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Abstract
Point clouds consist of 3D data points and are among the most considerable data formats for 3D representations. Their
popularity is due to their broad application areas, such as robotics and autonomous driving, and their employment in basic 3D
vision tasks such as segmentation, classification, and detection. However, processing point clouds is challenging compared
to other visual forms such as images, mainly due to their unstructured nature. Deep learning (DL) has been established as
a powerful tool for data processing, reporting remarkable performance enhancements compared to traditional methods for
all basic 2D vision tasks. However new challenges are emerging when it comes to processing unstructured 3D point clouds.
This work aims to guide future research by providing a systematic review of DL on 3D point clouds, holistically covering
all 3D vision tasks. 3D technologies of point cloud formation are reviewed and compared to each other. The application
of DL methods for point cloud processing is discussed, and state-of-the-art models’ performances are compared focusing
on challenges and solutions. Moreover, in this work the most popular 3D point cloud benchmark datasets are summarized
based on their task-oriented applications, aiming to highlight existing constraints and to comparatively evaluate them. Future
research directions and upcoming trends are also highlighted.
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1 Introduction

Point clouds constitute an alternative data format for 3D
scenes’ representation. Their popularity is attributed to the
increasing availability of point cloud capturing devices and
the wide range of their application in various scientific fields
[1, 2]. Different sensing devices are currently available,
accompanied by algorithms, for the detailed acquisition of
point clouds in a wide range of computational and economi-
cal costs. Note that Apple has included Light Detection And
Ranging (LiDAR) capabilities in its latest hardware to help
the camera autofocus faster and capture details even in low-
lighting conditions. A point cloud consists of thousands of
unorganized colored 3D points that identify objects’ shapes.
Each point is denoted by a set of three Cartesian coordinates
(X, Y, Z), providing at the same time additional information,
such as intensity or reflectance, when active sensors are used
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to generate it, geometric information, scale, as well as dis-
tance and speed estimations [3]. Point cloud representations
allow for adaptive storing space and imagining details of
varying levels by controlling the number of points based on
the desired density [4]. This flexible control stems from the
unstructured nature of point clouds, lacking a strict topology
and thus enabling their easy formatting to properly adapt to
any real-time application. However, these same advantages
denote substantial challenges related to point cloud man-
agement, associated with data sparsity, unstructured nature,
uneven distributions, redundant data, modeling errors, and
noise artifacts.

Point clouds are generated by 3D laser scanners, referring
mainly to LiDAR technology [5] and Red Green Blue-Depth
(RGB-D) cameras [6] with different resolutions and sensor
restrictions, or by photogrammetry software [7]. Each laser
scan measurement is represented by a point, while all scans
register to form the entire scene. Point clouds having tempo-
ral dimensions are referred to as dynamics and consist of a
sequence of static point clouds. Dynamic point clouds can be
generated at speed by mounting sensors on mobile mapping
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devices, i.e., ground vehicles or Unmanned Aerial Vehicle
(UAVs) [8].

Point clouds are employed in a great variety of applica-
tions, such as 3D object recognition [9], robotics [10] for
simultaneous localization andmapping (SLAM) [11], odom-
etry (visual odometry and LiDAR odometry), autonomous
driving [12], change detection [13], remote sensing [14],
medical treatment [15], image matching [16], shape analysis
[17], etc. To enrich the quality of low-density point clouds,
up-sampling is performedbycombiningpoint cloudswith the
corresponding 2D images of objects [18]. This combination
may seem ideal, especially for objects’ representation that
their original 2D images are available and can be used as input
data. However, the fact that 2D and 3D images obtain dif-
ferent characteristics makes it challenging; 3D point clouds
are unstructured and have thousands of points with geometry
and attribute information, while 2D images are in a limited
structured grid shape.Moreover, a point cloud denotes the 3D
external surface of objects, in contrast to 2D images which
project the 3D world on a 2D plane. These inherent differ-
ences need to be considered when developing point cloud
processing methods [19]. Thereby, from point cloud forma-
tion and processing, several challenges are emerging; robust
and accurate methods as well as efficient algorithms need to
be considered.

Deep learning (DL) methods are proven powerful tools
for data processing in computer vision due to their capa-
bility for automatic feature extraction and high reported
performance. For this reason, combined with the simulta-
neous development of powerful Graphics Processing Units
(GPUs) and the existence of suitable training datasets, DL
has been adapted for point cloud processing and analysis
for all popular 3D vision tasks: semantic segmentation [20],
classification [3], object detection [21], as well as 3D reg-
istration [22], completion [23] and compression [24, 25]. It
was in 2017 when, for the first time, PointNet [26], a deep
network, was introduced directly to sets of points, without
any pre-processing or conversion to other forms, followed
by PointNet + + [27] to resolve drawbacks of PointNet and
form the basis for upcoming deep networks. These works
set the start of a new 3D point cloud processing era. In the
following years, related research focused on point cloud gen-
eration, processing, and the description of specific datasets
for various applications [28–30]. A recent method proposed
a new point cloud re-identification network (PointReIDNet)
consisting of a global semantic module and a local feature
extraction module, able to decrease the 3D shape represen-
tation parameters from 2.3 M to 0.35 M [31]. However, DL
application on raw 3D point clouds remains challenging; the
limited scale of existing datasets, the high dimensionality
and the irregular nature of unstructured 3D point clouds pose
the basic limitations in the utilization of DL methods for the
direct processing of point clouds. In recent years, there has

been a plethora of available point cloud datasets derived from
various sensors, such as Structure fromMotion (SfM), RGB-
D cameras, and LiDAR systems. Many existing available
datasets include real single-sensor data such as Argoverse
[32], real multi-sensor data such as KITTI [33], and synthetic
data such asApollo [34].Available benchmark datasets, how-
ever, decrease as their size and complexity increase, consist
of real or virtual scenes, and focus on different tasks. Yet,
the existence of large-scale multi-sensory datasets is crucial
for DL applications, that need great amounts of ground truth
labels for training deep networks.

To this end, this study aims to provide an exhausting
overview and present the current status of DL methods on
3D point cloud processing. This work covers a wide range
of aspects, summarized in the following distinct points: (1)
a comparison of existing point clouds acquisition technolo-
gies, (2) a holistic review of all 3D point cloud related vision
tasks, (3) the presentation of available point cloud datasets,
(4) the presentation of emerging challenges by using point
clouds in DL applications, in contrast to the use of other
image data formats, e.g., 2D images, (5) proposed solutions
to face these challenges and (6) future research directions.
The review is based on a holistic taxonomical classifica-
tion of DL methods for 3D point clouds as illustrated in
Fig. 1. This work to the best of the authors’ knowledge is
the first to particularly focus on DL algorithms for all basic
3D point cloud related tasks, including classification, seg-
mentation, detection and tracking, registration, completion
and compression, as well as the first work that integrates all
aforementioned research aspects. These tasks are the most
commonly addressed in research and applications related to
3D computer vision and point cloud processing, contribut-
ing towards extracting meaningful information from point
cloud data. Their selection is based on their significance in
applications employing 3D point clouds, such as robotics
and autonomous vehicles, as defined from the investigation
of the high-frequency terms used in deep learning on point
clouds based on relevant papers of the examined literature.
This work comprises a Systematic literature review (SLR)
that aims to cover a wide range of 3D point clouds related
aspects, focusing on all fundamental concepts and tasks, so as
to provide a complete road map for people newly introduced
to this research field.

The rest of this paper is organized as follows. Section 2
provides the motivation and the contributions of this work.
Section 3 presents the research strategy followed in this
work. Section 4 describes point cloud formation technolo-
gies, including a brief comparison between them. Section 5
focuses on the relationship between computer vision and
point clouds, presenting DL methods on 3D point clouds,
and various challenges. Section 6 reviews the literature on
point cloud learnablemethods and techniques formain vision
tasks. Section 7 summarizes available point cloud datasets.
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Fig. 1 Organization of 3D point clouds DL methods

Section 8 includes an exhausting discussion based on the
research findings and provides future research directions.
Finally, Sect. 9 concludes the paper.

2 Motivation and contribution

During the last decade, sensory 3D point cloud data acquisi-
tion has increased, allowing users to visualize highly detailed
and realistic scenes easily, as well as to manipulate, explore
and analyze them to the extent needed for various tasks,
identifying potential issues, and concluding to better deci-
sions. However, since these data are complex and large-scale
for their manipulation, more robust and efficient methods
are required. At the same time, DL methods are established
as a powerful tool for point cloud processing and analysis.
Researchers are turning to the investigation of robust and effi-
cient DL algorithms for point cloud data inputs for various
vision tasks, and simultaneously various point cloud datasets
are developing.

Several similar review articles can be found in the recent
literature, however, there is a lack of a complete investiga-
tion of DL on point clouds. Guo et al. [35] in their review,
cover only three major tasks, i.e., classification, segmenta-
tion, and object detection and tracking. The authors focus on
the comprehensive comparison of existing DL methods on
several datasets, providing evaluation results for all corre-
sponding tasks. Wang et al. [36] review urban reconstruction
algorithms and evaluate their performance in the context of
architectural modeling, focusing on LiDAR capturing tech-
nologies. In [37], technical developments of RGB-D sensors

and consequent data processing methods to handle vari-
ous challenges, such as missing depth, are reviewed, while
[38] deals with novel developments in high resolution syn-
thetic aperture radar (SAR) interferometry. Ahmed et al.
[39] provide a comprehensive overview of various 3D repre-
sentations, discuss DL methods for each representation and
compare algorithms based on certain datasets. Liu et al. [40]
focus on feature learning methods for point clouds and ana-
lyze their advantages and disadvantages, including the three
basic vision tasks and corresponding datasets. In [41], Vin-
odkumar et al., present a review of DL-based tasks for 3D
point clouds, including segmentation, detection, and classi-
fication. Evaluation performance is reported, as well as the
used datasets. Ioannidou et al. [42] surveymethods that apply
DL on 3D data and classify them according to the way the
input data is treated before being inserted into the DL mod-
els. Camuffo et al. [43] review DL-based semantic scene
understanding, compression, and completion, introducing a
new taxonomy classification based on the characteristics of
the acquisition setup and the data peculiarities. Bello et al.
[44] provide a review of DL-based classification segmenta-
tion and detection, including popular benchmark point cloud
datasets. Xiao et al. [45] focus on unsupervised point cloud
representation learning using DL. In general, more review
articles published over the years, yet they focus only on spe-
cific tasks, such as registration [46], classification [3, 47],
completion [23], compression [48], and segmentation [20].
In [44], Bello et al. compile a review for DL on 3D point
clouds, focusing on DL state-of-the-art approaches for raw
point cloud data.

Table 1 includes the basic features of the aforementioned
related works regarding DL methods on point clouds. There
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Table 1 Comparative table of the characteristics of present work (Ours) versus related works from the literature

Characteristics Point cloud and deep learning methods

[35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] Ours

2021 2018 2019 2009 2019 2019 2023 2018 2022 2020 2023

Point cloud generation
technologies

LiDAR × ✓ × × ✓ ✓ ✓ ✓ ✓ × × ✓

RGB-D × × ✓ × ✓ ✓ × × ✓ × × ✓

Radar × × × ✓ ✓ × × × ✓ × × ✓

Tasks Registration × × ✓ × × × × × × × × ✓

Segmentation ✓ × ✓ × ✓ ✓ ✓ ✓ ✓ ✓ × ✓

Classification ✓ × ✓ × ✓ ✓ ✓ ✓ ✓ ✓ × ✓

Detection ✓ × ✓ × ✓ ✓ ✓ ✓ ✓ ✓ × ✓

Tracking ✓ × ✓ × × × × × × × × ✓

Compression × × × × ✓ × × × ✓ × × ✓

Completion × × × × ✓ × × × ✓ × × ✓

Datasets × ✓ × ✓ × ✓ × ✓ ✓ ✓ ✓ ✓

Other visual data 2D images × × × × × × × × × × × ✓

Depth
images

× × × × × × × × × × × ✓

Methods Deep
learning

✓ × ✓ × ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Traditional ✓ × ✓ × × ✓ ✓ × × × × ✓

are also other proposed surveys about point clouds in the
literature not included in Table 1 since their index is far non-
comparable to the proposed study. Such indicative works
include the survey implemented by Xiao et al. [49] focus-
ing on label-efficient learning of point clouds, the survey
of Li et al. [50] for DL for scene flow estimation on point
clouds, the review of Grill et al. [51] for point cloud seg-
mentation and classification algorithms, and the review on
DL-based semantic segmentation for point clouds of Zhang
et al. [20]. Therefore, the most contextual similar works were
considered at this point, aiming to comparatively highlight
the contribution of the present review work (Ours) versus
previous ones.

According to Table 1, the present work aims to fill the
identified research gap, by providing: an overview of the
main 3D point cloud generation technologies and compar-
ing the quality of point clouds among different acquisition
sensors; discussing all DL-based 3D vision tasks; high-
lighting challenges and constraints from earlier traditional
methods; reporting solutions to face the challenges stemming
from DL methods; providing the corresponding datasets for
each task; comparing point cloud data to other visual data
forms; providing deeper insights and underlining differences,
advantages, and drawbacks of each modality; providing a
critical evaluation of point clouds’ utilization for different
tasks and datasets; and, finally, suggesting future research
directions and trends in the field.

To the best of the authors’ knowledge, this review is
the first to holistically cover DL-based tasks, including seg-
mentation, classification, detection and tracking, registration,
completion, and compression, and to combine point cloud
fundamentals, DL research advances on point clouds for
all tasks, challenges, solutions, datasets, and future research
directions, as opposed to already existing reviews. Perfor-
mance comparison results of DL algorithms on 3D point
cloud processing tasks can be found in [35, 43, 44].

3 Researchmethodology

Within the context of this work, a systematic literature review
took place by using theKitchenham approach [52] to identify
the status of research in DL on 3D point clouds, based on six
basic research questions:

RQ1:What are the challenges regarding point cloud data
processing?

RQ2: What are the challenges that DL models face with
3D point cloud data?

RQ3: What is the status of 3D point cloud datasets for
DL-based applications?

RQ4: In which applications does it make sense to apply
point clouds?

RQ5: To what extent do different sensors affect the point
cloud resolution?
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Fig. 2 Number of publications
per year (2013–2022)

Fig. 3 Cloud map of high-frequency terms used in deep learning on
point clouds based on paper keywords

RQ6: Under what conditions does the use of point clouds
provide benefits against 2D images?

We performed a search of peer-reviewed journal publica-
tions in the Scopus database using the query “( TITLE-ABS-
KEY ( point AND cloud) AND TITLE-ABS-KEY ( deep
AND learning)) AND ( LIMIT-TO ( DOCTYPE, "ar") OR
LIMIT-TO ( DOCTYPE, "cp") OR LIMIT-TO ( DOCTYPE,
"ch")) AND ( LIMIT-TO ( LANGUAGE, "English")) AND
( EXCLUDE ( PUBYEAR, 2023))”. The process returned
3370 documents. Figure 2 summarizes the number and the
proportion of total published works on the subject per year
from 2013 to 2022, to illustrate a full period of 10 years.
References from 2023 were also considered in this work, as
indicated in the query above; however, they were not illus-
trated in the graph as related research in 2023 is ongoing.
AlthoughDLmethods have been applied to point clouds only
just in the last decade, the even increasing number of publi-
cations, arithmetically and proportionally, shows an overall
upward trend, indicating the significance of this research
topic. Figure 3 illustrates a tag of high-frequency used key-
word terms in DL on point clouds literature, based on their

occurrence. The font size indicates the frequency of the used
terms based on the keywords of the papers. As it can be
observed, most of the literature focuses on deep learning
networks. In addition, segmentation classification and object
detection tasks, are the most used for various applications.

4 Point cloud essentials

This section summarizes the form and characteristics of 3D
point clouds. Working principles of the main technologies
for point cloud data acquisition and generation are also dis-
cussed. The section concludes with the comparison of point
clouds with alternative visual data formats.

4.1 Point cloud data acquisition and generation
technologies

Point clouds can be captured with either laser scanners or
photogrammetry. Currently, there are several frequently used
techniques able to generate a 3D point cloud using 3D laser
scanners. Point clouds quality depends on the technology that
is adopted for its acquisition since each technology has its
own features and peculiarities.

4.1.1 LiDARs

LiDAR is an active remote sensing technology that employs
a laser beam to sense objects through ultraviolet visible or
near-infrared sources and measures the distance between an
object and the scanner. This is achieved through multiple
light waves (pulses) that scan the scene from side to side.
LiDAR technology can cover large areas from the ground
and above, when mounted on aerial vehicles, at flight height
between 100–1000m, while the angle scan is from 40° to 75°
maximum with rhythm 20–40 Hz. A typical range of pulse
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Fig. 4 LiDARs taxonomy

Fig. 5 The basic LiDAR unit

is 10 ns with repetition 5–33 kHz-max50Khz and frequency
10 kHz, i.e., 10,000 points per second [53]. Information of
distance and direction are recorded to generate a point in
3D space and the differences in the pulse, return times, and
wavelengths are used to generate the 3D representation of
the target and calculate the exact distance from the objects
[54, 55].

LiDARs can be classified based on their functionality
and their inherent characteristics in three broader cate-
gories. Based on their functionality, they can be divided into
Airborne (ALS) and terrestrial LiDAR. ALS LiDARs are
mounted on aerial vehicles and can be further classified as
topographic, to monitor the topography in terms of geomor-
phology, and bathymetric, to measure the depth of water and
locate objects in the bottom of water bodied, e.g., oceans,
lakes, etc. Terrestrial LiDARs are mounted on stable places,
e.g., a tripod, or on moving vehicles, and can be classified
as static, when it is portable and located at fixed points, or
mobile when it is mounted on moving platforms. A third
category, includes all other LiDAR types designated for spe-
cial applications, including Differential Absorption LiDAR
(DIAL) for sensing the ozone, Raman LiDAR formonitoring
water vapor and aerosol, Wind LiDAR tomeasure wind data,
Spaceborne LiDAR for out-of-space detection and tracking,

and airborne High Spectral Resolution LiDAR (HSRL) for
aerosols and clouds characterization. Figure 4 illustrates the
classification of LiDARs.

A laser mapping LiDAR system comprises (1) the LiDAR
unit itself, which emits rapid pulses of infrared laser light to
scan the scene, (2) a Global Positioning System (GPS), (3)
an inertial measurements unit (IMU) and (4) a computer for
controlling the system and storing the data. GPS and IMU
combination allows identifying accurately the location of the
laser at the time, atwhich the corresponding pulse is transmit-
ted,while by using anotherGPS the ground truth ismeasured.
IMU is responsible for accurate elevation calculations using
orientation to accurately determine the actual position of the
pulse on the ground. Figure 5 shows a typical LiDAR unit.
The unit consists of a laser rangefinder and a scan system.
The rangefinder system includes a laser transmitter, pho-
todetector, optics and microcontroller, and signal processing
electronics. Different azimuths and vertical angles of laser
beams are steered from the scan system. The operation of a
typical LiDAR is based on the scanning of its field of view
with one or more laser beams, via a beam steering system
which is produced by a laser diode with modulated ampli-
tude, emitting at near-infrared wavelength. Laser beams are
reflected from the environment backwards to the scanner.
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Fig. 6 RGB-D taxonomy

The returning signal is sensed by the photodetector. The sig-
nal is filtered by fast electronics and the difference between
transmitted and received signal is estimated. The exact range
is calculated based on this difference by the sensor model.
Signal processing is used to compensate for differences in
variations of the transmitted and reflected signals because of
surface materials. The outputs of LiDAR are 3D point clouds
corresponding to scanned environments, and intensities cor-
responding to the reflected laser energies [56].

4.1.2 RGB-D cameras

RGB-D cameras are a type of depth camera able to provide
both depth and color data from their field of view, towards
a point cloud generation in real-time [37, 57]. Microsoft
Kinect, as the first RGB-D sensor commercially released,
paved the way for range sensing technologies to flood the
market and promote research, providing cheap and powerful
tools for static and dynamic scene reconstruction.

RGB-D images can be captured with either active or pas-
sive sensing. Passive ranging is feasible due to the input
combination of two (stereo or binocular) or multiple cameras
(monochrome or color). For estimating the depth of a scene,
the triangulation process is employed [58]. Active sensing
can be classified in structured light (SL) and time of flight
(ToF) cameras. SL techniques refer to the process of project-
ing a distinctive pattern in the scene and therefore, adding
known features to enable feature matching and compute the
depth even for areas in the image that lack discriminative
features. ToF cameras emit a pulse of light and estimate
distance by the round-trip time. In both cases, depth informa-
tion is retrievable through a depth map/image acquired from
infrared measurements.

Figure 6 illustrates the taxonomy of the RGB-D cameras,
while Fig. 7 shows the typical workflow of point cloud gen-
eration using an RGB-D camera. Color and depth data are
captured concurrently by the different sensor types. The color
images are transformed, while infrared images lead to 3D
mapping. Then, the camera’s position and orientation are
determined relative to the desired object (target) and the pose
is estimated from 2D images using pixel correspondence and

3D object points [59]. The intrinsic parameters of the camera
contribute to pixel-by-pixel point cloud projection from the
depth images to 3D points. In the next step, the camera is
calibrated to correct possible errors, while in real-time appli-
cations it is calibrated to obtain the desired coordinate system.
Thereupon the features are extracted, and homologous points
are detected between previous and current frames at each
given time and matched. Then, a low-resolution sparse point
cloud is generated. The local coordinates of the point cloud
are converted into a global coordinate systemwith the aim of
co-linearity equations. From the sparse cloud arises a denser
point cloud whose density is based on the frame’s number;
moreover, when the depth map is combined with color infor-
mation, the point cloud obtains color [60].

RGB-D video allows capturing active depth when the
sensor is moving in a static scene. By fusing the cap-
tured frames, the scene’s reconstruction is possible. Multiple
RGB-D cameras could also be employed to enable dynamic
scene reconstruction. The recent advancements in DL made
monocular depth estimation also possible [61]. Prior infor-
mation, such as relations between geometric structures, is
used to conclude from a single image into depth infor-
mation. Depending on the used ground image, monocular
DL-based depth estimation can be classified into supervised
[62], unsupervised [63] and semi-supervised [64]. DL mod-
els for monocular depth estimation are usually jointly trained
in the framework of other basic tasks, such as segmentation,
therefore depth estimation is not examined separately in this
work as an independent task.

4.1.3 Radars

Synthetic Aperture Radar (SAR) is a significant active
microwave imaging sensor [65]. A SAR point cloud gen-
eration system processes SAR data acquired from multiple
spatially separated SAR apertures so as to calculate the exact
3D positions of all scatterers in the image scene. Aperture is
the opening used to collect the reflected energy and form an
image. Interferometric Synthetic Aperture Radar (InSAR) is
a geodetic radar technique for remote sensing applications
generating maps of deformation on surfaces or digital eleva-
tions by comparing two or more SAR images.

SAR techniques stand out for their simple design pro-
cess, their flexibility to change any scanning scheme, and
the high computation efficiency for processing. However,
data acquisition is generally slow, many antenna pairs or
scan positions are required and are more suitable for sta-
tionary or slowly moving targets. It should be noted here that
mm-Wave radars in general, e.g. Multi-input Multi-output
(MIMO) [66] can be used for (range, azimuth and elevation)
point cloud generation to detect moving targets. Point clouds
generated by mm-Wave radars are attracting growing atten-
tion from academia and industry [67] due to their excellent
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Fig. 7 A typical process of point
cloud generation

Fig. 8 The basic operational principles of SAR

performance and capabilities. Frequency-Modulated Contin-
uous Wave Radars (FMCW) are another category of radar
sensors that radiate continuous transmission power. FMCWs
can alter their operating frequency during the measurement,
offering more robust sensing [68].

Figure 8 illustrates the operational principles of SAR; p1
and p2 are the phases of two reflected signals, λ refers to the
wavelength of a signal and �p is the displacement (between
two different phases).

4.1.4 Photogrammetry

Photogrammetry is an alternative method to generate 3D
models, by using photographs instead of light to collect data,

and methods from optics and projective geometry [69]. Pho-
togrammetry needs a conventional camera to capture the
images, a computer, and specialized software to create the
3D representation of the objects. Photogrammetry, the same
as laser scanning, can be terrestrial, based on photos taken
from the ground, or aerial, based on photos taken from an
aerial vehicle with a mounted camera.

The most common aerial vehicles for point cloud cap-
turing, are the Unmanned Aerial Vehicles (UAVs), namely
drones. A UAV is an aircraft without a pilot that has an
assistive onboard system that is controlled remotely or
autonomously [70]. Various categories of drones differ in
terms of flexibility, accuracy, weight, and performance in
altering weather conditions. A general categorization is to
classify them according to their flight mechanism intoMulti-
Rotor Fixed-Wing and Hybrid-Wing drones [71]. The choice
depends on the intended use and application requirements.
Their detecting and surveying systems usually incorporate
high resolution visual cameras, RADAR and LiDAR. This
technology is the most popular due to the handy, low acqui-
sition and operating cost for point cloud generation through
both commercial and open-source photogrammetric software
packages [72]. The primary data are obtained by the sensors
mounted on UAVs (vertical and oblique overlapping images)
and then the point cloud data are extracted after the data post-
processing.

Figure 9 shows the data post-processing procedure for the
point cloud generation. Images are inserted into the software,
the homologous points are detected andmatched, and images
are aligned and oriented. In the next step, input Ground Con-
trol Points (GCPs), i.e., markers with known coordinates,
are defined to geo-reference. At this stage, error resolution
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Fig. 9 Point cloud generation
through 3D model
reconstruction. The context in
pink color complements the
whole process

is also computed. A sparse point cloud is consequently gen-
erated using Structure from Motion (SfM), followed by a
denser cloud that is created by Multi-view Stereo (MVS),
with a metric value. In this phase, for each image, the cor-
responding depth map is calculated. Dense point cloud can
be extracted and stored in.las or.laz file format for further
processing. Moreover, a mosaic (orhomosaic) arises when a
dense point cloud is converted to mesh with texture. Finally,
from the orthomosaic, the Digital Surface Model (DSM) and
Digital Elevation Model (DEM) are also extracted.

4.1.5 Comparison and evaluation of different point cloud
acquisition and generation technologies

The main advantages of LiDAR technology are high accu-
racy, fast data acquisition, fast processing time, automated
procedures therefore independent from human interventions,
independent functionality frombadweather conditions, inde-
pendent from lighting conditions, e.g., sun inclination as
well as during night-time. Since point clouds have high data
density, they can be used as input data to create several ele-
vation models, such as DSM, Digital Terrain Model (DTM)
and DEM. DSM is a digital representation of the heights
of the surface of earth, including man-made structures and
above-ground features. DTM is a bare-earth topographic rep-
resentation of earth’s surface, while DEM is a superset of
DSM and DTM. However, disadvantages of LiDAR tech-
nology also exist. It functions better for static objects, and
for moving objects it needs to be combined with other tech-
nologies, e.g., camera, GPS, IMU, to establish a complete
mapping system. Even though it can penetrate dense foliage,
as the rays of light, it cannot penetrate very dense structures.

Finally, it has high operational costs due to costly equip-
ment and the need for experienced operators able to interpret
and analyze the captured data. Additional limitations are
accuracy problems caused by reflective surfaces; in extreme
weather conditions data collection can be interrupted; high
dependency of its accuracy on the quality and calibration of
the scanning system, the GPS, and IMU components.

RGB-D technology has advantages such as affordable
acquisition, computational cheap 3D reconstruction meth-
ods, and low power consumption translated to high auton-
omy. However, in many cases, final images may comprise
missing values, translated to holes, which must be filled, or
depth maps of low resolutions, which must be up-sampled.
Moreover, disadvantages at sensory level are observed.
RGB-D sensors may fail to capture objects and surfaces
with reflections, transparencies, absorptivematerials, motion
blurred, noisy characteristics and errors can be displayed
(systematic and random) due to strong light and to their lim-
ited scanning speed. Additionally, low-cost RGB-D sensors
cannot provide high quality data. In this case, a metrological
analysis of their performance needs to be considered. More-
over, the detection of point correspondences between two
cameras during triangulation with passive RGB-D sensors
is also challenging since it needs adequate local intensities
and variations of colors in images. Therefore, passive sensor
data can provide accurate depth information only in rich tex-
tured areas within a scene. For areas with less information
(fewer features), active sensors provide better depthmeasure-
ments. Moreover, since with ToF cameras depth is estimated
by the round-trip time of emitted light, measurements are not
affected at all by the lack of features on the scene.
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By conducting a direct comparison between point cloud
generation techniques from LiDAR data and image data
(photogrammetry), a set of definitive conclusions emerge.
Point cloud quality from LiDAR (aerial and terrestrial)
depends on scan frequency, point density and flying height.
Point cloud quality from images using SfM is affected by
the ground sample distance (GSD), flight altitude and image
content. Moreover, the point clouds created from LiDAR are
denser (2–100 ppsm) than that from images (1 ppsm or less)
[73]. By using UAV platforms, a 3D point cloud can be cre-
ated with photogrammetry only when a second homologous
point is found in another image or overlapping images. The
main difference, however, that distinguishes photogramme-
try from LiDAR is color, since photogrammetry results in
a colorized point cloud. Yet, LiDAR point clouds can be
more accurate, as already said, due to the fact that LiDAR
emits light and reflects features (ground or surfaces), thus, the
scene’s texture does not affect the modelling. Furthermore,
in LiDAR each reflected point has a coordinate location (X,
Y, Z) without having to find a second or third point in over-
lapping images. Due to the total amount of points sprayed
at once, the LiDAR laser can penetrate below heavily vege-
tated areas and provide more accurate surface models. From
the photorealism aspect, photogrammetry provides photore-
alistic mapping (orthomosaics, point clouds, textured mesh),
while LIDAR provides a sparse laser point cloud which is
colorized based on the intensity of reflection; yet, it is with-
out contextual detail [74].

Compared to LiDAR, SAR tomography (TomoSAR)
offers moderate accuracy on the order of 1 m, as it is recon-
structed from spaceborne data. In contrast, ALS LiDARs
provide much higher accuracy on the order of 0.1 m [75].
TomoSAR focuses on different objects than LiDARdue to its
coherent imaging nature and side-looking geometry system.
It can provide rich information and high-resolution recon-
structions in complex scenes, such as buildings, by leveraging
multiple viewing angles [76]. The combination of LiDAR
and SAR sensors can provide 4D information from space
[77]. However, TomoSAR does have some drawbacks, such
as its limited orbit spread, the small image number, andmulti-
ple scattering, which can lead to location errors and outliers.
Another advantage of LiDAR over Radar is the difference
in wavelength; the lower wavelength in LiDAR enables
the identification of extremely small objects, such as cloud
particles. Additionally, it’s important to note that LiDARper-
formance declines in bad weather conditions, while radars
can function effectively regardless of weather conditions.
Finally, Radars are more robust to weather changes and pos-
sess day and night operational capabilities.

Fig. 10 Point cloud visual representation. An example from an archae-
ological site

4.2 Point cloud formats

A point cloud is sparse, noisy, irregular, and represents
objects’ shape, size, position and orientation in a scene. The
term“cloud” refers to its collection of unorganized points and
spatial coherence. However, it has unsharp boundaries, and
consists of numerous and scattered points described by 3D
coordinates (X, Y, Z) and attributes, such as intensity, while
they can also contain additional information, e.g., color. In
the case of different sensory combinations, a point cloud can
also provide additional multispectral or thermal information.
Figure 10 shows a point cloud sample from an archaeological
site.

A variety of file formats for point cloud data storage is
currently available. The two main categories of point cloud
files areASCII (XYZ,OBJ, PTX, andASC) and binary (FLS,
PCD, and LAS) or both binary and ASCII (e.g., PLY, FBX,
and E57). The format selection depends on the data acquisi-
tion source and the intended use, e.g., for data meant to be
saved for a long time, the best packing format is in ASCII
file.

It should be noted that when dealing with point cloud
processing using DL models, the input data can either be
in its raw or transformed into a more easily handled data
structure that suits the requirements of the DL model archi-
tecture. Commonly, used structures are volumetric [78], shell
(or boundary), and depth maps.

4.3 Comparison of 3D point clouds with other visual
data forms

Nowadays, there exist various representation types of the
physical world, including 2D images, orhomosaics, depth
images, meshes and 3D point clouds. While humans can
perceive and understand any kind of representation through
vision, the understanding of scenes in the computer vision
field is achieved mainly by 2D images and 3D point clouds,
used differently due to their distinct characteristics. There-
fore, different visual forms are employed for different
problems, due to their inherent differences. 2D images are
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presented in a regular grid, i.e., an RGB pixel array, while
3D point clouds consist of thousands of points where each
point is encoded with spatial coordinates (X, Y, Z), including
other information as well. Moreover, 2D images are captured
by light rays using a lens and are projections of the 3D world
on 2D planes, whereas 3D point clouds represent surfaces,
are sparse and contain outliers.

RGB-D images combine four channels of which the three
channels include the color (RGB) and the fourth channel rep-
resents the depth. In depth images each pixel describes the
distance between the object (target) and the image plane [19].
Comparing 3D point clouds and depth maps, one could say
that they have different goals and purposes. More specifi-
cally, a 3D point cloud has an irregular shape form, whereas
a depthmap conveys information about the distance. In terms
of viewpoint, from a point cloud, it is visible each point used
to create the image, while a depth map provides a view of the
data points from a particular angle [79]. From the dimension
aspect, point cloud images are visible into three axes (X, Y,
Z), unlike depth maps which present information only from
Z-axis. A depth image, if compared to a flat image, is more
accurate and provides additional elements around and behind
the target. Point clouds generated from images obtained from
UAV platforms vary in terms of quality, outliers, and holes.
Their quality depends on the spatial resolution of the images,
which is affected by several parameters, such as the fly-
ing height, sensor characteristics, and weather conditions,
as already mentioned.

Nowadays, there are cases, where 3D point clouds are
complemented by 2D images and depth data in various appli-
cations, towards a better understanding of a scene. Recently,
researchers have developed algorithms and applied learnable
approaches using either LiDAR point clouds combined with
digital images as input data [80], aerial images (orthopho-
tos) fused with airborne LiDAR point clouds [81], LiDAR
and depth data combinations [82]. However, images may
present limitations as opposed to point clouds due to sun
angle and viewing geometry, occlusions shadows, lack of
texture, illumination, atmospheric conditions reflections, and
image displacement in areas with steep terrain [83].

5 Computer vision and point cloud
processing

Computer vision (CV) was developed in the late 1960s aim-
ing to simulate the human visual system and through auto-
mated tasks to achieve, from images or videos, a high-level
understanding. This was achieved by information extraction
related to their structure. In the next decades, many algo-
rithms and mathematical models have been applied to object
and shape representation from various cues, such as shading,
texture, and contours [84]. In the last decades, the need for 3D

reconstruction and visualization of the real-world, including
camera calibration, led to optimization methods and multi-
view stereo techniques. However, images are limited from
spectral characterization, sampling effectiveness, measure-
ment accuracy, and operating conditions and the natural data
process in raw form is also limited due to the parameters’
sensitivity, the algorithms’ strength, and the results’ accu-
racy [85].

To tackle these issues, classic machine learning methods
were applied to various 3D point cloud related applica-
tions. Considering the rapid computer vision evolution, the
needs, and requirements of high-precision data for real-world
recording and modelling are increasing. By using 2D images
the latter cannot be achieved, since 2D images do not provide
depth and position information that are essential for advanced
applications, e.g., robotics and autonomous driving. At the
same time the enhancement of technologies for 3D geospa-
tial acquisition of data from various 3D sensors brought to
the fore a plethora of computer vision applications providing
new data formats such as point clouds, for the rich represen-
tation of the scenes [86].

Point cloud processing for information extraction is a
complex and challenging task due to its unordered struc-
ture and different sizes, which depend on the recorded scene.
Moreover, matching between scenes is not feasible due
to the lack of neighboring. However, traditional machine
learning methods for the processing of point clouds depend
on handcrafted features and specifically designed optimiza-
tion methods. Point cloud features of static properties are
invariant to transformations, therefore, application-oriented
optimization methods need to be developed in each case,
and generalization cannot be achieved [87]. Therefore, the
need for developing enhanced and more efficient methods
to process point cloud data is apparent. DL methods can
automatically learn discriminative features, have proven their
effectiveness, and therefore have been also adapted to point
cloud processing. Recently, researchers and industrial orga-
nizations have employed DL techniques to handle point
clouds. In deep learning, the features are learned automat-
ically based on artificial neural networks during the training
process. However, used methods depend on the application
and the computer vision task and pose many challenges.

In the next subsection, the basic challenges of point cloud
processing are reviewed, while in the following section, task-
oriented challenges ofDLmethods for point cloudprocessing
are analyzed.

5.1 A brief review of DL-based point cloud
processing and corresponding challenges

Currently, the 3D representation of scenes via point clouds is
promoted by a variety of different advanced sensors. Yet, data
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does not contain topology, and connectivity, including occlu-
sions, can be affected by illumination, objects’ motion, noise
of sensors, and sources of external radiation. The latter issues
can lead to wrong coordinates’ estimation and thus, point
clouds can be sparse due to the mostly concentrated points
around key visual features, appearing holes and missing data
due to unsampled areas around smooth regions [88, 89]. This
data sparsity and uneven points’ distribution can get worse
depending on the quality of the acquisition device or in cases
of specific sensors, such as ToF sensors where occlusions and
hidden surfaces deteriorate the generated point cloud.

Redundancy of data is another critical issue on point
clouds. Point cloud representations can be highly redundant,
compared to meshes representations, especially on planar
surfaces. The latter results in large files that cannot be shared
or stored. In such cases, the point cloud needs to be efficiently
organized to provide good representations that could be feasi-
bly processed. Finally, the last basic challenge in point cloud
processing is the existence of noise in the resulting models.
Illumination, radiation, motion blur, sensory noises, etc. can
severely affect the point cloud, deriving false estimations of
surfaces and flying pixels. These kinds of artifacts can be
observed on vision-based acquisition devices, as well as in
all devices where environmental changes can alter the quality
of the derived data, e.g., in FMCW radar sensors.

Addressing such issues with traditional methods can lead
to increased memory costs [89]. Computer vision can offer
more powerful tools and point cloud processing techniques.
DL methods are capable of confronting the limitations of
traditional computer vision solutions using deep denoising
[90], volumetric multi-view, and point-based methods [91].
In addition, DL methods for feature learning can be applied
pointwise, such as Multilayer Perceptrons (MLPs) and Con-
volutional Neural Networks (CNNs) as the PointNet family
[92], or on graph and hierarchical data structures [93] by
either converting the point cloud into other formats or directly
on the raw data [94]. Challenges related to resolution were
faced by super-resolution methods aiming to upscale low-
resolution representations [95]. The challenge imposed by
the great number of points of a point cloud, in regular con-
ditions, is handled by finding similarities or dissimilarities
i.e., comparing corresponding pairs of pixels like in the
case of images; however, on point clouds, there is no 3D
dissimilarity measurement. The latter was tackled by using
supervised, unsupervised and autoencoder methods [96–98].
Finally, additional methods have been developed focusing
on capturing local structures and providing richer represen-
tations through sampling, grouping, and mapping functions
[98, 99].

It should be noted that all aforementioned challenges are
more general; specific challenges emerge when DL meth-
ods are used in different tasks, as reviewed in the following
section.

6 DL-based computer vision tasks using
point clouds

In this section, the main vision tasks are classified into
six categories: registration, segmentation, classification, 3D
object detection and tracking, compression and completion.
The advantages, disadvantages and challenges of using point
clouds in each task are discussed separately, aiming to deliver
an in-depth understanding of the impact of DL on point
clouds and the extent to which various point cloud manage-
ment challenges have already been addressed. This analysis
is significant as it can highlight research gaps, current trends,
and future research directions in the field.

DL-based methods for geometric data pose challenges
in terms of performing convolution. Numerous DL model
architectures have been proposed aiming to learn geometric
features from point clouds and implementing main DL oper-
ations on 3D points. Themain idea is to interpret point clouds
locally as structured data by considering each point concern-
ing its neighboring points or achieving a learning process
that remains invariant to the order of the point cloud. Based
on this, feature learning on point clouds is classified accord-
ing to Liu et al. [40] in raw point-based methods, where DL
models directly use raw point cloud data and k-dimensional
tree (Kd-tree) methods, where the point cloud is transformed
into another representation before being inserted into the DL
models.

Table 2 summarizes the main vision tasks as defined in
this work, providing optical examples, definitions for every
task as well as information about the type of input/output
data.

6.1 Registration

In registration, two-point clouds that are acquired from dif-
ferent angle views of the same scene are aligned through a
rigid transformation, aiming to obtain a common coordinate
system [46].

When point cloud data is captured by the same sensor, at
different times, it may contain noise and outliers, while being
partially overlapped due to varying viewpoints. In cases of
cross-sensorydata acquisition, different scales are introduced
due to the physical metrics, making rigid motion prediction
for aligning one point cloud into another challenging. Nowa-
days various challenges are being addressed by DLmethods,
including partial point cloud registration. To classify DL
methods for the registration task, we can first distinguish
them based on the origin of the data: same sensor or multi
sensors [100]. Figure 11 illustrates the classification of DL
methods for the registration task.

Methods for the same sensors are based on optimization,
feature learning and end-to-end learning.Optimizationmeth-
ods utilize techniques such as Iterative Closest Point (ICP)
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Table 2 Taxonomy of main 3D
point cloud vision tasks

Tasks Examples Definition Input Output

Registration

[108]

Finding a rigid 
transformation for aligning 

two-point clouds

Two 3D 
point 

clouds

Point clouds 
union

[99]

Semantic: point cloud 
classification into multiple 
homogeneous regions with 
the same properties (scene 

level)

[109]

Instance: point assignment 
to each object instance and 
predict its semantic label 

(object level)

Segmentation

[26]

Part: data point classification 
where a group represents a 
physical part of an object 

(part level)

Class 
prediction 
for every 

point in the 
cloud

Classification

[110] 

Categorization of the points 
by a set of geometric 

a�ributes to a predefined set 
of classes (e.g., vegetation, 

ground, roofs, etc.)

Prediction of 
classes

Object 
detection and 

Tracking
[111]

Identification and
Localization of objects

in a sequence of images or 
video

Objects 
inside the 
bounding 
boxes and 

class 
prediction

Compression

[3]

Volumetric visual data 
compression (geometry and 

a�ributes)

Completion

[112]

Shape generation and 
estimation, appearance of 
real objects derived from a 

partial point cloud

One 3D 
point 
cloud

3D point 
clouds

[101], graphs [102], Gaussian mixture models (GMM) [103]
and semi-definite registration [104]. One of the key advan-
tages of this category is the presence of rigorous mathemat-
ical theories that guarantee their convergence. Additionally,
these methods do not require training data and can general-
ize well to unknown scenes. To address challenges like noise,
outliers’ density variations, and partial overlap, optimization
methods are employed; nonetheless, the computation cost is
increased.

Feature learning methods are used for accurate corre-
spondence estimation, including learning on both volumetric

and point cloud data. Volumetric methods involve convert-
ing point clouds into 3D volumetric data and then utilizing a
Neural Network (NN). However, they require a largeGraphic
Process Unit (GPU) memory and are sensitive to rotation
variations. Some representative algorithms in this category
are PPFNet [105], SiamesePointNet [106] and deep closest
point (DCP) [107]. These methods offer robust and accu-
rate registration using a simpleRANdomSAmpleConsensus
(RANSAC) iterative algorithm. Nonetheless, certain issues
persist, such as the necessity for large training data and poor
registration performance in unknown scenes.
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Fig. 11 Classification of DL methods for registration of point clouds

In End-to-end learning methods, two-point clouds are
inserted, and a transformation matrix that aligns them is
obtained as output [113]. Thesemethods encompass registra-
tion by regression and optimization. Regression transforms
the registration problem into a regression task [114], combin-
ing the conventional optimization theories with deep neural
networks (DNN), resulting in improved accuracy compared
to previousmethods.Algorithms for both regression andopti-
mization have also been developed. End-to-end methods are
developed especially for the task, and the optimization of the
NN depends on the specific objective. Note as drawbacks
that DL regression methods are considered “black boxes”,
the coordinate measurements based on Euclidean space are
sensitive to noise and density differences, and feature-metric
registration focuses on local structure information.

Point cloud registration methods based on cross-sensors
face more challenges compared to single-sensor cases,
requiring the use of advanced registration frameworks. The
benefits of cross-sensor methods include leveraging advan-
tages from combining different sensors, providing the best
information for augmented reality applications; however,
they also suffer from limitations such as lower accuracy and
higher computational cost. Thesemethods can be categorized
into optimization-based, feature learning-based and pair-
wise global point cloud-based. Optimization-based methods
aim to estimate the transformation matrix using optimiza-
tion techniques [115] or deep networks [116]. While these
methods are similar to the same sensor approaches, the
computational cost problem remains an issue, and their per-
formance with different datasets can be problematic. DL
methods offer models focusing on various aspects of regis-
tration, including feature extraction and key point selection
[117], key point detector [118], and the entire registration
process embedded in a DL network [119]. Pairwise global
point cloud-based methods [120] consist of hybrid methods
that exploit pose-invariant features and feature descriptors
for local features’ extraction. Additionally, there are End-
to-End methods, which comprise both pose-invariant and

pose-variant feature methods, with pose-invariant methods
excelling [121]. Recently, a probability driven approach for
point cloud registration has been proposed [122], outper-
forming state-of-the-art registration methods on registration
accuracy.

6.1.1 Comparative discussion on image-based registration

When it comes to images, image registration involves align-
ing multitemporal and multimodal images, as well as images
from different viewpoints. Image registrationmethods aim to
address specific challenges such as finding similarity mea-
surements, especially for multimodal images, reducing the
computational cost, particularly in real-time applications,
improving quality of images and handling deformations.
Moreover, traditional methods often suffer from good gen-
eralization and usually converge to local minima [46].
To address these challenges, DL models, such as CNN,
RNN, Autoencoder, Reinforcement Learning (RL), Gen-
erative Adversarial Network (GAN), as well as regular
intensity-based similarity metrics like sum-of-square dis-
tance (SSD) and mean square distance (MSD), have been
extended to tackle the geometric computer vision task of
registration [46]. However, when dealing with multimodal
images, the results were found to be poor. To address the
metric problem, handcrafted descriptors were applied, but
these descriptorswere error-prone, anddeep similaritymetric
methods slowed down the registration process. Additionally,
the image alignment’s quality directly impacted the accu-
racy of the models. To tackle accuracy problems, special
data augmentation techniques were proposed [123]. Despite
presenting satisfactory results, these techniques posed diffi-
culties in optimization and did not reduce the computational
cost. DL methods mainly focused on rigid registration, since
non-rigid registration models involved high dimensionality
and non-linearity. With DL methods, an improvement of
20%–30%was observed [124] compared to traditional meth-
ods.
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The most significant shortcoming of DL lies in the
limitation of the transformation model from high to low
dimensionality [125]. The high dimensionality of the out-
put parametric space, coupled with the scarcity of datasets
for training, containing ground truth transformations, and
the challenges of regularization in predicted transformations
are tackled through supervised transformation prediction and
the use of data augmentation methods [126]. However, these
approaches insert additional errors, like the bias of unrealistic
artificial transformations and shifts of image domain between
the testing and training phases. Additional problems arise
when the transformation fails to captivate the wide range of
variations found in real image registration scenarios, leading
to potential mismatches between image pairs. To address this
issue, transformation generationmodels [127] are employed,
and to overcome the scarcity of training datasets, unsuper-
vised transformation prediction is applied [128].

6.2 Segmentation

Point cloud segmentation is utilized for scene understanding
and to determine the shape, size, and other assets of objects in
3D data [129]. During segmentation, a point cloud is divided
into different segments (subsets) with identical attributes; in
other words, points are clustered based on similar character-
istics into homogenous regions. Segmentation is an essential
task in 3D point cloud processing since it is the first step for
detecting objects in a scene that cannot be directly discerned
from a raw point cloud directly [130].

Three types of segmentation can be distinguished: seman-
tic, instance, and part segmentation. In semantic segmenta-
tion, objects are grouped into predefined categories. Instance
segmentation is a specialized form of semantic segmenta-
tion that detects instances of objects with the same semantic
meaning and defines their boundaries. Object part segmenta-
tion addresses the challenge of providing pixel-level seman-
tic annotations that imply fine-grained object parts, instead
of just object labels. Semantic, instance and part segmenta-
tion are applied at scene, object, and part levels, respectively.
All forms of segmentation present challenges related to
comprehending details of the global geometric structure for
every point, defining surface descriptors that describe the
object’s parts, as well as developing robust algorithms to
compute these features [131]. Segmentation methods learn
point distribution patterns from annotated datasets and make
predictions. Previous traditional segmentation methods have
encountered challenges in defining feature calculation units
and developing suitable feature descriptors for classifier
training. However, handcrafted features act as a limitation
factor for the generalization performance of algorithms in
complex scenes. In contrast to traditional machine learning
methods, DL methods address the aforementioned chal-
lenges by employing DNN training to encode point features

andmake predictions, or to design effective backbones, lever-
aging the unique characteristics of point clouds.

The classes of segmentation methods are illustrated in
Fig. 12. Semantic segmentation includes projection-based
methods, further categorized into multi-view, spherical and
cylindrical methods. Other methods involve discretization-
based methods (Dense or Sparse), point-based methods
(Point-wise multi-layer perceptron (MPL), Point convolu-
tion, or RNN, Graph), Transformer-based and hybrid-based
methods. Instance segmentation methods are categorized in
proposal and proposal-free methods, while the last category
is part segmentation. In their simplest form, these methods
often apply pre-trained CNN models, e.g., AlexNet, VGG,
GoogLeNet, etc., on various image datasets. In what follows,
each category of Fig. 13 is examined separately.

6.2.1 Semantic segmentation-projection-based methods

In projection-based methods, point clouds are projected into
2D images. These methods are efficient in terms of com-
putational complexity and can result in improvement of
performance for various 3D tasks by capturing several views
of the area of interest. Predictions are then made based on
the outputs, either through fusion or majority voting. How-
ever, multi-view segmentationmethods are easily affected by
viewpoint selection and occlusions, and they do not exploit
geometric and structural information due to information loss
[132]. On the other hand, spherical methods achieve fast
and accurate segmentation, making them suitable even for
the segmentation of LiDAR point clouds in real-time [133].
Semantic labels of 2D range images are assigned to 3D point
clouds to enhance the discretization of errors and improve the
quality of outputs. Spherical projection retains more infor-
mation compared to multi-view methods, making it suitable
for labelingLiDARpoint clouds.Nevertheless, discretization
errors and occlusion issues persist. Methods based on cylin-
drical coordinates have recently proven to be really effective
in representing LiDAR point clouds for various tasks [134].
Despite their sparsity and density effectiveness, they still
encounter noise issues [135].

6.2.2 Semantic segmentation-discretization-based
methods

Discretization-based methods transform a point cloud into
a discrete representation structure either dense, referring
to voxels or octrees, or sparse, referring to permutohedral
lattices. Then, dense or sparse convolution can be easily
employed. In dense methods the space taken by point clouds
is divided into volumetric occupancy grids and all points that
belong to the same cell are assigned to the same label. Sub-
sequently, predictions are made for each voxel center using a
convolutional architecture. Previous methods voxelized the
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Fig. 12 Categorization of DL-based segmentation tasks on point clouds

Fig. 13 Categorization of
DL-based classification tasks for
point clouds

point clouds as dense grids; however, these methods were
obstructed by the granularity of the voxels and the boundary
artifacts due to the partitioning of the point cloud. In prac-
tice, there is no selection of a suitable grid resolution. To
address these issues, advanced methods exploit the scalabil-
ity of fully CNNs, allowing them to handle even large-scale
point clouds [136]. Moreover, these methods can train volu-
metric networks with different spatial sizes point clouds. The
latter can lead to high computational costs due to the high
resolution and the loss of details. To mitigate this, trilinear
interpolation models that can learn automatically or 3D con-
volution filters have been used [137]. The natural sparsity
of point cloud models results in a relatively small number
of filled cells in volumetric representations. To resolve this,
sparse convolutional networks have been proposed [138].
These networks reduce memory and computational costs by
limiting the output of convolutions to be related solely to

occupied voxels. In this way, these methods can process effi-
ciently high-dimensional and spatially sparse data.

6.2.3 Semantic segmentation-Point-based methods

Point-based networks operate on unstructured point clouds,
avoiding some limitations posed by previous methods, such
as projection and discretization. In this category, point cloud
data processing is conducted directly. These methods are
divided into point-wiseMLP, point convolution, RNN based,
and graph-based methods.

Point-wise MLP methods utilize the joint MLP as the
main unit of their network due to its superior effectiveness.
However, the extracted features by these methods may not
fully describe the local geometry and common interactions
between points. To address this, various networks have been
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proposed, involving attention aggregation, neighboring fea-
ture pooling, and local–global feature concatenation [139],
which enable better local structure learning and wider point
capturing. Point convolution methods apply specific 3D con-
volution operators tailored to continuous or discrete point
clouds. The definition of the 3D continuous convolution ker-
nels is done on a continuous space, where the weights for
neighboring points are associated to spatial distribution. In
discrete point clouds, CNNs are specified on regular grids,
and the neighboring points’ weights are associated with the
offsets regarding the center point [140]. RNN networks can
model the interdependency of acquired point cloud at differ-
ent times. PointRNN leveraged this idea [141], while other
solutions have been proposed by combiningCNNs and recur-
rent architectures [142], capturing inherent context features
from point clouds [143], exploring several RNN architec-
tures [144], and using dynamic models [145]. Additionally,
graph methods have also been developed for capturing the
shape and geometric structure of 3D point clouds [146].

6.2.4 Transformer-based methods

Transformer-based methods are decoder-encoder structures
that consist of input embedding, positional (order) encoding,
and self-attention, enabling the learning context and tracking
relationships in sequential data. Particularly, self-attention
plays the most important role as it generates sophisticated
input attention features, according to the global context, and
consequently the output attention also learns the global con-
text [147]. Thesemethods are suitable for processing of point
clouds due to their natural independence of the input order.
In these frameworks, Natural Language Processing (NLP)
methods provide better performance than CNN, allowing for
parallel processing and are much faster than any other model
with similar performance [148].

6.2.5 Hybrid-based methods

Hybrid-basedmethods are popular and involve the utilization
of over-segmentation or point cloud segmentation algorithms
[146] as a pre-segmentation stage to reduce the data volume.
However, reducing the amount of data may lead to a slight
loss of accuracy. Moreover, additional methods are learn-
ing multi-modal features from 3D scans and leverage all
available information. For example, 3D-multi-viewnetworks
combining RGB and geometric features [149], 3D CNN
stream and a back-projection layer to learn 2D embeddings
and 3D geometric features [150], or a unified point-based
framework for learning 2D textural appearance, 3D struc-
tures and global context features from point clouds. These
networks are directly applied to extract local geometric fea-
tures and global context from a sparse sampling of point
sets without voxelization. In contrast, other techniques like

Multi-view PointNet (MVPNet) [151] combine appearance
features from 2D multi-view images and spatial geometric
features in the canonical point cloud space.

6.2.6 Instance segmentation

Instance segmentation focuses on distinguishing points of
different semanticmeanings and separating instances accord-
ingly. It combines the advantages of semantic segmentation
and object detection; however, it requires more accuracy and
granularity due to points, compared to semantic segmentation
methods. Instance segmentation presents some significant
challenges, such as difficulty in segmenting smaller objects,
dealing with occlusions, inaccurate depth estimation, and
handling of aerial images. Existing DL-based instance seg-
mentation methods can be categorized into proposal and
proposal-free approaches [35].

Proposal methods transform the problem of instance seg-
mentation in 3D object detection and prediction of instance
mask [152]. For this purpose, several methods have been
introduced [153, 154], with Generative Shape Proposal
Network (GSPN) [150] being the first reported approach.
However, these techniques are computationally expensive,
require substantialmemory and rely on large amounts of data,
presenting challenges in their implementation. Proposal-
free methods [155, 156] consider instance segmentation as
a successive step of clustering at a pixel level to gener-
ate instances after semantic segmentation, without involving
any object detection module. Existing methods assume that
points within the same instances can have alike features,
thus focusing on discriminative feature learning and group-
ing of points. Group Proposal Network (SGPN) was the
first proposal-free method [157] reported in the literature.
Proposal-free methods do not require computationally costly
region-proposal components. However, they exhibit lower
objectiveness in instance segmentation since they do not
clearly identify boundaries of objects. Essentially, these
methods rely on grouping/clustering techniques at a pixel
level to generate instances, covering potential gaps through
the use of semantic segmentation methods.

6.2.7 Part segmentation

In part segmentation, semantic annotations indicate fine-
grained object parts at the pixel level, rather than just object
labels. The difficulties in this task are related to 3D shapes.
For instance, parts of shapes having the same semantic label
exhibit big geometric variations and ambiguity, and the total
parts having the same semantic meaning can differ sig-
nificantly. These challenges have been partially faced by
volumetric CNNs [158], Synchronized Spectral CNN [159],
Shape Fully Convolutional Networks [160], and part decom-
position networks [161], which have reported improvements
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in part segmentation outcomes. However, they have stated
sensitivity to initial parameters and limitations in learning
local features.

6.2.8 Semantic segmentation

As a general conclusion, DL-based methods for seman-
tic segmentation on point clouds offer numerous benefits,
even for very large-scale point clouds. Instance segmentation
requires more discriminative features, while the combina-
tion of semantic and instance segmentation can enable label
prediction simultaneously [162]. Such an approach can be
particularly useful for still images displaying many overlap-
ping objects in a scene, as it allowsmodels to be better trained
in real-world scenarios, effectively handling dense objects
and significant overlaps between them [163]. Furthermore,
image segmentation in various fields, such asmedicine, high-
lights the need for large-scale annotated 3D image datasets,
which can be challenging to create, compared to datasets in
lower dimensional counterparts.

6.2.9 Comparative discussion on image-based
segmentation

Image segmentation methods on 2D data have been
developed using interpretable deep models [164], weakly-
supervised and unsupervised learning [165], unsupervised
learning [166], self-supervised learning [167] andReinforce-
mentLearning [168].However, challenges regarding the kind
of information usedwith interpretablemodels, their behavior,
dynamics and the efficiency related to accuracy and compu-
tational cost remain. Image segmentation algorithms depend
on the spatial properties of image intensity values. How-
ever, these intensities are not purely quantitative and can be
influenced by a variety of factors, including hardware, proto-
cols, and noise. Researchers have made attempts to address
these challenges by using traditional methods [169]. Unfor-
tunately, these methods have had limited success, as they
often require manual interventions for abnormal cases and
lack the necessary robustness to handle sensitive input data
effectively. To overcome these limitations, more advanced
approaches have been developed, such as U-net [170] and
DeepLab [171].

These methods leverage large amounts of image data
to enhance performance, increase robustness, and obtain
more reliable estimates. Additionally, they help mitigate
the computational cost by combining differently constructed
architectures in various applications, particularly in the field
of medicine. Methods based on RGB images in general, lack
information to achieve semantic segmentation of complex
scenes. It should be noted that RGB-D semantic segmenta-
tion providing additional depth information, was concluded
to reach to better segmentation results [172].

6.3 Classification

Point cloud classification refers to the assignment of pre-
defined category labels to groups of points within a point
cloud, determining which points belong to which objects.
In the past, methods for point cloud classification relied
on handcrafted features and traditional classifiers for point
cloud preprocessing, as well as machine learning tech-
niques, like unsupervised, supervised, or a combination
of them [173]. However, unsupervised methods were lim-
ited by their dependency on thresholds, leading to poor
adaptability. Supervised methods struggled to learn high-
level features, making it challenging to achieve significant
improvements in classification accuracy. Although combin-
ing these methods improved classification accuracy to some
extent, they still inherited certain limitations [174]. Nowa-
days, DL methods have proven their powerful capabilities
for representation learning directly from the data. The latter
has led to significant advancements in the field of 3D point
cloud classification.

DL-based methods for classification of point clouds can
be divided in projection-based, volumetric-based and point-
based methods according to the different input data formats
used by the neural networks, as illustrated in Fig. 13. It should
be noted that many of these classification methods share, to
some extent, similar concepts with segmentation methods.

6.3.1 Projection-based methods

Multi-view methods [175] involve projecting 3D shapes into
multiple views and extracting view-wise features, which are
then fused to achieve precise shape classification. However,
these methods often encounter information loss. One of the
main challenges for these methods lies in the way to combine
the several view-wise features in a discriminative global rep-
resentation. As a result, several methods have been suggested
aiming towards improving the accuracy of recognition [176,
177].

6.3.2 Volumentic-based methods

Volumetric-based methods voxelize point clouds into 3D
grids and utilize 3D CNN for shape classification [178]. The
main challenge with this approach is the scaling of dense 3D
data, as both memory footprint and computations increase
exponentially with the resolution. To address these concerns,
researchers have introduced OctNet [137], which reduces the
computational and memory costs, as well as the runtime,
especially for high-resolution point clouds. However, despite
these efforts, volumetric-based methods are not appropriate
for handling large-scale point clouds because of the per-
sistently high computational cost, which has not yet been
efficiently resolved.
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6.3.3 Point-basedmethods

Point-based methods are applied directly for processing raw
points without voxelization or projection, enabling high pre-
cision and efficiency due to the irregularity of the distribution
of point clouds and the scenes’ complexity [179]. These
methods encompass point-wise MLP, convolution, graph,
and hierarchical data structure-based approaches. It is noted
that point-wise MLP, convolution and graph methods share
similarities with the segmentation methods, albeit with some
variations.

Point-wise MLP methods aggregate global features using
a symmetric aggregation function. However, applying DL
methods for images directly to a3Dpoint cloud is challenging
because of their irregular data nature. Unlike images where
kernels are described on a 2D grid structure, designing point
clouds convolutional kernels is complex due to their irreg-
ularity. Numerous methods have been developed based on
point convolutional kernels, which can be categorized into
continuous and discrete convolution methods. Continuous
methods define a convolutional kernel in a continuous space,
where the neighboring points’ weights are determined based
on their spatial distribution regarding the center point. These
methods can be translated as a weighted sum over a given
subset [180, 181]. 3D discrete methods describe convolu-
tional kernels on conventional grids, and the neighboring
points’ weights are determined based on the offsets from
the center point [182]. In graph NNs each point is treated as
a vertex in a graph, and directed edges are generated for the
graph based on the neighboring points of each vertex. Then,
feature learning is applied in either the spectral or spatial
domain for effectively capturing the local structure data of
point clouds [183]. However, the receptive field size of many
graph NNs is often not enough for capturing comprehensive
contextual information. Graph-based methods in the spatial
domain define operations like convolution and pooling,while
convolutions are defined as spectral filtering, implemented
through signals’ multiplication on the graph with eigen-
vectors of the graph Laplacian matrix. On the other hand,
hierarchicalmethods employ networks constructed using dif-
ferent hierarchical data structures, wherein the learning of
point features is done hierarchically from leaves to the root
node of a tree structure [184]. Recently, a unified represen-
tation of image, text, and 3D point cloud was introduced,
namely ULIP, pre-trained by using object triplets from all
three modalities [185]. The ULIP reported state-of-the-art
performances in standard 3D classification and zero-shot 3D
classification, bringing multi-modal point cloud classifica-
tion in the forefront of point cloud related research. A 3D
point cloud classificationmethod based on dynamic coverage
of local area was presented in [186], introducing a new type
of convolution to aggregate local features. For point cloud
classification and segmentation, it was also proposed a new

space-cover CNN (SC-CNN) [187], towards implementing a
depth-wise separable convolution to the point cloud using a
space-cover operator. The latter approach was proven capa-
ble of better perceiving the shape information of point clouds
and improving the robustness of the DL model.

6.3.4 Comparative discussion on image-based classification

Classification of 2D images using DL refers to the training
process of a model to classify the images into predetermined
classes. CNNs are widely employed in image classifica-
tion due to their ability to capture and learn hierarchical
features. Due to their structure, their powerful feature learn-
ing abilities, as well as the availability of GPU computing,
outperform in most cases the traditional machine learn-
ing techniques. Therefore, CNNs have reported significant
performances in various large-scale identification computer
vision tasks. Despite their great achievements, DL models
for 2D image classification still face challenges to tackle,
such as insufficient data because due to the fact that DL
models require large amounts of labeled data for effective
training, overfitting issues especially when themodel is com-
plex having a large number of hyperparameters, resulting in
capturing noise instead of general patterns. Addressing these
challenges requires a combination of advanced algorithmic
improvements, data curation strategies and deployment of
robust image classification models that could be applied to a
wider range of cases.

6.4 Object detection and tracking

Object detection and tracking task also involves 3D scene
flow estimation. Given the arbitrary nature of point cloud
data, the aim of object detection is the identification and
localization of instances of predefined categories, provid-
ing their geometric 3D location, orientation, and semantic
instance label. This information is embodied by a bounding
box encompassing the target, indicating the object’s center
position, and orientation size [188, 189]. Figure 14 shows the
categorization of object detection and tracking methods.

6.4.1 3D object detection

Object detection finds applications in various real-world
scenarios, including autonomous driving, surveillance, trans-
portation, scene analysis from drones, and robotic vision
[40]. However, specific challenges arise in this task, such as
simultaneous classification and localization, real-time pro-
cessing, handling multiple spatial scales and aspect ratios,
dealingwithmultiple featuremaps, limited data, and address-
ing class imbalances [190]. To address the issue of simul-
taneous classification and localization, specific methods
use multi-task loss functions, penalizing misclassifications
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Fig. 14 Classification of DL-based object detection and tracking tasks for 3D point clouds

and localization errors. Convolutional Neural Networks are
employed to handle false classifications andmisalignment of
bounding boxes. For real-time detection, speed methods like
Yolo or Faster R-CNN are applied to mitigate the problem
to a certain extent. It is worth to note that maintaining real-
time speed (e.g., at least 24 fps) can be challenging when
processing video shoots continuously. Currently, YOLO v3
offers object detection at multiple scales. However, there are
still challenges that need improvement, such as achieving
real-time detection with high-level classification and local-
ization accuracy, as well as ensuring continuity in video
tracking between frames, rather than processing them sep-
arately [191]. In addition, during object tracking, several
challenges arise, including smooth object motion without
abrupt changes, dealing with sudden and gradual changes
in both object and scene backgrounds, maintaining camera
stability, handling varying numbers and sizes of objects, and
addressing occlusion limitations [192]. These challenges are
tackled by using region proposal [193, 194] and single-shot
proposal methods [195]. Region proposal methods suggest
possible regions (proposals) that may contain objects and
subsequently the extraction of region-wise features towards
determining the class label of each proposal.

Region proposals can be achieved through multi-view,
segmentation and frustum methods, while single-shot meth-
ods include Bird’s Eye View (BEV), discretization and
point-based methods. Multi-view methods aim to obtain 3D
rotated boxes by fusing proposal-wise features from differ-
ent view maps [196, 197], but they often suffer from high
computational costs. To address this, researchers have devel-
oped variousmethods to effectively fuse data fromalternative
modalities, enabling robust representation extraction from
the input data [198–200]. Such methods exhibit superior
object recall rates and are more appropriate for complex
sceneswith strong occlusions and packed objects,when com-
pared to the previous approaches.

Frustum methods leverage 2D object detectors for gener-
ating 2D potential regions of objects and derive a 3D frustum

proposal for each region. However, the performance of these
methods is restricted by their reliance on 2D image detectors
[201]. Single-shot methods predict directly the class proba-
bility and regress the 3D bounding box of objects by utilizing
a single-stage network. These methods do not need of the
generation of region proposal or post-processing, allowing
them to operate at high speed.

Based on the type of input data, single-shot methods are
further categorized into BEV , discretization and point-based
methods. BEVmethods use representations as their input for
estimating the heading angles and location of objects. The
reported generalization performance to point cloudswith dif-
ferent densities was poor. However, this issue was resolved
by using normalization maps that take into account the
variations between different LiDARs [202]. Discretization
methods transform point clouds into regular discrete repre-
sentations and employ CNNs for predicting all classes and
objects’ 3D boxes. The challenge with these methods lies in
the requirement of significant computation resources because
of 3D convolutions, and the data sparsity. For addressing
this issue, a voting scheme has been applied to cover each
non-empty voxel, resulting in complexity of computations
that was analogous to the number of occupied voxels. Addi-
tionally, other methods have been developed towards saving
memory and accelerating computation by fully utilizing the
sparsity of voxels. Point-based methods use directly raw
point clouds as inputs. While these methods can be time-
consuming, they can be mitigated using fusion sampling
strategies [193]. While saliency perception could aid seg-
mentation, localization and detection tasks, it should be noted
that relevant research on 3D point clouds is limited. In [203],
salient detection is performed by employing principal com-
ponent analysis in a sigma-set feature space, achieving high
performances without using topological information.
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6.4.2 3D object tracking

The object tracking task uses point clouds sequences along
with the object’s location in the first point cloud towards
estimating the location of the object in subsequent frames
[204, 205]. This category draws inspiration from object
tracking algorithms used with 2D images [206]. Object
tracking exploits the strong geometric information found
in point clouds, enabling it to beat challenges related to
image-based tracking, occlusions, illuminations, and scale
variations [207].

6.4.3 Scene flow estimation

Scene flow estimation of 3D point clouds uses two point
clouds to describe how each point moves as it traverses
through a scene, with the aim to learn valuable insights from
a point clouds sequence. Scene flow estimation encounters
several challenges, such as vectors that may deviate from
the ground truth, handling deformable objects, achieving
accuracy in rigid dynamic scenes, managing computational
costs, and processing sequential point clouds. Although these
challenges have been addressed by various methods, their
performance is still limited because of the small scale of
available datasets [208].

6.4.4 Comparative discussion on image-based object
detection and tracking

In 2D image object detection and tracking, the goal is to
determine the existence of objects from given categories in
an image and localize their spatial positions using bounding
boxes [209]. In this context, the recognition aspect involves
finding an appropriate feature space and similarity metric.
On the other hand, 2D visual object tracking faces several
challenges, including tracking a target image in each video
frame, localizing its Region-Of-Interest (ROI) and detecting
the object over the video frames, while dealing with issues
like object deformation, blur, abrupt object motion, noise in
image sequences, changes in scene illumination, object sizes,
object-to-object and object-to-scene occlusions, non-rigid
object structures, camera movements, and real time process-
ing requirements. For both single and multi-object cases,
additional challenges arise, such as the existence of artifi-
cial or sunlight, varying weather conditions, different times
of day, shadows on the ground, reflections, and occlusions.
From the object representation respective, the problems cen-
ter around extracting the minimum amount of information
from the object, such as color, intensity, feature points, and
spatialized color histograms. To tackle these challenges, sev-
eral methods have been developed [210].

Fig. 15 Categorization of DL-based compression tasks for point clouds

6.5 Compression

Since the point cloud data acquired from various 3D tech-
nologies comprises of a huge number of points, there is a
need to efficiently transfer and store this data. This is accom-
plished through the compression task. Point clouds consist
of geometry information, which indicates the position of the
points and attributes that provide additional details for each
point. This information can be coded jointly or separately,
using either lossless or lossy computer techniques [211].

Challenges encountered in the compression task include
computational costs, support for incrementally acquired data,
local decompression, geometry resolution, andmanaging the
points’ number. The geometry of objects is sometimes based
on sparse signals, resulting in information distributed across
an irregular sparse domain with irregular neighborhoods.
As a result, compression may lead to feature loss, making
object identification difficult. For this reason, DL methods
based on coarse-to-fine geometry are employed to tackle
these problems. Besides, DL methods are further differenti-
ated according to the encoding domain and prior information.
Figure 15 illustrates the categories of DL methods used for
point cloud compression tasks. Furthermore, voxel methods
based on encoding domain use denser point clouds compared
to point methods, while methods that require prior informa-
tion are divided into unstructured and LiDAR sensor data
utilization.

6.5.1 Geometry-based methods

Geometry-based methods for point cloud compression can
be categorized into lossy and lossless approaches. Lossy
methods utilize CNNs based on autoencoders architecture
for transforming the point cloud into a latent space of a
lower dimension and then reconstructing an output similar
to the input, treating the point cloud as a binary signal on
a voxels grid [211, 212]. The decoding process is consid-
ered a problem of binary classification in a voxel grid, even
though point clouds are sparse, resulting in class imbalance
[213]. This is resolved by using focal loss methods. How-
ever, challenges arise with spatiotemporal complexities and
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filling certain gaps, which are tackled through block parti-
tioning and sparse convolutions, and by applying multiscale
approaches, respectively. Nevertheless, these methods may
degrade the sparsity of point clouds. Another challenge is
the decoding mismatch related to DNN, which is addressed
using adaptive thresholding approaches to maintain density
consistency between training and tests datasets, and encod-
ing thresholds to ensure the reconstructed point cloud retains
the same number of points as the original [214]. Addition-
ally, to reduce training time, a sequential training scheme has
been proposed [215].

Lossless methods aim to enhance the prediction occu-
pancy probabilities by utilizing entropy models. Different
frameworks have been proposed, focusing on the improve-
ment of octree coding, applying networks based on entropy
models and continuous convolutions, and leveraging already
decoded frames used to dynamic point clouds [216, 217].
These techniques provide limited information; deep CNN
withmasked convolutions is applied in these cases to improve
the performance on sparse regions. However, in such meth-
ods, the sequential dependency increases the complexity,
which can be addressed using multiscale approaches [218].
Signal point-based approaches such as PointNet for geo-
metric compression, suggest improved schemes based on
adaptive octree partitioning and clustering NN architectures,
which integrate novel neural graph sampling modules, point-
based NNs specifically designed for LiDAR point cloud
compression, and deconvolution operators to compress point
cloud geometry [219]. Encoding domain approaches are
more suitable for dense and sparse point clouds since they
depend on the number of points, unlike voxel approaches
that depend on the voxel grid dimension (precision). In addi-
tion, prior information should be considered regarding the
used data acquisition sensor. For example, LiDAR sensors
use spinning mechanisms, and a spherical coordinate system
is used to model the point cloud data, while data from cam-
era arrays are represented as several 2D images, and RGB
data are stored on a single 2D images. For this reason, com-
pression tasks may vary depending on the data acquisition
source.

6.5.2 Attribute-based methods

Compressing attributes in 3D point clouds involves com-
pressing information such as colors or normal directions. A
significant challenge in this category is the difficulty of deal-
ingwith the geometrical irregularity of point clouds, which is
influenced by the attributes, makingmodeling and prediction
challenging. Irregularity problems are resolved by assuming
that a point cloud is a sampling of a 2D manifold with a
2D parameterization, and attributes are projected onto a 2D
image [220]. Attributes can be compressed by either image
compression methods or can be mapped directly on a voxel

grid. In some cases, geometry and attributes are compressed
to define a voxel grid. To deal with the irregular geome-
try caused by attributes mapped onto a 2D plane, CNNs are
used for compressing attributes on a voxel grid or directly
to define convolutions on the points. In real-time applica-
tions, data is usually transmitted via restricted bandwidth
networks, necessitating rate reduction through approaches
focused on compression and data structure for mapping
environments. Although real-time processing rates are effi-
cient,manymethods do not support incremental compression
and local decompression, leading to increased computational
costs as the actual time does not match the compression
time. Research results have reported compression times of
the order of hours [221].

6.5.3 Comparative discussion on image-based detection
and tracking

When comparing point cloud compressionmethodswith cor-
responding methods for 2D images, the compression system
depends on both a compressor and a decompressor, consid-
ering that an image is a two-dimensional signal composed of
binary numbers [220]. Traditionalmethods aimed to improve
compression ratio and image quality, as well as the encoder
structure. However, these frameworks contain multiple sub-
modules and many parameters, which limit the optimization
space. In contrast, DL methods rely on the network’s char-
acteristics, updating parameters through automatic feature
extraction during learning, and extracting patterns from
the input images by adjusting weights [222]. To improve
compression performance and address challenges such as
complex unknowncorrelations between pixels, progressively
increasing compression ratio, and iteratively consuming exe-
cution time during encoding and decoding, unsupervised
learning based on Auto Encoder (AE) networks have been
used [223]. Problems such as image reconstruction and diver-
sity of original images are tackled using CNNs, RNNs and
GANs. Unlike CNNs and RNNs which complete the com-
pression by extracting feature information, GANs generate
artificial data and the network parameters are optimized
[224]. Therefore, the image is reconstructed based on the
image coding information. However, network computation
and parameters can be large. For optimal performance, poly-
merization schemes are applied, and prediction generation is
achieved by using the original image instead of the residual
signal [225].

6.6 Completion

Point clouds suffer from missing points due to peculiarities
of the scanned object, specular reflection, signal absorption
caused by the surface material of the object, occlusions, as
well as blind spots. Additionally, the limited stability of the
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3D scanner may cause topology errors that influence the
quality of point clouds, and thus, 3Dmodels’ reconstruction,
extraction of local spatial information, and successive pro-
cessing [23]. On top of these issues, denoising, smoothing,
fusion, and computational costs, pose additional challenges
in the completion task.

Traditional methods based on geometry and alignment,
utilize the geometric attributes of the objects [226] and
retrieve the complete structure from a database [227]. How-
ever, they often struggle to robustly generalize to complex 3D
surfaces with large missing parts. Other methods focused on
using a 3D voxel grid [228], but they faced limitations due
to computational costs, which increase cubically with the
shape resolution. Nowadays, to resolve such challenges, DL
methods are applied, which can be divided into geometric,
alignment and learning-based, as illustrated in Fig. 16.

6.6.1 Geometry-based methods

Methods based on geometry aim predicting hidden shape
parts of objects directly from the seen shape parts using
former geometric assumptions [229]. The shapes are recon-
structed from partial input through interpolation techniques
[230] like Laplacian smoothing [231] and Poisson surface
reconstruction [232], without the need for external data.
Other techniques focus on detecting consistencies in the
structures of models and repeating them towards predict-
ing missing data according to identified symmetry axes.
Such methodologies are inferring missing data straight from
the region of observation, providing notable outcomes. Yet,
they require hand-crafted geometric consistencies that can
be defined in advance for certain kind of models and are
employed only for models that have a finite level of incom-
pleteness [233].

6.6.2 Alignment-basedmethods

Methods based on the alignment eithermatch the partial input
and substitute it with a model from a database, or multiple
input parts are fit and combined to obtain the full surface
[234]. Alternative methodologies utilize synthesized models
after deformation [235] or non-3D geometric primitives, like
planes and quadrics instead of 3D shapes from the database
[236]. Such methodologies can be applied to many differ-
ent types of models and to variable levels of incompleteness.
However, they are computationally demanding during con-
struction of the database and inference optimization, and they
exhibit sensitivity to noise.

6.6.3 Learning-basedmethods

Learning-based methods construct a parameterized model
towards learning a mapping between the two feature spaces

of the complete and incomplete point cloud, typically using
encoder-decoder NNs. For the shape representation, most
models use voxels, which are intuitive and appropriate for 3D
convolution. To maintain local geometric details, models are
employed on direct point sets. Due to the fact that points and
voxels are mono-modality inputs, it is challenging to achieve
accuracy in mapping between a complete and incomplete
point cloud. Hence these methods are considered efficient
only on small-scale incompleteness of shapes or objects. To
resolve this, coarse-to-fine strategies are applied [237, 238]
towards preserving the observed geometric details from the
local features in incomplete inputs, and voxel methods are
used for the completion process [239]. Other methods focus
on unpaired shape completion techniques because the paired
ground truth of real scans is difficult to obtain [240].

Concluding, the existing completion networks are still
inferior to the maintenance of the details, especially for thin
structures, where they cannot generalize sufficiently and it
is difficult to extend to scene completion. Among CNNs for
compression and completion tasks, there is a great paral-
lelism between them, because models require meaningful
features to be extracted from the input towards the original
shape reconstruction.

Image completion involves completing missing regions
in an image according to the available visual data, includ-
ing eliminating unwanted noise and blur while preserving
the biggest part of image details. Completion and image
enhancement can occur either simultaneously or separately.
Completion challenges such as the poor-quality images,
mainly in real-word applications due to missing and masked
image areas. The plausible of completions during the tran-
sition between known and unknown regions, the removal of
unwanted objects and the generation of occluded regions for
3D reconstruction, are additional challenges, addressed by
using GANs [241], while residual learning techniques [242]
are used to address enhancement challenges. Despite their
effectiveness, these methods may struggle to deal with big
incomplete regions in images, especially when the corrupted
regions are big or unrelated to the visual data. They might
also fail in cases where the original image lacks sufficient
data for completion or when the models are unsuitable for
handling noisy images.

In real-time applications, several challenges persist when
image samples are required to be included in the training
data. Then,masks on the corrupted regions are necessary dur-
ing training, and context encoders usually lead to blurry and
noisy results [243]. Denoising approaches can only improve
the picture’s clarity but cannot fully recover it if the man-
agement of texture and structure is unsatisfactory [244].
Enhancement models applied to very smooth regions (e.g.,
clear sky) may be susceptible to the halo effect, which can be
addressed by iteratively optimizing the pixel gradient in edge
transitional regions [245]. The issue of generating plausible
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Fig. 16 Categorization of
DL-based completion tasks for
point clouds

completion results during the transition between known and
unknown region methods, is confronted with the following
handling [246, 247]: building a contextual attention archi-
tecture, employing efficient loss functions for generating a
more representative content in the incomplete region, using
partial convolutions to focus on the unidentified region, and
ensuring structural consistency to achieve continuity. Fur-
thermore, many methods rely on GANs to achieve better
details. However, GANs may present structure constraints
since they completely rely on the training image for gener-
ating semantically relevant structures and texture confidence
[248]. To tackle the removal of unwanted objects or the
generation of occluded regions, patch-based image synthe-
sis approaches were proposed [249]. These methods have
limited effectiveness as they require high-level scene recog-
nition, completed textured patterns, and object and scene
anatomy understanding. Other methods focused on better
controlling the completion behavior of networks and the
computational costs, yet, without serious improvements in
large regions [250].

6.6.4 Comparative discussion on image-based completion

Completion of 2D images using DL involves training mod-
els to fill in missing or damaged parts of an image, creating
a visually coherent and realistic result. This process is par-
ticularly useful in applications where images are incomplete
or have regions that need restoration, such as in image edit-
ing, restoration, or inpainting. Commonly used architectures
include CNNs, which are well-suited for completion due to
their capability to capture hierarchical features, GANmodels
to generate realistic and high-resolution completions, or AE
where the input image is encoded, and missing parts of 2D
images are completed. However, there are challenges such
as the model’s understanding of the context of the image, the
striving for realistic and visually consistent completions that
could blend smoothly with the existing image, and the need
for computational resources, especially in the case of large
images or complex architectures.

7 Point cloud datasets

In recent years, many point cloud datasets obtained from
various sensors and comprising virtual or real scenes, both
indoor and outdoor, have been published, catering to different
tasks. This section provides an overview of the most popular
datasets associatedwith various tasks. These datasets are cre-
ated mainly by industries and university communities, and
they play a crucial role in DL-based applications since they
offer a substantial amount of ground truth labels for network
training and serve as the basic benchmarks for comparing
and evaluating different methods. However, the disposal of
benchmark datasets diminishes as their complexity and size
increase, mainly due to the diverse platforms and acquisition
methods used to collect point cloud data [44].

DL approaches require large datasets, but the availability
and size of data can vary [3]. Some datasets can be uti-
lized for multiple tasks, while others are specific to particular
applications. Datasets can be classified based on the types of
data they provide. Classification datasets typically include
textured surfaces that can be synthetically generated using
CAD tools or actual datasets directly captured by 3D sen-
sors like Kinect or LiDAR. Real data, though valuable, often
have small sizes due to the challenges involved in obtaining
them [251]; their acquisition can be expensive in terms of
both money and time, and they may suffer from noise and
occlusions. On the other hand, synthetic data are available
in huge amounts without occlusions and background; how-
ever, they have limited generalization abilities [252]. For 3D
object detection and tracking, datasets are derived mainly
from indoor [253] and outdoor [254] scenes. The data can be
obtained by converting dense depth information, sampling
from 3D meshes, or designing them with separated objects
spatially. Point cloud segmentation datasets come from var-
ious sensors, such as MLS, ALS, static TLS, RGB-D, and
other 3D scanners, and developing robust algorithms is cru-
cial in this context. Completion task datasets include both
artificial and real-world data, and for them to be effective,
the dataset needs to be rich and diverse. The creation of a big
and efficient dataset requires significant manpower, material,
and financial resources.
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Table 3 Properties of indicative well-known 3D point cloud benchmark datasets

Dataset Year Type Origin Description Reg Segm Class Detect &
Track

Compr Compl

Apolloscape [255] 2018 Real LiDAR over 140,000
video frames,
35 semantic
classes, 28
instance
classes

✓

Argoverse [32] 2019 Real LiDAR 360-degree
images from
7 cameras

✓

Audi Autonomous
Driving Dataset
(A2D2) [255]

2020 Real 6 cameras +
LIDAR

41,277 non-
sequential
video frames,
38 classes

✓ ✓

DBNet [256] 2018 Real LiDAR 1,000 km
driving data

✓

iQmulus [257] 2015 Real mobile laser
scanning
(MLS)
LiDAR

300 M points,
50 classes, 10
scans
(outdoor
roadway
level)

✓

KITTI [258] 2012 Real RGB + LiDAR Outdoor, 15 K
frames, 93
thousand
depth maps,
22 scenes, 8
classes

✓ ✓ ✓ ✓ ✓ ✓

Matterport3D [33] 2017 Real RGBD 194,400 images ✓ ✓ ✓

Nuage de Points et
Modlisation 3D
(NPM3D) [259]

2017 Real LiDAR 1,431 M points
data, 5
labeled point
cloud classes

✓ ✓

nuScenes [253] 2020 Real LiDAR Outdoor, 1000
scenes, 31
classes, 10
annotated
frames

✓ ✓

Oakland [260] 2009 Real LiDAR 1.6 M points,
17 scans, 44
classes

✓

Paris-Lille-3D
[259]

2018 Real MLS LiDAR 50 classes,
143 M
(outdoor
Roadway
level)

✓ ✓

Paris-rue-Madame
[261]

2017 Real MLS LiDAR 143 M points,
50 classes
(outdoor
Roadway
level)

✓
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Table 3 (continued)

Dataset Year Type Origin Description Reg Segm Class Detect &
Track

Compr Compl

ScanNet [251] 2017 Real Occipital
structure
sensor

1,513 scenes,
21 categories
(Indoor level)

✓ ✓ ✓ ✓

ScanObjectNN
[262]

2019 Real Structure
sensor, CAD

2,902 samples,
15 indoor
classes,
15,000 frames

✓

SceneNN [263] 2016 Real RGB-D Over 100
indoor scenes

✓

Semantic3D [264] 2017 Real Terrestrial laser
scanning
(TLS)
LiDAR

8 classes, 3
billion points

✓

SemanticKITTI
[265]

2019 Real MLS LiDAR 28 classes,
43,000 labels,
4,549 M
points
(outdoor
roadway
level)

✓ ✓

SUN3D [266] 2015 Real RGB-D 700 classes,
272 scans, 41
objects

✓ ✓

Sydney Urban
Objects [267]

2013 Real LiDAR 2.3 M manual
points and 26
classes

✓

3DMatch [268] 2017 Synthetic RGB-D 62 indoor
scenes from
existing data

✓

Apollo [34] 2018 Synthetic/Real CAD/RGB +
LiDAR

5,277 images ✓

Completion3D
[269]

2019 Synthetic CAD 8 classes,
30,958
models,
partial and
ground truth
point clouds
with 2,048
points each

✓

Multisensor
Indoor Mapping
and Positioning
(MIMAP) [270]

2020 Synthetic MLS LiDAR dense laser
scanning
point cloud
for indoor
mapping and
positioning

✓

Multi-View Partial
(MVP) [271]

2021 Synthetic CAD 16 classes, over
100,000
high-quality
scans

✓

New York
University
Depth Dataset
v2 (NYUDv2)
[272]

2013 Synthetic RGB-D Indoor, 40
classes

✓ ✓
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Table 3 (continued)

Dataset Year Type Origin Description Reg Segm Class Detect &
Track

Compr Compl

PartNet [273] 2019 Synthetic CAD Indoor, 570 k
part instances,
24 classes
(object level)

✓

ShapeNet [274] 2015 Synthetic CAD 300 M models,
53 classes,
51,190
samples
(object level)

✓ ✓ ✓

Stanford 2D-3D-
Semantics
[275]

2017 Synthetic RGB +
Matterport
3D camera

over 70,496
images, 6
large scale
indoor areas
covering 271
rooms, 13
classes

✓

Stanford
Large-scale 3D
Indoor Spaces
Dataset (S3DIS)
[276]

2017 Synthetic RGB +
Matterport
3D camera

272 scenes, 13
classes,
273 M points
(indoor scene
level)

✓ ✓

SynLiDAR [277] 2021 Synthetic LiDAR 13 sequences of
LiDAR point
cloud 20 k
scans (over 19
billion points
and 32
classes)

✓

SynthCity [278] 2019 Synthetic MLS LiDAR 367.9 M points,
9 classes

✓

Wuhan University
TLS [279]

2018 Synthetic TLS LiDAR Outdoor,
comprises
115 scans,
over 1,740
million 3D
points, 11
classes

✓

ModelNet 40
[178]

2015 Synthetic CAD 40 classes,
12,311
models

✓ ✓

McGill
Benchmark
[280]

2008 Synthetic CAD 456 samples of
19 classes

✓

Sydney Urban
Objects [267]

2013 Real LiDAR 588 samples of
4 classes

✓

ModelNet10 [178] 2015 Synthetic CAD 4,899 samples
of 10 classes

✓

SUN RGB-D
[252]

2015 Real RGB-D Indoor, 47
scenes of 32
classes, 5 K
annotated
frames and
65 K 3D
boxes

✓
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Table 3 (continued)

Dataset Year Type Origin Description Reg Segm Class Detect &
Track

Compr Compl

ScanNetV2 [251] 2018 Real RGB-D Includes mesh
sensors, 1.5 K
scenes of 28
classes of
annotated
voxelized
objects

✓

H3D [281] 2019 Real LiDAR Includes RBD
sensory data,
160 scenes
and 8 classes,
27 K frames
of urban
driving

✓

Lyft L5 [282] 2019 Real LiDAR Includes RBD
sensory data,
366 scenes
and 9 classes,
46 K
annotated
frames of
urban driving

✓

A*3D [283] 2019 Real LiDAR Includes RBD
sensory data
of 7 classes,
39 K frames,
230 K boxes
of urban
driving

✓

Waymo Open
[284]

2020 Real LiDAR Includes RBD
sensory data,
1 K scenes of
4 classes,
200 K frames,
12 M boxes of
urban driving

✓

ISPRS [285] 2012 Real ALS LiDAR 1.2 M points, 9
classes

✓

Toronto 3D [286] 2020 Real MLS LiDAR 78.3 M points,
8 and 9
classes, 4
scans

✓

DALES [287] 2020 Real ALS LiDAR 550 M points, 8
and 9 classes,
40 scans

✓

ONCE [288] 2021 Real LiDAR 230 K scenes,
1 M images,
12 M 3D
boxes, 4
classes for
autonomous
driving

✓
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Table 3 (continued)

Dataset Year Type Origin Description Reg Segm Class Detect &
Track

Compr Compl

MVPNet [289] 2023 Real RGB camera
(multi-view
images)

3D object cloud
dataset of
87,200
samples from
150
categories
with class
labels derived
by dense
reconstruction
on
MVImgNet

✓

Table 3 indicatively summarizes well-known benchmark
datasets, providing information about the type of point cloud
data, their origin, a brief description, and the application tasks
for which they have been used, based on the reviewed liter-
ature.

8 Discussion and future directions

In this section, the questions that guided the research can
be answered, valuable conclusions can be drawn, and future
research directions can be suggested. Therefore, based on
the conducted research, it can be concluded that point clouds
are used in a wide variety of applications in industry and
academia, whenever an accurate 3D representation of objects
or surroundings is essential. Such applications include 3D
modeling,mapping, robotics and autonomous systems, scene
reconstruction,medical imaging, virtual and augmented real-
ity, gaming applications, and more (answer to RQ4: In which
applications does it make sense to apply point clouds?).

Despite the rapid evolution of point cloud acquisition
technologies, several important issues continue to emerge.
These issues are mainly related to point clouds’ nature, such
as being unordered, unorganized, irregular, and sparse. In
a point cloud, there is no explicit connectivity between the
points, as eachpoint is independently scanned.Consequently,
the distance between adjacent points is not always stable
resulting in potential information loss in the object’s repre-
sentation. Another challenge lies in efficiently storing large
point clouds in a permutation-invariant file format. LiDAR
technology, in particular, can generatemassive file sizes, pos-
ing storage and processing problems. Furthermore, the data
quality directly depends on the quality of the sensors used;
higher quality data often requires more expensive sensors.
In general, the resolution of point clouds is directly depend-
ing on the quality of acquisition sensors. Resolution implies

the level of detail and precision of representation of a 3D
scene’s geometry. Therefore, different sensors can affect the
point cloud resolution, based on their specifications and their
manufacturing technology (answer toRQ5:Towhat extent do
different sensors affect the point cloud resolution?). LiDAR
resolution can be affected by the laser pulse density, the angu-
lar resolution and the scanning range. SL sensors are affected
by the pattern’s complexity, while the quality of ToF sensors
depends on the capturing frame rate, the high accuracy and
low noise levels, towards contributing to precise depth mea-
surements.

Same for RGB-D cameras, the depth sensor resolution
is the most important factor in providing higher-resolution
point clouds. Moreover, the proper calibration of sensors can
improve the quality of captured data. It should be noted, how-
ever, that while the quality of sensors holds a substantial role,
other factors may influence the point cloud resolution. Such
factors are the ambient light and the reflectance of surfaces,
that can lead to inaccurate depth measurements. Therefore,
the selection of the proper sensor should be based on the
requirements of the application, so as the capturedpoint cloud
to characterized by sufficient precision and the desired level
of detail. Post-processing tasks such as denoising, filtering,
registration, etc., can also enhance the overall captured qual-
ity of a point cloud.

In addition to data-related challenges, issues also arise in
point cloud processing and analysis. Developing user inter-
faces able to manage and visualize complex 3D data is a
challenge, as existing interfaces are typically designed for
2D data andmay not be well-suited for handling point clouds
effectively. Adjustments are considered necessary since the
use of 3D point clouds could provide substantial benefit over
the use of 2D images in applications where a more accurate
representation of surroundings is crucial (answer to RQ6:
Under what conditions does the use of point clouds provide
benefits against 2D images?). The ability of point clouds
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to capture accurate depth information, spatial geometry of
objects and precise measurements of the surrounding envi-
ronment, is beneficial to a multitude of applications where a
simple 3D representation of objects is not enough; true 3D
representations are essential for in-depth analysis of the envi-
ronment towards the transition to actions, for autonomous
interaction of systems and reliable decision-making.

The implementation of suitable algorithms for point cloud
processing is crucial for achieving effective results. Nowa-
days, DL models have demonstrated remarkable perfor-
mance in various tasks, thanks to the convolution operation,
although conventionally they perform on regular, structured,
and ordered data, such as 2D images. DL models can learn
automatically more distinct and robust feature represen-
tations that contain particularly symmetric and repetitive
elements, poor geometric features, and limited overlaps.

Based on the up-to-date adaptation of DL on 3D point
clouds, the following conclusions can be drawn regarding
the issues that emerge from the point cloud data (answer to
RQ1: What are the challenges regarding point cloud data
processing?):

i. Sensors inherently contain various types of noise, which
can lead to disturbances and outliers in the point cloud
data.

ii. Point density in point clouds can be highly diversified,
presenting challenges in data processing and analysis.

iii. Reflective intensity varies depending on the distance
between the target and LiDAR sensors, affecting the
quality of the captured data.

iv. Incompleteness in point clouds may occur due to occlu-
sion between the target object and cluttered background,
leading to confusion of categories in tasks such as seg-
mentation.

v. Handling big data in point clouds requires intense pro-
cessing and can result in significant computational costs.

These challenges underscore the importance of devel-
oping robust DL-based computer vision algorithms and
methodologies that can effectively handle the complexities
and irregularities in 3D point cloud data, enablingmore accu-
rate and efficient processing and analysis.

Regarding DL models applied to 3D point clouds, the
following issues are noted (answer to RQ2: What are the
challenges that DL models face with 3D point cloud data?):

i. Permutation and orientation invariants: DL models
need to handle the unordered and unoriented nature of
point cloud data, which presents challenges in estab-
lishing consistent correspondences between points and
ensuring robustness to different point cloud representa-
tions.

ii. Rigid transformation challenges: Point clouds may
undergo rigid transformations, such as translation and
rotation, which can affect the performance of DL mod-
els. Addressing this issue requires developing models
that can effectively handle and generalize to various
transformations.

iii. Accuracy dependence on data quality and scene vari-
ation: The accuracy of DL models for point clouds is
strongly influenced by the quality of the input data and
the variability of scenes. High-quality data and diverse
scene representations are essential to achieve robust and
reliable performance.

Overcoming these challenges is vital to harness the full
potential of DL models for point cloud processing and anal-
ysis, enabling a wide range of applications in various fields.

Although, there are public standard benchmark datasets
for various tasks, which have proven to be effective in
evaluating the performance of DL models on point cloud
processing, several issues regarding datasets need to be high-
lighted (answer to RQ3:What is the status of 3D point cloud
datasets for DL-based applications?):

i. Shift towards Point Cloud Semantic Segmentation
(PCSS): Since 2009, many datasets have been labeled
for Point Cloud Semantic Segmentation (PCSS) rather
thanPointCloudClassification (PCS), limiting the avail-
ability of diverse and comprehensive labeled datasets for
classification tasks.

ii. Limitations of certain datasets: Some datasets, such
as Oakland outdoor MLS dataset, the Sydney Urban
Objects MLS dataset, the Paris-rue-Madame MLS
dataset, and the IQmulus MLS dataset, may not pro-
vide sufficient object representations and labeled points
for certain tasks.

iii. Challenges in labeling: Datasets likeKITTI andNYUv2
contain more objects and points but may not directly
provide labeled point clouds, requiring additional pro-
cessing for certain applications.

iv. Diverse measurement ranges and scenes: Datasets like
Wuhan University TLS (Whu-TLS) cover a wide range
of scenes with variations in environmental and geomet-
ric shapes, but overlapping and low-density adjacent
point clouds pose challenges.

v. Weak geometric features in repetitive structures: Some
datasets contain particularly symmetric and repetitive
elements, leading toweak geometric features, especially
in scenes with periodic changes due to moving objects.

vi. Symmetric structures and mirror reflections: The pres-
ence of symmetric structures and mirror reflections,
including virtual points, further complicates point cloud
analysis.
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Addressing these dataset-related issues will be crucial for
advancing the development and evaluation of DL models in
point cloud processing and analysis tasks. Ensuring diverse,
comprehensive, and well-labeled datasets will aid in enhanc-
ing the accuracy andgeneralization capabilities ofDLmodels
in handling different point cloud scenarios.

In order to unlock the potential of point cloud data, effi-
cient processing solutions are essential.Artificial intelligence
(AI) and automation can play a significant role in simplifying
tasks and improvingoverall processing.Novel algorithms tai-
lored for specific point cloud tasks and exploration of cloud-
computing processing are crucial for enhancing efficiency.
Cloud computing offers the advantage of simultaneous pro-
cessing of a vast number of scans, thus accelerating various
algorithms.

Considering the challenges faced in point cloud process-
ing, future research can be directed towards the following
four key areas. Table 4 summarizes the four defined research
areas and the potential research suggestions as derived from
this review.

8.1 Advancements in 3D technologies for point
cloud generation

• 3Dpoint cloud generation technologies present some tech-
nical limitations in the operation of sensors. For this
purpose, there is a crucial need for the development of new
sensory mechanisms, particularly for LiDARs, to enhance
radiation sources and integrate multi-sensory systems for
efficient data fusion.

• There is a significant demand to cover large-scale scenes,
yet point clouds contain a global fine-scale. To effec-
tively handle the big data of 3D point clouds, a promising
approach would involve the integration of various tech-
nologies such as edge computing, artificial intelligence,
and deep learning. This combination can lead to more effi-
cient processing and analysis of point cloud data at scale.

8.2 Point cloud datamanagement

• Due to the irregular and disordered nature of the point
clouds, many methods initially voxelize them before fur-
ther processing. However, in the cases of multimodal
data from sources like LiDAR, RGB-D camera or Radar,
voxelization can lead to information loss and increased
computational complexity, especially in complex scenes.
Therefore, the development of attention models that focus
on efficient feature extraction and fusion would be highly
beneficial.

• As point clouds continue to grow in size with the advance-
ment of 3D technologies, the need for larger storage space

becomes increasingly critical. Hence, a future direction
should focus on the development of updated mechanisms
that efficiently support the handling of 3D point cloud big
data.

• The utilization of cloud capabilities for point cloud pro-
cessing is essential to consider. Cloud computing can
offer advantages such as 5G access capabilities and
dynamic parallelization mechanisms, which can signifi-
cantly enhance the processing speed and efficiency of point
clouds. Leveraging cloud resources for point cloud anal-
ysis can enable faster and more scalable computations,
making it possible to handle large datasets and complex
tasks with greater ease and effectiveness.

• Since point clouds and voxels are often sparse and irreg-
ular, sparse convolutions are commonly applied. How-
ever, these algorithms can lead to higher GPU memory
consumption, posing challenges for efficient execution.
Therefore, there is a need to emphasize the design of
more efficient hardware, including RAM and processors,
to better handle the demands of sparse convolutions. Addi-
tionally, the software should be optimized to match the
capabilities of the hardware, ensuring that the system can
take full advantage of its resources for faster and more
effective point cloud processing. By optimizing both hard-
ware and software, more efficient and powerful solutions
can be developed for handling point cloud data.

8.3 Deep learningmodels for point clouds

• The development of DL networks should focus on object-
oriented point cloud big data, leveraging the power of
artificial intelligence to transform point clouds directly
for object classification and boundary extraction. This
approach aims to move away from dealing with point
clouds point-by-point, enabling more efficient and accu-
rate processing of complex 3D data.

• The development of robust techniques is crucial to provide
enhanced precision, fast processing speed, and guaranteed
accuracy. These techniques should be capable of handling
the challenges posed by point cloud data, such as noise,
occlusions, and irregularity while ensuring high levels of
accuracy in various tasks.

• The development of DL models capable of supporting
different types of data, and providing adequate general-
ization is essential. Efforts should be made to design more
competent and efficient pre-trained DL models specifi-
cally tailored for real-life point cloud scenes. Additionally,
exploring various backbones and architectures could facil-
itate knowledge transfer between different datasets and
tasks. As a future research direction, it would be benefi-
cial to focus on developing a unified backbone that can be
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Table 4 Defined research areas
on point clouds and potential
future research directions

Research areas

3D technologies for
point cloud generation

Point cloud data
management

Deep learning models
for point clouds

Point cloud datasets

Development of new
sensory mechanisms

Attention models for
feature extraction and
fusion

Object-oriented point
cloud big data models

Realistic diverse, and
annotated datasets

Integration of
multi-sensory systems
for efficient data
fusion

Updated mechanisms to
support 3D point cloud
big data

Development of robust
techniques

Synthetic realistic
datasets using GAN

Integration of various
technologies (edge
computing, AI, DL)

Leveraging cloud
resources for point
cloud processing

Models capable of
supporting different
types of data

Inclusion of metadata

Design of more efficient
hardware

Efficient unified
backbone for point
cloud processing tasks

High-quality
pre-training datasets
of object- and
scene-level data

Optimized software to
match the capabilities
of the hardware

More accurate
registration algorithms
for multitemporal
point clouds

Unified evaluation
standard for indoor
scenes

Interpretable algorithms Ground truth
information datasets

Efficient metrics to
consider perception
and downstream tasks

Self-supervised and
transfer learning

Models to handle noise,
missing points,
occlusions

Few-shot and zero-shot
learning techniques

Real-time processing
DL architectures

Integration with other
modalities for
complementary
information to DL
models

Privacy-preserving
techniques

adapted and fine-tuned for various point cloud processing
tasks, ultimately enhancing the versatility and effective-
ness of DL-based approaches.

• The development ofmore accurate registration algorithms,
particularly for multitemporal point clouds, is crucial for
real-life applications that require ground truth accuracy.
Future research should focus on creating registration tech-
niques capable of effectively combiningmultiple data sets,
even when acquired from different sensory devices. This
approach would ensure robust and reliable registration for

various applications involving point clouds from diverse
sources.

• Since DL object detection models often suffer from chal-
lenges related to interpretability, such as occlusion and
noise, their general behavior is often characterized as a
black box. In future research, it would be essential to focus
on designing DL models that offer stronger interpretabil-
ity, particularly for applications where understanding the
model’s decision-making process is critical. By enhanc-
ing interpretability, we can gain better insights into how
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these models function and improve their reliability and
trustworthiness in real-world scenarios.

• In applications like autonomous driving, the development
of efficient metrics necessitates models capable of con-
sidering additional parameters, such as perception and
downstream tasks. These two aspects are closely corre-
lated, and incorporating them into the evaluation metrics
would provide amore comprehensive understanding of the
overall system’s performance. By capturing the interplay
between perception and downstream tasks, we can bet-
ter assess the effectiveness of the models and ensure their
suitability for real-world applications.

• Self-supervised learning, generative models, and transfer
learning should be enhanced towards advancing this field.

• One important future direction is the improvement of the
robustness of deep learning models to noise and incom-
plete data in point clouds. Point clouds obtained from
real-world sensors often contain noise, missing points, or
occlusions. Developing techniques that can handle such
challenges and effectively utilize imperfect data is crucial
for real-world applications.

• Exploration of few-shot and zero-shot learning techniques
for point clouds, that can train models to generalize to new
object categories or tasks with limited or no labeled data.
Developing methods that can effectively leverage prior
knowledge, as well as transfer learning, to new scenar-
ios can greatly enhance the applicability of deep learning
models for point clouds.

• Real-time processing of point clouds is essential for many
applications, such as autonomous driving. Future research
can focus on developing efficient deep learning archi-
tectures and algorithms that can handle large-scale point
clouds in real-time.

• Point clouds are often captured along with other sen-
sor modalities, such as images, depth maps, or semantic
information. Integration with other modalities can provide
complementary information towards improving the perfor-
mance of deep learning models.

• Point cloud data are nowadays established in various appli-
cations, thus, privacy and security preservation become
crucial, directing research to privacy-preserving tech-
niques for deep learning on point clouds.

8.4 Point cloud datasets

• Further evolution of sensors to generate data based on
realistic environments, such as the SynthCity dataset, is a
promising future direction. Realistic and diverse datasets,
and more specifically annotated datasets, are crucial for
training and evaluating DL models, especially in complex
scenarios. By creating more sophisticated datasets that

closely resemble real-world environments,we canpush the
boundaries of point cloud processing and drive advance-
ments in the field.

• Synthetic realistic datasets using GAN would be useful.
In addition, some datasets are used only in specific tasks,
such as downstream tasks at the object level for synthetic
objects (ModelNet40), real object classification (ScanOb-
jectNN), few-shot classification (Few-shot ModelNet40),
and synthetic object segmentation (ShapeNet), and it is
difficult to generalize to other datasets. Hence, it would be
useful to enhance data acquisition to help the pre-trained
models transfer to real scenes.

• Another important directionwouldbe to focus on the inclu-
sion of metadata, such as class labels, timestamps, and
geospatial coordinates, in addition to other information
like color, intensity, and multispectral bands. Integrating
such contextual data with point clouds can provide valu-
able insights and enhance the performance of DL models
for various tasks.

• The sheer volume and diversity of point cloud data
pose significant challenges for various tasks. To address
this, there is a need to develop high-quality pre-training
datasets, focusing on both object-level and scene-level
data. These datasets can serve as a foundation for training
DL models with a better understanding of the underlying
structures and patterns in point clouds.

• When it comes to indoor scene detection and segmentation,
there is a lack of a unified model and common frame-
work. Similarly, for outdoor scenes, the inherent diversity
in scenes and weather conditions makes it challenging
to establish a standardized evaluation method that can
provide unbiased outcomes, unlike the more controlled
environments of indoor scenes. Therefore, it is essen-
tial to focus on developing a unified evaluation standard
specifically tailored to indoor scenes to facilitate fair and
objective comparisons betweendifferentmodels andmeth-
ods. Such an evaluation standard will help researchers and
practitionersmake better-informed decisions and advance-
ments in point cloud processing techniques for indoor
scenes.

• One of the most significant challenges in DL-based
monocular depth estimation is the scarcity of datasets with
ground truth information, and obtaining such datasets can
be a costly endeavor.

9 Conclusions

This comprehensive study aims to provide a detailed explo-
ration of DL-based computer visionmethods applied to point
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clouds. The review encompasses various aspects, includ-
ing point cloud acquisition technologies, and computer
vision tasks involving registration, segmentation, classifica-
tion, detection, completion, and compression.Additionally, it
compares traditional methods with DL approaches, explores
the differences between 3D point clouds and other modal-
ities like 2D and depth images, and evaluates well-known
benchmark datasets for different tasks.

Moreover, this work delves into the challenges arising
from the advancement of 3D technologies, providing a com-
prehensive understanding of the obstacles faced in the field.
Through an in-depth investigation of these challenges, it
identifies key areas for future research, thereby highlighting
trends, research gaps, and valuable insights to guide further
studies effectively. Comparison of experimental results of
DL methods for all tasks will be considered as future work.
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