within flexible
manufacturing systems, and it leads to the benefits of opti-
mized utilization of plant facilities, routing flexibility and
an increase in productivity volume in addition to fast trans-
portation and all these benefits lead to reduced production
cost in FMS [11]. The proposed research aims to investigate
this efficient approach.

The trajectory of mechanically thrown object can be
observed by cameras. However, the number and placement
of these cameras can affect the accuracy of the observations.
To reduce observational errors, multiple cameras should be
strategically positioned in internal logistics settings to pro-
vide a comprehensive view of the trajectory. Such optimum
positions need to be determined through rigorous experi-
mentation in such internal logistics vicinity which is usually
3–5m [10, 31].

The proposedwork involves the development of a 3D sim-
ulated environment that makes it possible to mechanically
throw an object having certain properties and with certain
launching conditions. It also allows observation of the result-
ing captured trajectory through a standard pinhole camera
model as such model can effectively describe the perspective
projection of most modern cameras [18]. The virtual camera
can be positioned anywhere within the 3D simulated envi-
ronment for internal logistics of themanufacturing plant. The
developed simulation is versatile and can be used for any
real-world camera by providing its specific characteristics
like capturing speed, sensor size, per pixel area, focal length,
etc. Figure2 depicts the whole procedure of projection of

Fig. 1 World robotics report 2022 by Int. Federation of Robotics [19]

Fig. 2 Process of 2D digital image formation for the virtual camera
from the simulated 3D world scene

Fig. 3 Used pinhole camera model for 2D image plane mapping of
camera seen 3D points

3D simulation world points onto the 2D digital image of the
virtual camera.

The 3D simulated world points are first converted into
3D camera seen points by taking care of extrinsic parame-
ters (specified location and orientation) of the virtual camera.
Then, standard pinhole camera model is used to convert 3D
camera seen coordinates into 2D image plane coordinates
and finally specified intrinsic parameters of the camera (e.g.
sensor size, per pixel area, etc.) are considered for 2D digi-
tal image formation in terms of pixels. The standard pinhole
camera model, utilized to convert 3D camera seen coordi-
nates into 2D image plane coordinates, is shown in Fig. 3.

Here Pc(X ,Y , Z) is the camera seen 3D point that is pro-
jected on camera’s image plane as 2D point P ′(x, y). The
two coordinates of P ′ are derived by following mathemati-
cal equations.

x = − f × X

Y
. (1.1)

y = − f × Z

Y
. (1.2)

As stated above, any real-world camera can be simulated.
However, in simulated experiments of this work, the char-
acteristics of the ‘IDS UI-1220RE-M-GL’ camera are used.
It is because the real-world experiments were carried out
using these cameras and using the same camera character-
istics enabled comparison of the results of simulated and
real-world experiments effectively.
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The proposed work can be divided into two parts. The first
part is the derivation of the best multi-camera setup, using
extensive simulated experiments, for such in-plant logistics
settings. This part is further divided into two sub-parts. First,
to identify optimal camera positions by extensive experimen-
tation in a simulated environment by throwing a spherical
object, with a known radius, and observing its trajectory by
placing the virtual camera atmultiple locations andobserving
the errors in reconstructed 3D interception positions. These
interception positions are reconstructed from projected 2D
positions on the camera’s sensor area. Based on the observed
errors, the optimal camera positions are identified. After-
ward, different combinations of calibrated cameras (placed
at the identified optimal positions) are tried in further exper-
imentation to determine the best multi-camera setup with
minimal trajectory error.

The second part of this research involves intelligent track-
ing of thrown objects by a cognitive catching robot. Such a
robot observes the initial part of the thrown object’s flight
trajectory using the best multi-camera setup and predicts
the remaining trajectory intelligently with the help of a pro-
posed encoder–decoder Bi-LSTM DNN model. The model
was trained on a dataset comprising 3000 trajectories gen-
erated through simulated experiments. The evaluation of the
proposedmodel demonstrated its superior performance com-
pared to the current state of the art. It achieved a maximum
mean average error (MAE) of 5mm and root-mean-square
error (RMSE) of 7mm in 200 real-world test experiments,
indicating its capability to accurately predict the final catch-
ing point.

This manuscript is structured as follows: The next Sect. 2
explores already conducted work related to this research
problem. Section3 explains the proposed methodology.
Then, Sect. 4 presents the obtained results. Finally, the paper
is concluded in Sect. 5, where planned future work is also
discussed.

2 Related work

A lot of work for ball-catching robots found in the literature.
For example, the authors of [6] demonstrated their work that
was capable of catching two balls simultaneously thrown
by humans from 4 to 6m. The planning algorithm of their
work re-plans the robot movement every 20 ms based upon
the detected ball through 2 cameras, mounted on the throw-
ing side, and state estimation by UKF (Unscented Kalman
Filter). Their reported precision, in both articles [6, 7], was
within 2cm (i.e. 20mm) for 80 % successful catches. Simi-
larly, automated object detection and tracking have achieved
a great accuracy now-a-days as evident by some recent works
[2, 9, 21, 30, 33, 34] found in literature.

The robotic throw-catch approach, formaterial transporta-
tion in FMS, was first time proposed in [10]. This approach
is feasible for the transportation of only small-sized objects
as the aerodynamic instability of large-sized objects is high
and this factor makes them highly unpredictable during their
flight [12, 14].Detecting and predicting the interception posi-
tions of objects with various shapes, during their flight, is a
complex problem that requires a systematic and step-wise
solution. In the existing literature [3–5, 10–14, 24–28, 31]
on trajectory detection and prediction in in-plant logistics
scenarios, researchers opted to utilize a tennis ball as the pro-
jectile. It is due to the fact that understanding the aerodynamic
properties of an object is critical for accurately predicting its
behavior during flight and the aerodynamic properties of a
tennis ball are well-studied, and there is a significant body of
scientific literature that explores these properties. A review
in this context can be found in [23]. Hence, this research
work considers only spherical shape objects. However, the
proposed work paves the way to extend future research for
other shaped objects as well.

Thework in [29] used a high-speed 3Dvideo range camera
that works under the photonic mixer device (PMD) princi-
ple that helps to determine flying object distance with time
of flight sensor. Such sensor operates by emitting infrared
laser light that hits a target object and then returns to the
sensor, where it is detected. A similar effort was made in
[3–5] where the single camera, with 87 frames per second
(fps) capturing speed, was placed at the catching side. In the
initial trajectory of a mechanically thrown tennis ball, its 3D
interception positions are determined through photoelectric
sensors that were placed at a vertical distance of 40mm for
measuring the initial parameters of the ball. The interception
positions of the later part of the trajectory are measured by
size-based tracking as interception position determination is
more accurate when the flying ball is near to catching side
camera. The final 2D impact position accuracy was assessed
using a DST touch kit in only 17 test throws. The average
error in the final impact position ranged from 1.20 to 3.98
mm. The limitation of this work is that photoelectric sensors
are not easily implementable in industry.

The works in [13, 14, 24–28] used mechanical throwing
device for throwing tennis ball. After measuring the initial
interception positions of the thrown ball through the stere-
ovision of two mounted cameras on the catching side, the
remaining trajectory estimation is done by applying differ-
ent prediction algorithms. For example, inworks [26, 27], the
fast kNN-based prediction was made for future positions of
the ball and an accuracy of 30mm was achieved as the mean
squared error between actual and predicted positions in 92%
cases of 150 tested trajectories. In [25], the same authors used
a simple one-hidden layer neural network for the remaining
trajectory estimation. This neural network was trained by
150 simulated trajectories. During testing, the average pre-
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diction error in a simulated environment was approximately
24–26mm,which is regarded as high for simulatedoutcomes.
In recent studies [15–17, 20], machine learning algorithms
have been employed to track mechanically thrown balls
for ping-pong-playing robot. The study described in [15–
17] constructed a dataset consisting of 614 ball trajectories
captured by four ceiling-mounted cameras. A variational
auto-encoder deep neural network was trained using 90% of
this dataset and subsequently validated using the remaining
10%. The trained model was able to accurately predict the
final touch point by analyzing the first 40–50 frames of the
ball’s flight trajectory, recorded at a speed of 180 frames per
second. It had shown an absolute mean error of 40–60mm
when evaluated on 35 test trajectories. This error is high and
also suffers from a shortfall of limited testing. The second
work, presented in [20], used 3 cameras (right, left, and aux-
iliary) to observe the flight trajectory of a ping-pong ball
thrown through a mechanical device. It trained a dual neural
network on 300 trajectories and, upon testing on 30 trajec-
tories; it had shown an absolute mean error of 36.6 mm in
final touch point prediction. The limited training and test-
ing was the major drawback of this work. The limitations in
existing works for mechanically thrown object tracking are
summarized in Table 1.

The limitations of the current state of the art emphasize
that tracking of mechanically thrown object’s trajectory is
still an open research problem due to various factors. There
is a need for a large dataset of trajectories in order to have
better learning of nonlinear patterns of thrown object trajec-
tories. Furthermore, there is a need to enhance accuracy for
measuring interception positions of thrown objects through
visual sensors and for this purpose, extensive experimenta-
tion is required by placing cameras at different positions. In
a real-world environment, producing thousands of trajecto-
ries with a multitude of variations in experimental setup is
not possible. So a 3D simulated environment is needed in
which an object can be thrown with multiple variations and
its trajectory can be monitored through simulated cameras
following the basic principle of pinhole cameras for perspec-
tive projection, as applied in real-world cameras. The work
in hand is an effort in this direction.

3 Proposed work

The intention to do this work is to enhance the intelligence
of cognitive robots for catching mechanically thrown objects
in an internal logistics environment within flexible manufac-
turing systems of Industry 4.0. The work consists of two
parts. The first part is to derive the best multi-camera setup
for enhancing the visual tracking of mechanically thrown
objects’ trajectories. The second part consists of the collec-
tion of a dataset, of trajectories captured by derived best Ta
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multi-camera setup, and training of the proposed bidirec-
tional LSTMmodel for intelligent tracking of thrownobjects.
This paper explains the detailed procedure through involved
simulation and algorithms that are used in the derivation of
the best multi-camera setup for such internal logistics set-
tings and later on explains the second part of research that
utilizes derived multi-camera setup for preparation of trajec-
tories dataset to train proposed intelligent model responsible
for accurately predicting final interception position for catch-
ing robot. The following two subsections explain each part
in detail.

3.1 Proposed best multi-camera setup derivation

For deriving the best multi-camera setup, it is necessary
to derive the best camera capturing positions within such
an industrial internal logistics environment. It needs the
placement of cameras nearly everywhere, within the simi-
lar 3D vicinity of internal industrial logistics, and observing
obtained reconstructed results about the thrownobject’s flight
trajectory. Since it is nearly impossible in practice, a simu-
lated experimental setup has been developed in accordance
with the real-world’s camera parameters and experimental
setup.

The simulation enables to throwing of spherical objects
with any properties. However, the tennis ball was used as
a throwing object in simulated and real-world experiments
because the same object was used in similar experiments in
state of the art and hence it enabled us to compare obtained
results accurately with already existing works. Another rea-
son for using a tennis ball is its well-defined properties like
a radius of 32.2 mm, mass of 56g, etc. Additionally, the
aerodynamic properties of tennis balls are also well defined
like the coefficient of air drag (i.e. cw) as 0.35. The detailed
survey about these properties can be found in [1].

The other simulation parameters of the throwing object
(like its launching speed, derivation of all three coordinates
of its initial velocity from measured launching speed) and
camera properties (like its focal length, capturing speed,
etc.) are used as per real experiments in order to establish
harmony between simulation and real-world results. More-
over, a sample experiment was performed in the real-world
and simulated environment by using the same parameters
and comparing the 3D interception positions results recon-
structed by real and simulated camera-captured frames. A
close resemblance in reconstructed results proved the signif-
icance of simulation. Interested readers are referred to the
previously published paper of this work [32] to know all the
details about the sample experiment. Figures4 and 5 show
the first and second screens of the developed simulation that
allow setting all above said parameters.

The main screen of the simulation shows that it also
allows settings to place multiple (2–4) cameras for capturing

Fig. 4 Developed multi-camera simulation (main screen)

Fig. 5 Setting camera parameters (screen-2)

mechanically thrownobject trajectories.However, at this first
stage, only simulated experiments were performed to derive
the best camera capturing positions by placing the single
camera at multiple positions and analyzing the 3D intercep-
tion positions accuracy of mechanically thrown objects by
analyzing the difference between actual 3D positions of that
object and its reconstructed 3D positions that are determined
through its size as appeared in its captured trajectory frames.
Later on, at the next stage, the combination of multiple cam-
eras will be experimented by placing cameras at derived best
positions in both simulated and real-world environments. The
algorithm to derive the best camera capturing positions is
given as Algorithm 1.

Algorithm 1 starts by capturing trajectories by placing
the camera at nearly every reasonably distant position in a
simulated 3D world within the reasonable vicinity of the
internal logistics environment. The “capture trajectories”
process consists of reconstructing trajectories captured by
cameras from their videos and then comparing reconstructed
3D object positions with actual positions within its flight tra-
jectory.Hence it determines the accuracy of visually captured
trajectories by placing cameras at multiple positions. The
step-2 of Algorithm 1 shows that at first, for guessing the best
results area, the camera is chosen to be placed at a 500mm
distance (along each dimension). As we must put a limit on
axis values, the 3D grid is divided in a way that the camera
is considered to be placed from −500 to 3500 along Y -axis
values. At each Y -axis value, the height in camera position
(i.e. Z -axis value) is considered from −500 to 1500 and
X -axis positions are considered 1500mm toward right and
left. The camera is always oriented (targeted) toward (0,0,0)
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Algorithm 1 Best Camera Capturing Positions Derivation

procedure CaptureAndCalculate(Capture trajectories by placing camera at multiple positions)

Step 1: C500[ ][ ] ← {} � Initialize empty list for holding trajectory results of all 500 mm apart cameras

Step 2: C500[ ][ ] ← CaptureTrajectories(500, -1500, 1500, -500, 3500, -500, 1500)

Step 3: BCP500[ ] ← CalculateMinimumTrajectoryErrors(C500)
� BCP500 values represent minimum sub-trajectory errors records of C500

Step 4: C250[ ][ ] ← {} � Initialize empty list for holding trajectories results of all 250 mm apart cameras

� Capture trajectories in 250 mm surroundings of minimum sub-trajectory error positions
Step 5: for i = 0 → 3 do

i) C[ ][ ] ← CaptureTrajectories(250, BCP500[i]][0]-250,C[BCP500[i]][0]+250
C[BCP500[i]][1]-250,C[BCP500[i]][1]+250,
C[BCP500[i]][2]-250,C[BCP500[i]][2]+250)

ii) Append all records of list C into list C250
end for

Step 6: BCP250[ ] ← CalculateMinimumTrajectoryErrors(C250)
� BCP250 values represent minimum sub-trajectory errors records of C250

Step 7: C100[ ][ ] ← {} � Initialize empty list for holding trajectories results of all 100 mm apart cameras

� Capture trajectories in 100 mm surroundings of minimum sub-trajectory error positions
Step 8: for i = 0 → 3 do

i) C[ ][ ] ← CaptureTrajectories(100, BCP250[i]][0]-100,C[BCP250[i]][0]+100
C[BCP250[i]][1]-100,C[BCP250[i]][1]+100,
C[BCP250[i]][2]-100,C[BCP250[i]][2]+100)

ii) Append all records of list C into list C100
end for

Step 9: BCP100[ ] ← CalculateMinimumTrajectoryErrors(C100)
� Best camera capturing positions are (C100[k][0], C100[k][1], C100[k][2]) where k = BCP100[i] for i=0 to 3

Output: Best camera positions for capturing in-plant thrown objects trajectory

end procedure

Fig. 6 Initially considered 500mm apart camera positions

which is the point fromwhere the ball is always launched in a
simulated environment. Figure6 shows 500mmapart camera
positions that are considered for initial experimentation.

Algorithm 2 represents the “capture trajectories” process
that consists of capturing trajectories by placing the camera
at multiple positions with a particular distance within the
specified limits of all three X , Y , and Z axes. In first-time

experimentation, the distance is 500mm and the axes limits
are chosen reasonably that represent the 3–5m vicinity of
the internal logistics environment of the industry. However,
these limits can be adjusted. For instance, if good results
are obtained at the initially chosen value of −500mm for
the Z -axis, then it will show the potential for even better
outcomesbeyond this value andhence expand the experimen-
tation range by considering the Z -axis value of −1000mm
as well. This iterative process can be further continued.
The obtained results of experimentation are shared in the
next section. However, here it can be seen from step-5 of
Algorithm 1 that the initial best camera positions obtained,
because of minimum trajectory errors, are further exper-
imented with by capturing trajectories at 250mm apart
distance along all three axes surrounding those initially
obtained best positions. This process is continued and fur-
ther refined experimentation of capturing trajectories is done
at 100mm apart distances, along all three axes, surrounding
obtained best positions as depicted by step-8 of Algorithm 1.

The process of capturing trajectories, as shown in Algo-
rithm 2, includes determining 3D interception positions of
thrownobjects by the cameraby reconstructing themfrom the
size appearing in captured frames. Afterward, these recon-
structed positions (during its flight trajectory) are compared
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Algorithm 2 Capture Trajectories and Calculate Errors
procedure CaptureTrajectories(Distance, X_start, X_end, Y_start, Y_end, Z_start, Z_end)

Step 1: C[ ][ ] ← {} � Initialize empty list for holding trajectories results
Step 2: cam_no ← 0

� Determine thrown object’s 3D position in ’n’ captured frames when camera placed at (i,j,k) position
Step 3:
for i ← X_start to X_end do

for j ← Y_start to Y_end do
for k ← Z_start to Z_end do

C[cam_no][0] ← i
C[cam_no][1] ← j
C[cam_no][2] ← k
n_t ← Integer(n/4) � ‘n’ is total no. of frames
n_t1 ← n_t + 1 � last frame no. of Sub-Traj 1
n_t2 ← (n_t ∗ 2) + 1 � last frame no. of Sub-Traj 2
n_t3 ← (n_t ∗ 3) + 1 � last frame no. of Sub-Traj 3
n_t4 ← n � last frame no. of Sub-Traj 4
Err_t1 ← 0
Err_t2 ← 0
Err_t3 ← 0
Err_t4 ← 0
for frame ← 1 to n_t1 do

[Xd , Yd , Zd ] ← ObjectPositionDetermination(frame, (i, j, k))
Err_t1 ← Err_t1 + √

(Xd − Xa)2 + (Yd − Ya)2 + (Zd − Za)2

end for
for frame ← (n_t1 + 1) to n_t2 do

[Xd , Yd , Zd ] ← ObjectPositionDetermination(frame, (i, j, k))
Err_t2 ← Err_t2 + √

(Xd − Xa)2 + (Yd − Ya)2 + (Zd − Za)2

end for
for frame ← (n_t2 + 1) to n_t3 do

[Xd , Yd , Zd ] ← ObjectPositionDetermination(frame, (i, j, k))
Err_t3 ← Err_t3 + √

(Xd − Xa)2 + (Yd − Ya)2 + (Zd − Za)2

end for
for frame ← (n_t3 + 1) to n_t4 do

[Xd , Yd , Zd ] ← ObjectPositionDetermination(frame, (i, j, k))
Err_t4 ← Err_t4 + √

(Xd − Xa)2 + (Yd − Ya)2 + (Zd − Za)2

end for
C[cam_no][3] ← Err_t1
C[cam_no][4] ← Err_t2
C[cam_no][5] ← Err_t3
C[cam_no][6] ← Err_t4
cam_no ← cam_no + 1

end for
end for

end for
Output: List C[nc][7]

end procedure

with actual positions. Hence, it determines the accuracy of
visually captured trajectories by placing cameras at multiple
positions. Let (Xd ,Yd , Zd) be the determined 3D position
of thrown ball and (Xa,Ya, Za) is its actual position then
the magnitude of the difference vector between these two
positions can be calculated by the following Eq.3.1.

Magnitude of diff. vector

=
√
(Xd − Xa)2 + (Yd − Ya)2 + (Zd − Za)2 (3.1)

It shows that visually captured trajectory error can be calcu-
lated as the sum of the difference between all corresponding

interception positions on two 3D curves of the ball. The first
3D curve consists of the determined ball positions in the
reconstructed trajectory scene and the second curve consists
of the actual ball positions. So, the whole trajectory error can
be calculated by the following Eq.3.2.

Trajectory error

=
n∑

i=1

√
(Xdi − Xai )

2 + (Ydi − Yai )
2 + (Zdi − Zai )

2

(3.2)
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where ‘n’ is the total number of captured trajectory frames.
Depending on the capturing camera position, it is possible
that the captured trajectory error could be less in the ini-
tial, middle, or final part of the trajectory. So the trajectory
is divided into four parts and the corresponding four sub-
trajectory errors are calculated separately as depicted by step
3 of Algorithm 2. For example, if the total captured video
frames (during the thrown object’s flight) are 17 then these
frames can be divided into four segments as shown in Fig. 7.
These four sub trajectories (sub1, sub2, sub3 and sub4) actu-
ally cover determined errors in first five (1–5), next four
(6–9), then next four (10–13) and last 4 four (14–17) frames,
respectively, and in this case, these four errors can be cal-
culated by the formulae given in Eqs. 3.3, 3.4, 3.5, and 3.6,
respectively.

Sub1 traj. Error

=
5∑

i=1

√(
Xdi − Xai

)2 + (
Ydi − Yai

)2 + (
Zdi − Zai

)2

(3.3)

Sub2 traj. Error

=
9∑

i=6

√(
Xdi − Xai

)2 + (
Ydi − Yai

)2 + (
Zdi − Zai

)2

(3.4)

Sub3 traj. Error

=
13∑

i=10

√(
Xdi − Xai

)2 + (
Ydi − Yai

)2 + (
Zdi − Zai

)2

(3.5)

Sub4 traj. Error

=
17∑

i=14

√(
Xdi − Xai

)2 + (
Ydi − Yai

)2 + (
Zdi − Zai

)2

(3.6)

The camera-captured RGB image is converted into HSV col-
ored image first. Then background is subtracted from HSV
colored image. After that, noise is removed from a resultant
binary image. The ball as a circle is detected from a binary
image and its 3D position is reconstructed from the recog-
nized radius of the ball and its 2D center position (in pixels)
within the captured frames. Figure8 below shows some cap-
tured images by placing the camera at positions (−800, 3500,
500) and oriented toward (0,0,0) which is the launching posi-
tion of the ball.

The same methodology for “object position determi-
nation” in camera-captured frame is employed both in
simulated and real-world environment. This methodology is
explained in detail in following Algorithm 3. Fig. 9 shows

Fig. 7 Trajectory errors when the camera captures trajectory in 17
frames

Fig. 8 aCaptured frames4, 9&15whencamera placed at (−800, 3500,
500) bActual & reconstructed 3D position in corresponding binary seg-
mented image obtained after background subtraction and noise removal

few results from ball detection process in simulated camera
captured frame.

Algorithm 2 shows that whenever the process of “capture
trajectories” is initiated by placing the camera at multiple
(particular distance apart) positions, it returns a list of results
in terms ofmultiple records. Each record in the list represents
obtained results for a particularly placed camera and that
record has 07 fields. The first three represent the three coor-

123



Multi-camera tracking of mechanically thrown objects...

Fig. 9 a Simulated camera’s captured frame b Background image
c Binary image after background subtraction and noise removal d
Detected ball through CHT algorithm

dinates for the position of the camera and the last 04 fields
represent four sub-trajectory errors obtained while trajectory
captured by that camera placement. In order to find the best
capturing position against each sub-trajectory error, the four
minimum sub-trajectory errors have to be calculated using
the Algorithm 4 that returns a list of Best Camera Trajec-
tory (BCTx) that have 04 values pointing toward the indexes
of Cx which is in fact the list of all experimented camera
positions that are ‘x’ distance apart. In this way, the BCTx
points toward four camera positions where best-captured tra-
jectories were found due to corresponding minimum four
sub-trajectory errors.

So recalling Algorithm 1, the camera is placed on all
possible 500mm apart positions, and then their minimum
trajectory errors are calculated to derive the best positions.
Then, in phase II, the camera is placed in all possible 250mm
apart positions (adjacent to best-derived positions in the
earlier phase). Again, their minimum trajectory errors are
calculated and further derive the best positions. Finally, the
same process is repeated with 100mm apart positions sur-
rounding derived positions of phase II and hence final best
camera capturing positions are derived in phase III. All these
experimentation results are shown in Sect. 4. In the subse-
quent section, the results are presented for both simulated
and real-world environments. Multiple cameras are strategi-
cally positioned at the derived optimal locations, enabling the
determination of 3D interception positions through stereovi-
sion among these cameras. So this experimentation provides
the best multi-camera network resulting in the most accurate
observation of the trajectory of mechanically thrown objects
within the vicinity of the internal logistic environment of
Industry 4.0.

Algorithm 3 Object Position Determination
procedure ObjectPositionDetermination(Frame, CamPosx ,
CamPosy , CamPosz)

Input: A frame (i.e. captured image) and Camera Position
(CamPosx ,CamPosy,CamPosz)

Output: Determined 3D interception position (Xd , Yd , Zd ) of
thrown object (i.e. ball) in frame

Step 1: The input RGB colored image is converted into HSV col-
ored image.

Step 2: Background is subtracted from HSV colored image by
using bitwise XOR operation.

Step 3: The median filter is applied, on resultant binary image, in
order to remove noise.

Step 4: Then Circular Hough Transform (CHT) algorithm is
applied to detect ball in image. The CHT algorithm returns the
detected circle’s center in terms of x and y pixel and its radius (i.e.
rpi x )) that is also in terms of pixels..

Step 5: Calculate the values for travelled_pixelx and
travelled_pixely by getting the difference between detected ball
center pixel values and first frame’s corresponding pixel values.

Step 6: The distance of ball from camera (i.e. d) is determined by
the formula of given Equation.

d ← f ×r
rpix×pixel_pitch

here r is the actual radius of the ball, which is 32.2 mm, f is the
focal length, and pixel_pitch is per pixel area on the camera’s sensor.
Their values are 6 mm and 0.006 mm, respectively, which are exactly
the same values as the used real camera, i.e., IDS UI-1220RE-M-GL.

Step 7: Determine the y coordinate of the ball position.

Yc ←
{
CamPosY − d if camera is placed at positive Y-axis

CamPosY + d if camera is placed at negative Y-axis

Step 8: Determine X and Z coordinates of the ball position.

Xc ← d×travelled_pixelx×pixel_pitch
f

Zc ← d×travelled_pixely×pixel_pitch
f

Step 9: Actual 3D interception position of ball (i.e. (Xw, Yw, Zw)

is derived through following transformations of (Xc, Yc, Zc) with
rotation and translation matrices of camera.

⎡

⎣
Xw

Yw
Zw

⎤

⎦ ←
⎡

⎣
r11 r12 r13
r21 r22 r23
r31 r32 r33

⎤

⎦

−1

×
⎡

⎣
Xc + Tx
Yc + Ty
Zc + Tz

⎤

⎦

end procedure

3.2 Proposed intelligent tracking for cognitive
catching robot

For the applicability of automated in-plant logistics by
robotic throw catch approach for smart manufacturing in
Industry 4.0, the mechanically thrown object should be accu-
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Algorithm 4 Calculate Minimum Trajectory Errors
procedure CalculateMinimumTrajectoryErrors(Cx[nc][7])

Input: List Cx[nc][7] containing captured trajectories
Cx contains captured trajectories results for nc experimented cam-

era positions where all those positions are at x mm apart. It’s each
record contains 7 fields where the first 3 represent camera’s position
and last 4 represents obtained sub-trajectory errors

Output: BCT x[4] containing indexes of Cx for best captured
trajectories

Step 1: BCT x[4] ← {} � Initialize output list of indexes as an
empty list

Step 2: i ← 3
� Each record of Cx has column indexes 3 to 6 for observed errors

of sub-traj-1 to sub-traj-4 respectively
Step 3:
for j ← 0 to 3 do

min ← Cx[0][ j] � Assume first trajectory has minimum
sub-trajectory error

min_loc ← 0 � Compare assumed minimum sub-trajectory
error with all remaining trajectories

for k ← 1 to nc − 1 do
if Cx[k][i] < min then

min ← Cx[k][i]
min_loc ← k

end if
end for
BCT x[ j] ← min_loc
i ← i + 1

end for
end procedure

rately caught by intelligent cognitive robots. The derived best
multi-camera network, for such industrial settings, helps it
to accurately observe 3D spatial coordinates of the thrown
object in its initial flight trajectory. But such robots also need
to be intelligently trained so that they can accurately pre-
dict the remaining trajectory, in real time, by observing the
initial flight trajectory of the thrown object. The mechani-
cally thrown object’s trajectory tracking and prediction is still
an open research problem because of several factors among
which the major factor is the nonlinear nature of the thrown
object’s trajectory.

Consequently, a large dataset of trajectories is required to
enhance the learning of nonlinear patterns in mechanically
thrown object trajectories. However, generating thousands
of trajectories with numerous variations in the experimental
setup is not feasible in a real-world environment. Therefore,
the created 3D simulated environment enables the throwing
of objects with multiple variations, while their trajecto-
ries can be tracked using simulated cameras based on the
fundamental principles of the pinhole camera model and
perspective projection (similar to real-world experimental
cameras). The simulation not only allows for camera place-
ment anywhere within the 3D space of the internal logistics
environment but also facilitates trajectory capture at any
desired capturing speed (frames per second). Thus, it fulfills

the requirement for extensive throwing experimentation to
gather trajectory data essential for training supervised learn-
ing algorithms, particularly deep recurrent neural networks
such as RNN and LSTM.

Using the optimal camera setup in a simulated environ-
ment, a total of 3000 experiments were performed by minor
adjustments in launching parameters (±0.001m/s in launch-
ing speed as well as ±0.001 in azimuth and inclination
angles) of the thrown ball. Two trajectories are recorded, as
two time series, against each experiment. The first time series
comprises the perceived interception positions as observed
by the cameras, while the second time series contains the
actual 3D interception positions. A training dataset needs to
be prepared for the throws, where each dataset entry consists
of two parts. The initial portion of the trajectory comprises
2/3 of the positions perceived by the observing cameras,
while the remaining 1/3 represents the actual positions of
the thrown ball.

The proposed deep neural networkmodel, called encoder–
decoder Bi-LSTM, is introduced that is capable of accurately
predicting the last 1/3 part of the thrown object’s trajectory
by utilizing the initial 2/3 portion as observed by the cam-
eras. This model has demonstrated excellent performance in
identifying patterns in such many-to-many (m×n)mapping
problems involving nonlinear time series data. The proposed
model architecture is depicted in Fig. 10.
This architectural representation illustrates a proposed intel-
ligent tracking model designed to map a sequence of m input
3D positions to ‘n’ output 3D positions. The model’s input
shape is defined as (m, 3), indicating that encoder Bi-LSTM
gets initial ‘m’ three-dimensional interception positions of
observed trajectory as input. In fact, the encoder Bi-LSTM
consists of two LSTMs (forward and backward) with 50 neu-
rons each.

The output of the encoder Bi-LSTM is passed through a
‘Relu’ layer and then fed repeatedly n times to the decoder
Bi-LSTMusing theRepeatVector operation. The decoder Bi-
LSTM also consists of two LSTMs (forward and backward)
with 50 neurons each. The output of the decoder is processed
through a ‘Relu’ layer and a time-distributed dense layer to
represent 3 features (X , Y , and Z position coordinates) at
each time step.

The final output of the model is represented as n×3, rep-
resenting the last ‘n’ 3D predicted positions of the thrown
object. The decoder Bi-LSTM incorporates the current input,
RepeatVector value, and the previous output’s hidden state.
The RepeatVector operation is used exclusively for repeat-
ing the output of encoder LSTM and it does not possess any
trainable parameters. Both encoder and decoder Bi-LSTM
have 100 input neurons (i.e. 50 neurons for each forward and
backward LSTM). The proposed tracking model is evaluated
on multiple testing throws and it exhibited outstanding accu-
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Fig. 10 Proposed intelligent tracking model architecture

racy. The detailed results of these evaluations are presented
in the next section.

4 Results and discussion

During real-world experiments, a specially designedmechan-
ical device is utilized to throw the tennis ball. This device
incorporates a spring mechanism, and the ball is thrown by
harnessing the kinetic energy generated through the stretch-
ing or compressing of the spring. The process of launching
the tennis ball is visually depicted in Fig. 11.

The thrown ball’s launching speed is accurately deter-
mined using a radar gun. The initial velocity is then derived
based on this measured speed and the throwing angles.
Readers interested in a comprehensive explanation of this
derivation are referred to the previously published paper of

Fig. 11 Mechanical ball launching in real world experiments

Table 2 Characteristics of used camera “IDS UI-1220RE-M-GL”

Feature Value

Sensor area 4.512 × 2.880mm2

Resolution 752 × 480

Pixel pitch (per pixel distance) 6µm

Focal length � 6mm

Experimented FOV in degrees 41.2◦

Experimented capturing speed 60 fps

Fig. 12 Considered X , Y , and Z -axis in experimentation

this work [29], which provides detailed insights into the
real and simulated experimental setups. The approximate
distance separating the throwing point from the final catch-
ing point is 3m. All simulation parameters, including the
launching parameters of the thrown object and camera prop-
erties, are replicated from the real-world experimental setup.
Specifically, the IDS imaging system’s camera model “UI-
1220RE-M-GL” is employed in real-world experiments, and
the characteristics of this camera are summarized in Table 2.

The imaging process in simulated cameras used a standard
pinhole cameramodel that employs perspective projection, as
the case in real-world cameras. It means, that viewed objects
are projected smaller when distant from the camera and pro-
jected larger when near to the camera. In the simulation, the
ball is initially launched from point (0, 0, 0) and the axes of
its movement are illustrated in Fig. 12.

As explained before, the proposed work consists of two
parts. The first part is to derive the best multi-camera
setup for enhancing the visual tracking of mechanically
thrown objects’ trajectories. Then the second part consists
of the preparation of the trajectories dataset, using a derived
multi-camera setup, and then the training and testing of
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Fig. 13 Minimum observed four sub-trajectory error’s positions in ini-
tial 500mm apart experimentation

the proposed Bi-LSTM model for intelligent tracking of
thrown objects. The methodologies employed in both parts
are explained, in detail, in the previous section. However, the
experimentation results obtained in each part are given in the
following two subsections.

4.1 Results in deriving best multi-camera setup

Recalling Algorithm 1, the simulated experimentation ini-
tiates by systematically positioning the camera at regular
intervals of 500mmwithin the designated ranges of the X , Y ,
and Z axes and then their fourminimum sub-trajectory errors
are calculated to derive the best camera positions at the first
place. In simulated experiments, the initial velocities (along
all three axes of the launched tennis ball) are tried to keep
the same as their measured values in conducted real-world
experiments. When the simulated camera is placed at each
of the experimented positions, it is oriented toward (0,0,0),
i.e. the launching position of the ball. The camera capturing
speed is set at 60 frames per second (fps), which is consis-
tent with the speed used in real-world experiments. Using
this rate, the trajectory of the ball is recorded in 17 frames.
The camera positions, where minimum sub-trajectory errors
are observed, are shown in Fig. 13.

The mentioned four sub-trajectory errors specify the min-
imum observed errors in the camera-captured first five (1–5),
the next four (6–9), then the next four (10–13), and the last 4
four (14–17) frames, respectively. As explained previously,
these errors are calculated by formulae given in Eq. 3.3 to
3.6 respectively. In the next step, the cameras are placed at
a 250mm distance surrounding these identified positions.
Figure14 shows the further tested 250mmapart camera posi-
tions.

The results obtained, after experimenting on all the above-
mentioned positions, show that minimum trajectory errors
are still at the same positions. However, the trajectory errors
are less at a distance (i.e. Y -axis value) of −750mm as

Fig. 14 Camera placement at all 250mm apart positions surrounding
initially best identified positions

Fig. 15 Better resultant 250mm apart positions

compared to a Y-axis value of −250mm, and also observed
that trajectory errors are less at a distance of 2750mm than
at 3250mm. Figure15 illustrates that the trajectory of the
thrown object is most effectively captured when observed
from the throwing side within the distance range of −750
to −500mm along the Y -axis. Furthermore, the results
obtained at −500mm exhibit superior performance com-
pared to those at −750mm.

Fig. 15 also demonstrates that the trajectory of the thrown
object is optimally captured when observed from the catch-
ing side within the distance range of 2750–3000mm along
the Y -axis. Notably, the results obtained at the Y -axis value
of 3000mm outperform those obtained at 2750mm. The
obtained experimental results have further shown that the
errors are less within the Z -axis values between 0 to 500mm
and also X -axis values between 0 to 500mm. It helped to
figure out initially guessed best resultant areas. Those areas
are shown in Fig. 16.

As the results on distance −500 are better than −750 as
well as the results on distance 3000 are better than 2750, so
for final refined experiments the selected distances are−500
and−600 (near to−500) and similarly on the catching side,
the selected distances are 3000 and 2900 (near to 3000). The

123



Multi-camera tracking of mechanically thrown objects...

Fig. 16 Initially guessed best resultant areas

Fig. 17 Finally guessed best resultant areas for refined experiments

camera positionswithin these areas are considered for refined
experiments and the finally selected best resultant areas for
refined experimentation are shown in Fig. 17.

The best results obtained within finally guessed areas
make sense because the size of the ball changes significantly
within these areas and the reconstruction of the 3D trajec-
tory of a thrown ball, from camera-captured video, is done
through its recognized radius in captured video frames. In the
following Fig. 18a, b, c, d and e, the initial, middle, and last
frames of the trajectory of the thrown ball are shown while
the trajectory is captured from the top side, right and left
sides, and throwing and catching sides, respectively. Signifi-
cant variations, in the size of the thrown ball, can be observed
when capturing its trajectory from the throwing or catching
side, in contrast to top or side views.

Finally, the refined experimentation is done within finally
selected areas. This time, cameras are placed at 100mm
apart positions within those areas. Figure19 shows the cam-
era positions used for refined experiments. Based upon this
refined experimentation, Table 3 shows the best-derived cam-
era positions resulting in minimum sub-trajectory errors.

Then further experimentation is employed by different
combinations of these best-derived positioned cameras by
applying stereovision among them. While trying their com-

Fig. 18 First, middle and last frames of thrown ball trajectory

binations, it was ensured that both throwing and catching
side cameras must be included for good results. This exper-
imentation is conducted in both simulated and real-world
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Fig. 19 Camera placement positions considered for refined experi-
ments within the best resultant area

Table 3 Best camera positions based upon min. sub-trajectory error

Camera Position Min trajectory error (frames)

C1 − 200,− 500, 100 Frames 1–5

C2 − 400,− 600, 200 Frames 6–9

C3 200, 2900, 200 Frames 10–13

C4 100, 3000, 400 Frames 14–17

Fig. 20 Setting parameters for capturing trajectory through C1 and C4

environments to determine the optimal multi-camera setup
for accurately observing the trajectory of a thrown object in
such industrial settings. Figures20 and 21 show some simu-
lation screenshots when the trajectory was captured through
C1 and C4.

Similarly, the following Figs. 22 and 23 show some sim-
ulation screenshots when the trajectory is captured through
three cameras (C1, C3, and C4). It can be seen that accuracy
is further improved when this camera combination is tried.

The 50 simulated experiments were performed with
minute variations in the initial launching velocities of the
thrown ball. All possible combinations of 2–4 cameras were
experimented with. The total trajectory error (calculated by
Eq.3.2) was monitored. Finally, the average error is calcu-
lated and presented inTable 4. Table 4 shows that good results

Fig. 21 Actual & reconstructed 3D position in corresponding binary
segmented images (a. Frame 4 b. Frame 9 c. Frame 16) obtained
after background subtraction & noise removal when trajectory captured
through C1 & C4

Fig. 22 Setting parameters for capturing trajectory through C1, C3 and
C4

are obtained with particular three and four-calibrated camera
setups. However, it can be implied from the obtained mini-
mum error result that three calibrated cameras are enough for
the best observation of flight trajectory. Moreover, the com-
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Fig. 23 Actual and reconstructed 3D position in corresponding binary
segmented images (a. Frame 6 b. Frame 10 c. Frame 17) obtained after
background subtraction and noise removal when trajectory captured
through C1, C3 and C4

bination of three cameras (C1, C3, and C4) reconstructed a
complete trajectory with minimum error. Hence it was cho-
sen as the optimal multi-camera setup.

The derived optimal multi-camera setup was also tested
for 50 real-world tennis ball-throwing experiments. How-
ever, the accuracy of the reconstructed final position of the
ball could only be tested using a DST touch screen that is

placed on the catching side. This screen could measure two
coordinates (X -axis and Z -axis values) but its placement (i.e.
distance) can measure the Y -axis value as well. The results
of these experiments have shown promising accuracy of the
final 3D touch point of the ball as the average reconstruction
error for both X and Z -axis values was under 2mm and for
Y -axis it was under 4mm.

4.2 Proposed trackingmodel results

The proposedmodel needed a large training dataset of throws
and, for this purpose, the 3000 simulation experiments were
performed using a derived optimal multi-camera configu-
ration setup. Minor adjustments, in launching parameters,
were made for a variety of experiments. Two trajectories are
recorded, as two time series, against each experiment. The
first time-series comprises the perceived interception posi-
tions as observed by the cameras,while the second time series
contains the actual 3D interception positions. This approach
was adopted to ensure that each training dataset’s trajectory
should contain initial 3D interception positions as camera-
observed positions, while the final 3D interception positions
should correspond to the actual positions. This design choice
is influenced by the findings of the catching robot’s work pre-
sented in [12], which highlights the need for a minimum of
80 ms to allow the motor of a contemporary catching robot
to accurately position its catching gripper at the predicted
final 3D position. So, the final 3D catching position should
be predicted at least 80 ms before the flying object reaches
its final position.

In the real-world experimentation, the capturing speed of
the camera was 60 frames per second. So, using the same
capturing speed in simulated experiments, the moving ball
was found in 17 frames with a total trajectory time of around
283 ms. To effectively train the proposed intelligent tracking
model, it is essential to configure it to receive as input the
initial 3D interception positions observed by cameras within
the initial 200 ms flight trajectory of the thrown ball. The
model should then be capable of predicting the subsequent
83 ms of the flight trajectory. So, each of the 3000 trajec-
tories of the training dataset is composed of 12 interception
positions (i.e. 2/3 of trajectory) as observed by cameras and
the remaining 5 interception positions (i.e. 1/3 of trajectory)
as the last 5 actual positions of the ball in simulation.

The architecture of the proposed intelligent tracking
model is already explained in Sect. 3.2. The proposed model
of encoder–decoder Bi-LSTM effectively retains time-series
information from both forward and backward sequential
contexts, making it well-suited for learning patterns inmany-
to-many time series problems. This model was evaluated
using various numbers of tested throws and demonstrated
superb accuracy in predicting the last 5 interception posi-
tions of a thrown object by observing the first 12 interception
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Table 4 Average trajectory error of 50 simulated test experiments(using
various multi-camera setups)

Multi-camera setup Total trajectory
error (mm)

C1 + C3 65

C1 + C4 79

C2 + C3 72

C1 + C2 + C3 43

C1 + C2 + C4 47

C1 + C3 + C4 31

C2 + C3 + C4 38

C1 + C2 + C3 + C4 34

positions, through a derived multi-camera setup to achieve
optimal performance.As eachpredicted interception position
has three coordinate values there are a total of 15 calculated
error values. The formulae for calculating root-mean-square
error (RMSE) and mean absolute error (MAE) are given in
the following Eqs. 4.1, 4.2, respectively.

RMSE =
√∑5

i=1
∑3

j=1

(
Predictedi j − Actuali j

)2

15
(4.1)

MAE =
∑5

i=1
∑3

j=1 |Predictedi j − Actuali j |
15

(4.2)

Themodel is tested gradually from a small to large datasets of
simulated experimented throws. Figure24 depict the predic-
tion error results obtained by testing the proposed model on
four distinct test datasets comprising 100, 200, 500, and 1000
simulated throws, respectively. The presented graphs demon-
strate consistent error values within the favorable range of
0.5−2.5 mm, indicating the model’s effectiveness.

In the following Fig. 25, the comparison between ground
truth and predicted values (of X , Y , and Z -axis, respectively)
is shown for the last 5 predicted interception positions of a
tested thrown ball in the simulated experiment. Within these
Figs, the initial 12 values represent the observed interception
positions, captured using a multi-camera setup, while the
last 5 values correspond to the ground truth and predicted
values generated by the proposed intelligent tracking model.
The substantial overlap among corresponding predicted and
ground truth values demonstrates the high accuracy achieved
by the proposed model.

In real-world scenarios, similar experiments were con-
ducted. However, due to the absence of absolute position
detector sensors in the experimental setup, it was only pos-
sible to measure the final position of the thrown ball using
a DST touch screen located on the catching side. The accu-
racy of predicting the final 3D catching positionwas assessed
by root-mean-square error (RMSE) and mean absolute error

Fig. 24 Prediction error results of proposed model evaluation for dif-
ferent datasets of simulated test throws

Fig. 25 Comparison between ground truth and predicted values (of X ,
Y and Z -axis, respectively) for last 5 predicted positions of a tested
throw

(MAE) that are calculated using the formulae provided in
Eqs. 4.3 and 4.4, respectively.

RMSE in Final Position Prediction

=
√∑3

i=1(Predictioni − Actuali )2

3

(4.3)

MAE Final Position Prediction

=
∑3

i=1 |Predictedi − Actuali |
3

(4.4)

Fig. 26a and b present obtained error results, for final touch
point prediction, in terms of MAE and RMSE, respectively.
These results are obtained by 200 ball-throwing real-world
test experiments.

These obtained results have shown that the proposed
intelligent tackingmodel has shown the ability of final catch-
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Fig. 26 Final touch point prediction error results by proposed model
when evaluated on 200 real-world test throws

ing point prediction with a maximum MAE error of 5mm
and RMSE of 7mm while tested in 200 real-world throw-
ing experiments. The obtained results are compared with
some recently implemented works of mechanically thrown
object tracking that utilized machine learning techniques for
final catching point prediction. This comparative analysis
is presented in Table 5. The results demonstrate significant
improvement in the accuracy of predicting the final catching
point through intelligent tracking by the proposed model.

5 Conclusion and future work

For smart manufacturing in Industry 4.0, the approach of
utilizing throwing and catching cognitive robots holds the
potential to become themost efficient mode of in-plant logis-
tics in an automatedway.However, for the adaptability of this
approach in industry, further research is required in two key
dimensions. Firstly, the identification of an optimal multi-
camera setup is necessary that accurately observe the initial
flight trajectory of thrown objects within in-plant industrial
settings. Secondly, an advanced machine learning algorithm
is needed to enhance the intelligence of the cognitive catch-
ing robot. This algorithm should enable the catching robot
to accurately predict the final 3D catching position by ana-
lyzing the observed initial flight trajectory of mechanically
thrown objects.

The proposed work aims to address both of these research
dimensions. It involves the creation of a 3D simulation envi-
ronment that facilitates controlled mechanical throwing of
objects within the internal logistics environment of Industry
4.0. Through this simulation, users have the ability to specify
the attributes of the thrown object and observe its trajectory
by positioning a simulated camera at any desired position
and orientation within the 3D environment. To the best of
our knowledge, this simulation represents the first attempt in
this research domain. The simulation played a crucial role
in conducting extensive experimentation to identify optimal
camera positions for accurately capturing the 3D interception
positions of the flying objects based on their apparent size on
the camera’s sensor plane. Various calibrated multi-camera
setups were tested using the identified optimal positions, and
themost effective configuration was determined based on the
obtained results.

Subsequently, a training dataset was created, consisting
of trajectories of 3000 simulated throwing experiments. The
initial part of each trajectory, of the dataset, contained the
interception positions observed through the derived optimal
multi-camera setup,while thefinal part consistedof the actual
positions. An encoder–decoder bidirectional LSTM neural
network model was proposed and trained on this dataset.
The performance of the model exceeded the state-of-the-art,
achieving a mean average error of 5mm and a root-mean-

Table 5 Comparison of final catching point prediction accuracy achieved in this work and claimed in other state-of-the-art works for mechanically
thrown object tracking

Refs Year ML model Training dataset Testing dataset MAE RMSE

[26] 2016 kNN regression 2048 throws 150 throws – 30mm

[28] 2019 Deterministic motion model 1000 throws 20 throws – 5.4 mm

[15–17] 2020 Variational auto-encoder 614 throws 35 throws 50mm –

[20] 2020 Dual neural network 300 throws 30 throws 36.6 mm –

Proposed 2023 Encoder–decoder Bi-LSTM 3000 throws 200 throws 05mm 07mm
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square error of 7mm in predicting the final 3D catching point
when tested on 200 real-world experiments.

It should be noted that this work is currently limited to
objects with a spherical shape. However, future plans include
expanding this research to encompass other regular shapes
such as rectangular, square, or cylindrical objects. Addi-
tional research is required to track the orientation of such
regular-shaped objects during their flight trajectory. The suc-
cessful implementation of this approach has the potential
to transform traditional logistics of small-sized materials in
industries and lead to improved efficiency and cost savings.
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