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Abstract
The correlation of the set of attributes is a crucial statistical value for the measuring of prediction potential present in a
dataset. The correlation coefficient, which measures the correlation between the values of two attributes, can be used in
order to measure the prediction potential between two-element subsets of a dataset containing a high number of attributes.
In this way two common summary visualizations of prediction potential in datasets are formed—correlation matrices and
correlation heatmaps. Both of these visualizations are focused on the presentation of correlation between pair of attributes
but not much more regarding the context of correlations in the dataset. The main objective of this article is the design and
implementation of graphical models usable in a visual representation of data prediction potential—correlation graphs and
correlation chains—which emphasize the pseudo-transitivity of prediction potential in a dataset.

Keywords Prediction potential · Correlation · Data visualization · Graph · Chain · Data analysis

1 Introduction

The fundamental statistical values such as minimum, max-
imum or mean are important indicators which can be used
to describe a dataset. However, from the point of view of
building machine learning models the correlation analysis is
a more relevant metric [1].

Let us have two attributes of dataset D labeled as A1,
A2. These attributes correlate when attribute A1 has predic-
tion potential for attribute A2. Such prediction potential—
positive (correlation) or negative (anticorrelation)—speaks
of the presence of trends and patterns in the dataset and
the possibility of building analytical models that work with
the data [2, 3]. In the case a dataset contains more than one
numerical attribute, we can measure the correlation between
the two-element subsets of this dataset [4].

Even though correlation itself is not considered to be a
transitive metric, the prediction potential measured by this
correlation is. In the case, we can strongly predict the value
of attribute A1 on the basis of the value of attribute A2:
A2 → A1 (there is a strong correlation or anticorrelation
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between these two attributes) and the similar situation is
between attributes A2 and A3: A3 → A2, we can use values
of A3 to predict values of A2 which in turn can be used to
predict the values of A1: A3 → A2 → A1. In this article,
we refer to this phenomenon as the pseudo-transitivity of
prediction potential in data.

This article is focused on the design and implementation
of graphicalmodels usable in the visual representation of data
prediction potential which visualize the pseudo-transitivity
of prediction potential in the dataset and can be used in order
to find patterns and trends when analyzing data. The article
presents the concept and implementation for two visualiza-
tion models of prediction potential—correlation graphs and
correlation chains. The contribution of the research presented
in this article can be summarized as follows:

• Presentation of original visualization models which can
be used in correlation analysis and subsequent predictive
analysis of large and multidimensional datasets. These
models are based on principles from the area of graph
theory and are called correlation graphs and correlation
chains.

• Implementation of proposed graphical representations of
predictive potential stored in datasets in the formof freely
available Python code.
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• Evaluation of the proposed graphical models built on
two datasets - Iris dataset as a representation of stan-
dard dataset and original graph property dataset, which
consists of a higher number of attributes and records.

The body of the presented article is structured into three
sections. In the first section, we present a basic overview of
correlation coefficient types, common methods of visualiza-
tion of correlation in datasets and some interesting modern
uses of correlation analysis and prediction potential. The sec-
ond section of the body of work consists of the description
and design of proposed visualization models of correlation
graphs and correlation chains while the third section contains
an evaluation of the implementation of these models on two
datasets of various sizes and structures.

2 Correlation coefficients, matrices and
heatmaps

Wemeasure the correlation of twovariables using the correla-
tion coefficient corr(A1, A2), which represents the amount
of how much the attribute A1 is a function of the attribute
A2 and vice versa [2]. In general, we use three standard
methods to analyze correlations and measure correlation
coefficients— Pearson correlation coefficient (r ), Spearman
rank correlation coefficient (ρ) and Kendall correlation coef-
ficient (τ ) [5, 6].

The correlation coefficient—measured between two attri-
butes A1, A2—of any type can obtain values from the [−1, 1]
interval while:

• 1 indicates the complete correlation of two attributes - in
the case, the value of attribute A1 increases, the value of
attribute A2 also increases. If there is a complete corre-
lation between the values of two attributes, we identify
a strong prediction potential and thus these attributes are
suitable for mutual prediction.

• 0 indicates the worst situation from the point of view of
the correlation of two values, which we refer to as non-
correlation. In the case when the correlation coefficient
between two attributes is close or equal to 0, these are
independent values that are unusable from the point of
view of building analytical models.

• -1 is the opposite of complete correlation, called complete
anticorrelation. In this case, we can identify a trend in
which as the value of attribute A1 increases, the value of
attribute A2 decreases, or vice versa. As in the case of
complete correlation, this is a satisfactory condition for
building analytical models.

The correlation coefficient shows how much it is possible
to predict the values of attribute A2 in the selecteddata sample

based on attribute A1. The closer the value of this coefficient
is to the extremes of the considered interval (that is, to the
value 1 or -1), the more suitable the given attribute A1 is for
predicting the values of the optional attribute A2 [2].

Most of the time, we speak of two attributes as strongly
correlated when the value of the correlation coefficient mea-
sured between them reaches values higher than 0.8. There is a
strong anticorrelation between the two attributes if the corre-
lation coefficient reaches a value lower than −0.8. This limit
of acceptability of the prediction potential can be relaxed
closer to the values of 0.7 or −0.7, but more is not recom-
mended [7].

2.1 Pearson correlation coefficient

Pearson correlation coefficient is focused on the linear pre-
diction of values and the relationship between attributes A
and B. It is described using the following relation [8]:

r =
∑n

i=1(Ai − μ(A))(Bi − μ(B))
√∑n

i=1(Ai − μ(A))2
√∑n

i=1(Bi − μ(B))2
(1)

where μ(A) is the mean of attribute A, similarly μ(B) is
themean value of attribute B, andn is the number ofmeasure-
ments (vertical size of the dataset). The obvious dependence
on the mean value of attributes brings the biggest disad-
vantage of the Pearson correlation coefficient - sensitivity
to outliers.

Using the Pearson correlation coefficient, we are looking
for a linear function that describes the values of the given
attributes. Therefore, the Pearson correlation coefficient can
be used when attributes A and B contain linear relationships,
normal (Gaussian) distribution and no outliers.

2.2 Spearman rank correlation coefficient

As a way of dealing with datasets that contain nonlinear
relationships with outliers, we can use a different type of
correlation coefficient—specifically the Spearman rank cor-
relation coefficient. Thismethod ofmeasuring the correlation
between attributes creates a hierarchy (ranking) of individual
attribute values for its functionality.

I F A1 > A3 > A0 > A2 T HEN rank(A1) = 1,

rank(A2) = 4, and so on (2)

In this way, we actually measure the monotonicity of the
values within the attribute, and therefore we can say that the
Spearman rank correlation coefficient is most suitable for
datasets with monotonic relationships between attributes—
in the case one attributes value increases, the other never
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decreases or vice versa. On the other hand, this type of cor-
relation coefficient is not recommended to be used if there
are repeated values (same rank) in the dataset. This effect is
attenuated with increasing dataset size. Spearman rank cor-
relation coefficient is computed as [9]:

ρ = 1 − 6
∑

(rank(Ai ) − rank(Bi ))2

n(n2 − 1)
(3)

where Ai and Bi are considered attributes of the dataset and
n is the number of measurements of these attributes in the
dataset.

2.3 Kendall correlation coefficient

Similar to Spearman Rank Correlation Coefficient, Kendall
(Rank) Correlation Coefficient is a nonparametric measure
of the correlation between two attributes in a dataset which is
not dependent on the normal distribution of data or outliers.
Other than ranking the attributes as in the previous case, all
combinations of ranks are considered and the number of so-
called concordant and discordant pairs of ranks is used for
the computation of the coefficient [10]:

τ = nc − nd
n(n−1)

2

(4)

where nc is the number of concordant ranking pairs, nd is
the number of discordant ranking pairs and n is the number
of measurements of considered attributes. Concordance of a
combination of ranking pairs can be described as monotonic-
ity of rankings in the combination (when rank(A1) in the first
ranking of given pair descends in comparison to rank(B1),
then rank(A1) in second ranking in the pair also descends
in comparison to rank(B1) and vice versa). Discordance is
the opposite situation to concordance.

2.4 Correlationmatrices and heatmaps

Generally, we need tomeasure the correlation between larger
sets of attributes. Therefore, for a dataset of size n we need
to measure (n(n − 1))/2 correlation coefficient values. For
the presentation of these measurements, we use a correlation
matrix - a table containing a correlation coefficient measured
between all possible pairs of attributes in the dataset. In Table
1, we see the correlation coefficient measured between the
attributes A1, A2,..., An .

This matrix has two natural properties—it is symmetric
along the diagonal and this diagonal always contains the val-
ues of the correlation coefficient equal to 1 - the correlation
of the i-th attribute Ai with itself is always corr(Ai , Ai ) =
1 regardless of the method used, which is natural since the

Table 1 Example of correlation matrix for dataset containing attributes
A1, A2, ..., An

A1 A2 .. An

A1 corr(A1, A1) corr(A1, A2) .. corr(A1, An)

A2 corr(A2, A1) corr(A2, A2) ... corr(A2, An)

.. .. .. .. ..

An corr(An, A1) corr(An, A2) ... corr(An, An)

Fig. 1 Example of correlation heatmap for dataset containing attributes
A1, A2, A3

value of attribute Ai is always fully dependent on the value
of attribute Ai .

It is obvious that for a dataset composed of dozens of
attributes, such a matrix would be confusing and hard to
read. Therefore it is often replaced by a correlation heatmap
or correlation plot (see Fig. 1).

Such a correlation heatmap is a simple projection of the
correlation matrix into a color grid, in which the color of
the field is defined by the value of the correlation coefficient
for the given pair of attributes [6]. For better readability, the
scale (right) containing the interval of possible values for the
correlation coefficient is indicated in the correlation heatmap.
Instead of looking for numbers close to the extremes of the
[−1, 1] interval in the correlation matrix, in the correlation
heatmap, we look for dark red or dark blue grid fields that
indicate the same property and are easier to identify.

Both of these methods have some insufficiencies [11, 12]:

• The readability and interpretability of correlation val-
ues lowers with the growing horizontal size of the given
dataset. This lowering of readability is becoming present
on quite small sizes of correlation matrices. The corre-
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lation heatmap holds its readability until we work with
circa two to three dozen attributes.

• In both methods it is hard to find sets of corre-
lated attributes. The correlation matrix and correlation
heatmap are both focused on the presentation of correla-
tion between a pair of attributes but not much more.

• An Additional weakness of correlation heatmap is that
this method is not standalone. Even though we can use
it to identify correlation extremes of given datasets or to
find strong correlations and anticorrelations, it is com-
mon to use a correlation matrix in order to clear some
ambiguities in correlation coefficient values.

2.5 Uses of correlation analysis and prediction
potential identification

Modern approaches to correlation analysis and the use of
predictive potential stored in multidimensional datasets pre-
sented in the literature vary significantly. There is number of
interesting and novel correlation analysis approaches in the
form of either the use of novel methods and visualizations
proposed for the problem or the use of powerful methods in
interesting problems and areas of expertise.

In [13], multi-label image classification is studied with
the use of a novel channel correlation network which is fully
based on a convolutional neural network using correlation
analysis approaches to measure prediction potential between
individual labels assigned to the image. The authors pro-
pose a new module for the convolution of the image features
obtained by convolutional neural network in order to obtain
the correspondence between the label and the channel-wise
featuremap.Then, number of transformations is used to elim-
inate the irrelevant information to better explore the label
correlation.

Authors of [14] propose an efficient method for stereo
matching called area-based correlation and non-local atten-
tion network. The proposed method, which is based on
correlationmaps, uses area-based correlation to capturemore
local similarity in cost volume. Identified correlated features
are then, transformed into a four-dimensional area-based cost
volume.

In order to improve the performance of shallow con-
volutional neural networks, authors of [15], designed two
methods: Weight Correlation Reduction and Features Nor-
malization. The formal method is designed to eliminate
weight redundancy, while the latter is used to increase the
sparsity of learned deep features.

Interesting results were reached in [16], authors of which
work on extending the notion of High-Utility PatternMining,
specifically, authors introduce a new framework that allows
for novel classes of utility criteria. As part of the research, the
authors also present support for recent extensions of Answer

Set Programming with external functions for fast and effec-
tive encoding and testing of the new framework.

The study presented in [17] is of great interest to the
research presented in this article. Authors of this research
explore three techniques that are representative of differ-
ent strategies to visualize correlations in multivariate data:
either juxtaposing all locations for a given time step, or
juxtaposing all time steps for a given location; and encod-
ing thematic attributes either using symbols overlaid on
top of map features, or using visual channels of the map
features themselves. The study presents visualization’s effec-
tiveness depending on the task to be carried out. Based on
the findings authors present a set of design guidelines for
geo-temporal visualization techniques and identification of
prediction potential in such data.

On the other hand the work [18] focuses on visualization
of prediction potential stored in datasets through a corre-
lation color map of the transformed or pseudodata used to
show clusters of correlated variables in the task of identifi-
cation of true and false alarms. In the correlation color map
correlation and redundancy information can be easily found
and used to improve the alarm settings, and statistical meth-
ods such as singular value decomposition techniques can be
applied within each cluster to help design multivariate alarm
strategies.

3 Correlation graphs and correlation chains

Graph G is described as pair of sets V (vertices) and E
(edges) while [19]

G = (V , E), E ⊆ V 2 (5)

This type of structure is ideal for any transitive or pseudo-
transitive phenomena where the direct and indirect influence
of values can be evaluated. When working with a correla-
tion of two attributes, with the use of graphs, we can see
the direct and indirect correlation (and prediction potential)
influence of sets of attributes on one of the attributes in a
dataset.

In the case, we are constructing a complete graph for a
dataset containing n attributes the graph consists of n ver-
tices corresponding to individual attributes and (n(n−1))/2
edges between these vertices while each edge contains corre-
lation coefficient valuemeasured between the two considered
vertices. Such a graph would be - even with a compara-
tively low number of attributes (vertices) - potentially hard
to read. Since this work is focused on prediction potential
the task-specific two-phase pruning of such a graph is pro-
posed:

Phase 1:Visualization of edges with maximal correlation
values - since we are focused on the prediction potential of
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Fig. 2 Visualization of edges
with maximal correlation values

Table 2 The value of σ border in relation to the relationship explored
in dataset

Explored relationship σ value

Weak relationship σ ≤ 0.3

Moderate relationship σ ≤ 0.7

Strong relationship σ ≤ 1

attributes in the dataset and relationships between these pre-
diction potentials, the correlation graph contains only edges
which maximize the correlation coefficient values between
each of the (at the moment unused) attributes and all other
attributes of the dataset (see Fig. 2).

Phase 2: Since some of the attributes are generally weakly
correlated with the rest of the dataset, in the second phase
of correlation graph pruning, we can take into account only
edges containing correlation values greater than the set bor-
der. This border can be set to a value from the [0, 1] interval,
depending on the level of correlation coefficient values in the
dataset we are examining. From a statistical point of view,
we can identify three levels of correlation coefficient values
[20]:

• Values between 0 and 0.3 (0 and −0.3) indicate a weak
relationship.

• Values between 0.3 and 0.7 (0.3 and −0.7) indicate a
moderate relationship.

• Values between 0.7 and 1.0 (−0.7 and −1.0) indicate a
strong relationship.

Based on these levels of correlation coefficient values, it
is recommended to set the σ parameter to the appropriate
values listed in Table 2.

For this pruning, see Fig. 3 while the σ parameter denotes
the set border of the absolute value of correlation.

Therefore, correlation graph G is undirected, weighted
graph, which for dataset D containing n attributes consists
of:

• n vertices, each corresponding to one of the attributes
from D,

• at least one connected edge incident with each of n
vertices - this edge denotes the strongest correlation
or anticorrelation between the chosen pair of vertices
(attributes of D).

The undirected, weighted subgraph ofG containing a sub-
set of vertices of G incident with edges, where correlation is
greater than σ or anticorrelation is lower than −σ is called
the correlation chain of the graph (Fig. 4).

4 Evaluation of proposed graphical model

This section of the article is focused on the evaluation of the
concept of correlation graphs and chains on two datasets of
varying size and structure with the criteria of interpretability
of visualization, self-sufficiency of visualization, and visual-
ization of pseudo-transitivity of the prediction potential.

The proposed visualization model is implemented in the
software form for Python language with the following user-
defined input parameters:

• Dataset - the first of input parameters consists of two
subparameters - the nameof the file containing the dataset
of interest and the separator symbol used in the file.

Fig. 3 Selection of edges
containing correlation value
greater than set border
(σ = 0.7)
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Fig. 4 Correlation chain of
example correlation graph with
σ = 0.7

• Border(σ ) - for the implementation of Phase 2 of
the proposed correlation graph pruning, the software
needs information about the border of acceptability of
correlation measured between attributes of the input
dataset.

• Method of measuring correlation coefficient - the pro-
posed model is capable of working with the Pearson
correlation coefficient, Spearman rank correlation coef-
ficient and Kendall correlation coefficient.

• Type of model - there are two graphical representations
in the created package, either correlation graph or corre-
lation chain.

• Attribute of interest - in order to identify the direct and
indirect correlation (and prediction potential) influence
of sets of attributes on one of the attributes in a dataset,
the software expects a label of one interesting attribute
(often called descriptor variable).

In the evaluation of the proposedmodel, we focus on three
criteria for the visualization relevant from the point of viewof
this article. These three criteria are compared on four consid-
ered visualization methods—correlation matrix, correlation
heatmap, correlation graph and correlation chain. The criteria
are:

• Interpretability of the visualization which combines
evaluation of clarity, readability and scalability of visu-
alization. In this way, we explore the ability of users to
understand the information presented in the visualization,
while assessing how well the visualization model works
with large datasets.

• Through self-sufficiency of the visualization, we eval-
uate whether the visualization model in question can be
used as a standalone tool for specific tasks.

• Visualization of pseudo-transitivity of the prediction
potential can be understood as a domain-specific crite-
rion. This property of a visualization model is focused
on assessing its ability to visualize the local and global
correlation structure of the explored dataset.

In the conclusion of this section, we present strengths,
weaknesses and feedback on the proposed model from a
small user sample.

Table 3 Correlation matrix for the Iris dataset

Sepal_W Sepal_L Petal_W Petal_L Class

Sepal_W 1 −0.11 0.87 0.82 0.78

Sepal_L −0.11 1 −0.42 −0.36 −0.42

Petal_W 0.87 −0.42 1 0.96 0.95

Petal_L 0.82 −0.36 0.96 1 0.96

Class 0.78 −0.42 0.95 0.96 1

Fig. 5 Correlation heatmap for Iris dataset

4.1 Correlation graphs and chain constructed on iris
dataset

The first dataset used for purposes of testing of the proposed
models was the Iris dataset [21]. This dataset is one of the
standard tools for the evaluation ofmachine learning and data
analysis models.

The dataset consists of five attributes measured over 150
entities - in this case, Iris flower individuals. Attributes con-
tained in this dataset are composed of measurements of the
length (denoted by L) andwidth (denoted byW ) of two types
of leaves of the Iris flowers (Sepal_W, Sepal_L, Petal_W and
Petal_L) and Class attribute for classification of the flowers
into one of three considered species [22].

The correlation matrix of the Pearson correlation coeffi-
cient is presented in Table 3 and its projection into correlation
heatmap is in Fig. 5.

Both of these visualizations of correlations and prediction
potential are quite readable which is caused mainly by the
small size of the dataset. We can see that the correlation
heatmap itself is a little less interpretable since there are a lot
of similar correlation coefficient values in this dataset. This
correlation matrix would be difficult to interpret in printed
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Fig. 6 Correlation graph constructed on Iris dataset (full graph)

Fig. 7 Correlation graph constructed on Iris dataset - σ = 0.8 (strong
correlation/anticorrelation subgraph)

form or when presented on lower-resolution projectors or
monitors.

Figure6 presents a correlation graph for the Iris dataset
with no set border. This graph contains all five attributes of
the datasetwith the strongest correlationmeasured for eachof
the present attributes. It is evident, that from the point of view
of prediction potential analysis, the Sepal Length (Sepal_L)
attribute is unusable - the correlation between the values of
this attribute and the rest of the dataset is unsatisfactory.

In Fig. 7 we present a correlation graph of the dataset with
the border set to σ = 0.8. Figure8 shows the correlation
chain extracted from the correlation graph of the Iris dataset.

Graphical representation of the prediction potential in the
dataset is complemented by the identification of direct and
indirect correlation influences for the chosen attribute in the
dataset. For the purposes of evaluation, the Class attribute
was selected to be of interest. The output of the implemented
package consists of the following:

Correlation graph for ’Class’ (no border):
Direct correlation influence:

Fig. 8 Correlation chain constructed on Iris dataset - σ = 0.8

[’Sepal_L’, ’Petal_L’]
Indirect correlation influence:

[’Petal_W’ ’Sepal_W’]

Correlation chain for ’Class’ (border = 0.8):
Direct correlation influence: [’Petal_L’]
Indirect correlation influence: [’Petal_W’]

This output contains information onwhich attributes of the
dataset influence the value of Class attribute directly - Petal
length in correlation chain complemented by Sepal length
in correlation graph. For the computed correlation chain, the
indirect influence on the Class attribute is measured on the
Petal width attribute. For the correlation graph, this indirect
influence consists of Petal width and Sepal width.

4.2 Correlation graphs and chain constructed on
cubic graph property dataset

The second dataset used for the evaluation of the proposed
model is a dataset containing measurements of properties of
36-vertex cubic graphs. The dataset contains 500 measure-
ments, each containing 11 graph properties [23].

Table 4 contains the Pearson correlation matrix of the
cubic graph property dataset. For better readability, we
rounded up the correlation coefficient numbers to two deci-
mal points and shortened the labels of attributes from this
dataset as follows: Diameter (D), Radius (R), Largest L
Eigenvalue (LLE), Second Largest Eigenvalue (SLE), Small-
est Eigenvalue (SE), Laplacian spectrum (LS), Girth (G),
Group size (GS), Domination number (DN), Independence
number (IN) and Class (C).

Other than seeing the elements on the diagonal of this
matrix are always equal to 1, the symmetry of the matrix,
and being able to find some simple maxima or minima in
individual rows/columns there is not much knowledge to be
gotten from this type of correlation matrix. This is the reason
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Table 4 Correlation matrix for
the dataset of cubic graph
properties

D R LLE SLE SE LS G GS DN IN C

D 1 0.42 −0.56 0.72 0.59 −0.8 −0.77 0.01 −0.04 −0.54 0.77

R 0.42 1 −0.31 0.36 0.32 −0.38 −0.45 0.03 0.03 −0.33 0.45

LLE −0.56 −0.3 1 −0.63 −0.87 0.68 0.7 −0.09 0.03 0.67 0.7

SLE 0.72 0.36 −0.63 1 0.66 −0.88 −0.83 0.03 −0.03 −0.61 0.83

SE 0.59 0.32 −0.87 0.66 1 −0.71 −0.74 0.01 −0.03 −0.73 0.74

LS −0.8 −0.38 0.68 −0.88 −0.71 1 0.91 −0.03 0.04 0.65 −0.91

G −0.77 −0.45 0.7 −0.83 −0.74 0.91 1 −0.04 0.04 0.71 −1

GS 0.01 0.03 −0.09 0.03 0.01 −0.03 −0.04 1 0.00 0.05 0.04

DN −0.05 0.03 0.03 −0.03 −0.03 0.04 0.04 0.00 1 −0.05 −0.05

IN −0.54 −0.33 0.67 −0.61 −0.73 0.65 0.71 0.05 −0.05 1 −0.71

C 0.77 0.45 0.7 0.83 0.74 −0.91 −1 0.04 −0.05 −0.71 1

Fig. 9 Correlation heatmap for cubic graph property dataset

for the common interpretation of the correlationmatrix in the
form of a correlation heatmap presented in Fig. 9

Even though the correlation heatmap is much more inter-
pretable and readable when compared to the correlation
matrix, the aforementioned weaknesses of this method are
still present. The readability of the heatmap lasts up to a cer-
tain number of attributes and even for the heatmap of the
size presented in Fig. 9 the plot is not self-sufficient. For pre-
cise reading of the information, we need to complement the
heatmap with the correlation matrix.

Figure10 contains a correlation graph for the graph prop-
erty dataset with no border set yet (σ=0). As described in
Sect. 2 this graph contains all attributes of the dataset with
the strongest correlation for each of the attributes. As evident
from the graph itself, there is a number of weakly correlated
attributes in the dataset. These attributes and their relation-

ship to the rest of the dataset can be highlighted with the use
of higher value for the border.

Figure11 presents a correlation graph with two subgraphs
divided by σ parameter set to 0.7. Full edges of the graph
denote correlation ≥ σ or ≤ −σ between two attributes
of the dataset, dotted edges denote other (potentially less
interesting) correlations in the dataset.

After the removal of correlations which do not satisfy the
set σ border condition, we extract the correlation chain as
proposed in Sect. 2. Figure12 presents the correlation chain
of the graph property dataset for σ = 0.7.

Other than these graphical representations of the predic-
tion potential in the dataset proposed function also identifies
direct and indirect correlation influences for the chosen
attribute in the dataset. For evaluation purposes, we chose
the attribute of Class to be of interest. The output of the
implemented software consists of the following:

Correlation graph for ’Class’ (no border):
Direct correlation influence:

[’Second largest Eigenvalue’, ’Girth’]
Indirect correlation influence:

[’Diameter’ ’Domination number’
’Group Size’ ’Independence number’

’Laplacian spectrum’
’Largest L-eigenvalue’ ’Smallest Eigenvalue’]

Correlation chain for ’Class’ (border = 0.7):
Direct correlation influence:

[’Second largest Eigenvalue’, ’Girth’]
Indirect correlation influence:

[’Diameter’ ’Independence number’
’Laplacian spectrum’]

From this output,we can identify attributes,which directly
influence the value ofClass attribute - Second Largest Eigen-
value and Girth of a graph - and attributes the value of which
influences these two attributes - Diameter of a graph, Inde-
pendence number of a graph, the Laplacian spectrum of
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Fig. 10 Correlation graph
constructed on cubic graph
property dataset (full graph)

Fig. 11 Correlation graph
constructed on cubic graph
property dataset - σ = 0.7
(strong
correlation/anticorrelation
subgraph)

a graph for created correlation chain with the addition of
Domination number, Group size, Largest L-eigenvalue and
Smallest eigenvalue of an adjacency matrix of a graph for
correlation graph.

4.3 Comparison of correlation visualization
methods

As can be seen in the previous subsections of this section,
each of the prediction potential visualization methods has its

strong and weak aspects. We focused on three criteria for
visualization relevant from the point of view of this article -
the most important of these criteria is the interpretability of
the visualization itself which is complemented by the self-
sufficiency of the visualization, and since we are focusing
on the prediction potential itself, the visibility of pseudo-
transitivity of the prediction potential.

Table 5 contains the comparison of the correlation matrix,
correlation heatmap and proposed graphical representations
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Fig. 12 Correlation chain
constructed on cubic graph
property dataset - σ = 0.7

of prediction potential evaluated by a three-level scale mea-
sured from LOW (worst) to HIGH (best).

With the increasing size of the dataset examined for pos-
sible predictive analysis, the interpretability of the results
obtained using conventional methods of visualization of pre-
dictive potential decreases significantly. Even in the case of
the datasets examined in this study, we can see that the inter-
pretability of the correlation matrix and correlation heatmap
decreases drastically with the increasing number of dimen-
sions (attributes) of the dataset.

Proposed models provide a different view of the stud-
ied dataset, with the help of which we can maintain the
interpretability of the visualization at a good level for a
much higher number of attributes present in the studied
datasets. In this respect, the correlation chain is themost read-
able visualization of the prediction potential in the datasets.
This is caused by the advantage of a certain dimensional-
ity reduction compared to the other methods - within this
method, not all attributes contribute to the resulting visual-
ization.

Regarding the self-sufficiency of the visualization model
used to identify predictive potential in datasets, all com-
paredmethods offer satisfactory results except the correlation
heatmap. This model can be used to quickly explore the
values of correlation coefficients and prediction potential in
datasets, but without the addition of one of the other mod-
els, it is not possible to make specific decisions based on
this visualization. Since the correlation matrix by itself is
very difficult to interpret in large datasets, it is advisable to
use the correlation graph or correlation chain model, which
implement the readability of graphs to represent the predic-
tive potential stored in the data being studied.

Pseudo-transitivity of prediction potential is very difficult
to follow with the use of conventional methods for visu-
alization of values of correlation coefficients. This fact is
natural since these visualizations are a form of summariz-
ing the values of the prediction potential in the examined
datasets. Nowadays, however, it is necessary to be able to
determine the possibility of predicting the values of two
completely independent, not even correlated, attributes in
multidimensional datasets. Therefore, visualizing relation-
ships and sequences of strong correlation coefficient (and
prediction potential) values in the dataset is vital for mod-
ern correlation analysis with the objective of predictive
data analysis. Such visualization of this prediction potential
pseudo-transitivity is native to the proposed models.

4.4 User evaluation of correlation graph and
correlation chainmodel

As an addition to the evaluation of the proposed correlation
graph and chainmodel from the point of viewof interpretabil-
ity, self-sufficiency and visibility of (pseudo)transitivity of
prediction potential presented in the previous subsection of
the article, we focus on user evaluation of the model.

For the needs of user evaluation of the work, we were
able to secure a sample of ten individuals of two different
experience levels:

• Five computer scientists working in the field of data pro-
cessing and analysis, big data, artificial intelligence, and
high-performance computing.
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Table 5 Comparison of
correlation visualization
methods

Interpretability Interpretability Self-sufficiency Pseudo-transitivity

(Iris) (Graph property)

Matrix Middle Low High Low

Heatmap Middle Low Low Low

Graph High Middle High High

Chain High High High High

Table 6 Frequency table of the
user answers regarding potential
use of the correlation graph or
chain model

Answer Frequency Explanation of the answer

Yes 6 –

Maybe 3 –

No 1 User does not use correlation analysis in their research

• Five students of computer science in the master’s degree
studies focused on the analysis of large and multidimen-
sional data.

The evaluation of the presented tool was carried out using
the compilation of correlation graph and chain with various
settings for σ borderwith ongoing interpretation and descrip-
tion of the used concepts. After the presentation of the model
(and in several cases the independent work of the user), we
asked the users two open questions and asked for feedback
for the tool:

• What are the strengths and weaknesses of the correlation
graph/chain model in your opinion?

• Would you use the presented model in your research (for
computer science researchers) or your master’s degree
thesis (for students)?

• Please provide any feedback for improvement of the
model.

Since the answers to the questions were anonymous and
the questions were open, we present a summary of the
answers without knowledge of whether the respondent is a
computer scientist or a computer science student:

• Strengths of the correlation graph/chain model: Low
time complexity (comparable with correlation heatmap),
ease of use, visibility of transitivity of correlation coeffi-
cient values, reduction of dimensionality of the dataset.

• Weaknesses of the correlation graph/chain model:
dependence on the user-defined border of correlational
acceptability, (unnecessary) intersection of some com-
ponents of the graph.

• Usability of themodel.This questionwas posed as open,
but the majority of the users chose to answer with YES,
MAYBE or NO only. There was only one answer con-

Fig. 13 Proposed change for correlation graph and chain node visual-
ization

taining an explanation of the answer. The distribution of
answers is presented in Table 6.

• Feedback: In larger datasets, the labels and components
of the compiled graph intersect. One of the participants
proposed to modify the visualization of the model in the
manner indicated in Fig. 13.

The feedback from the user exploration of the model
was incorporated and the node visualization was updated
as proposed in Fig. 13. Wrapping the name of the attribute
in the node of the graph to some extent reduced the num-
ber of unnecessary intersections of parts of the correlation
graph/chain with its labels.

The necessity for a user-defined correlation border (σ ) is
at the moment still present in the model. This border can
be computed in number of ways - either by the selection of
correlation value fromTable 2 or, in the case, the user needs to
identify the strongest correlation and anticorrelation values
in the dataset, as a third quartile of the correlation coefficient
values for the attributes of interest:

σ = μ(corr(Ai , A j )) + max(corr(Ai , A j ))

2
(6)

where Ai and A j are i−th and j−th attributes in the studied
dataset, μ(corr(Ai , A j )) is the mean value of the correla-
tion coefficient for these attributes and max(corr(Ai , A j ))

is the maximal value of correlation coefficient for the studied
attributes.

123



A. Dudáš

Fig. 14 Regression curves for the subset of graph properties in the cubic graph property dataset

5 Conclusion

The method of visualization of prediction potential stored in
a dataset with the use of correlation graph and correlation
chain models was proposed and implemented as a Python
programming language software. This model uses the con-
cept of pseudo-transitivity of prediction potential to identify
direct and indirect correlation influences of attribute values
among each other.

Other than the design and implementation of this method,
we compared the visualization of two differently sized and
structured datasets with the use of conventional visualiza-
tionmethods, such as correlation heatmap, with the proposed
methods. We conclude, that the model of correlation graphs
and correlation chains is more interpretable than standard
visualization techniques in the area while being completely
self-sufficient. The interpretability and self-sufficiency of
visualization hold with the growing size of the dataset.

The use of correlation graphs and chains in the context of
predictive data analysis can be demonstrated on a regression
problem in the cubic graph property dataset fromSection 4.2.
The most important of the graph properties in the dataset is
the attribute Class - the value of this attribute marks whether
the graph is edge 3-colorable or not. The computation of edge
3-colorability of a graph is one of the well-known instances
of NP-complete problems and, therefore, is fitting for pre-
cise approximation instead of standard computation of the
property value.

The edge 3-colorability of a cubic graph is measured by
chromatic index property (marked as Class in the dataset),
which can acquire value 3 or 4 based on the number of colors
needed for the edge coloring of a specific cubic graph. This
number can be estimated with the use of a regression model.

When applying regression models, we use strong correla-
tion and anticorrelation values for the determination of fitting
predictors - in this case, the best predictor for the Class prop-
erty is the attribute Girth, where r(Class,Girth) = −1. If
the Girth of a specific graph is not measured, we would need
to use a different, less fitting, graph property in the speci-
fied task. But, based on the correlation chain presented in
Fig. 12, we can use the property of the Laplacian spectrum to
impute the values of Girth for the graph, then use Largest L-
eigenvalue for imputationofLaplacian spectrumand soon. In
this case, we use the Largest L-eigenvalue to predict the value
of the Laplacian spectrum and then use this predicted value
to estimate the Girth of the graph, we can use the predicted
Girth to determine the Class of graph (see Fig. 14). In the
cubic graph property dataset, this simple approach using the
concept of prediction potential (pseudo)transitivity reached
RMSE = 6.756e−15. For the comparison, the prediction of
Class on the basis of the second best correlated attribute (Sec-
ond largest eigenvalue) reached higher RMSE = 0.2975.

In the future, we plan to study the use of correlation
graphs and correlation chains in the process of meta-analysis
of decision-making models. One of the most well-regarded
methods in this area is the Shapley Additive Explanation
method based on the Shapley values from the theory of
games.

With the use of Shapley values, we measure how individ-
ual attributes or sets of attributes contribute to the overall
quality of the created decision-making model. The input
for the Shapley Additive Explanations model is a trained
machine or deep learning model, therefore the Shapley val-
ues are specific for that input model, which in turn needs to
be trained to perform specific task.
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Fig. 15 Shapley Additive Explanations (SHAP) plot for the cubic graph dataset

Figure15presents a beeswarmplot of Shapleyvaluesmea-
sured on the Multilayer perceptron neural network with two
hidden layers, which was trained for the classification of
cubic graphs into classes based on the data presented in Sec-
tion 4.2. This method identified the importance of individual
graph properties in the studied dataset and determined the
hierarchy of importance as shown in Fig. 15. The graph prop-
erties which reached the highest Shapley values are present
in the correlation graph and chain models in a way of direct
and indirect correlation influence - specifically, Girth of a
graph was determined as a direct correlation influence on the
classification of cubic graphs and the Diameter of a graph as
an indirect one.

Since the datasets that are analyzed often contain a higher
number of attributes, correlation graphs will not meet the
condition of graph planarity - and thus will always contain
intersecting elements (edges or vertices). In fact, the largest
complete correlation graph that can be visualized on a plane
in this way can examine the correlations between at most 4
attributes [24]. However, this shortcoming can be solved by
appropriately plotting the graph in three-dimensional space
in such a way that the strongest correlations are displayed on
one plane and the weaker correlations on others.

Therefore, future work in the area also consists of visu-
alization parameter tuning for the created implementation
(mainly crossing of labels), including the correlation graph
and chain package to the Python Package Index and creat-
ing an equivalent R language package. The possibility of
design and implementation of the three-dimensional corre-
lation graph and chain package is also strong.
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