
The Visual Computer
https://doi.org/10.1007/s00371-023-03206-0

ORIG INAL ART ICLE

SAL3D: a model for saliency prediction in 3Dmeshes

Daniel Martin1 · Andres Fandos1 · Belen Masia1 · Ana Serrano1

Accepted: 21 November 2023
© The Author(s) 2024

Abstract
Advances in virtual and augmented reality have increased the demand for immersive and engaging 3D experiences. To create
such experiences, it is crucial to understand visual attention in 3D environments, which is typically modeled by means of
saliency maps. While attention in 2D images and traditional media has been widely studied, there is still much to explore in
3D settings. In this work, we propose a deep learning-based model for predicting saliency when viewing 3D objects, which is
a first step toward understanding and predicting attention in 3D environments. Previous approaches rely solely on low-level
geometric cues or unnatural conditions, however, our model is trained on a dataset of real viewing data that we have manually
captured, which indeed reflects actual human viewing behavior. Our approach outperforms existing state-of-the-art methods
and closely approximates the ground-truth data. Our results demonstrate the effectiveness of our approach in predicting
attention in 3D objects, which can pave the way for creating more immersive and engaging 3D experiences.

Keywords Saliency · Eye tracking · Attention · 3D meshes

1 Introduction

We live in a three-dimensional (3D) world, and the impor-
tance of such three dimensions is rooted in our biological
evolution: We are designed to comprehend, interact, and
process information based on what we perceive in terms of
depth, height, and width. Indeed, in our everyday life, we
rely on this spatial awareness to enhance our understanding
and navigate the world that surrounds us. Common activi-
ties like driving a car require processing 3D information to
perceive speed and distance to maneuver as required, and
many artistic experiences such as painting or video games
become significantly more realistic when depicting three-
dimensional scenes, as they are closer to real life than their 2D
counterpart. Relevance of 3D scenarios is further increased
by the recent surge of virtual and augmented reality (VR /
AR, respectively), which provide users with the ability to
interact with scenes in a manner closer to that of the real
world, and often require faithful representations of 3D envi-
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ronments. Our visual system is wired to be directed toward
certain elements or features in a scene, both from a bottom-
up (e.g., colors, contrast, lines) and from a top-down (e.g.,
task- or context-dependent) perspective. Therefore, under-
standing human attention is important to create appealing
3D experiences, e.g., for VR / AR, as well as to foster other
applications such as foveated rendering or mesh simplifica-
tions, which could alleviate computational costs.

A vast body of literature has resorted to saliency to mea-
sure attention, as a topological measure of the conspicuity
of the different elements of a scene, i.e., the parts that were
more likely to draw attention [1, 2]. While many efforts have
been done in this regard for 2D content (e.g., conventional
images [3–5] or 360◦ content [6–8]), much remains to be
explored in 3D stimuli. Besides, 3D environments provide
many cues that are not present on 2D, like motion parallax
or vergence movements [9], and thus what is known from
traditional media may not apply to 3D.

Several attempts have been made to analyze visual atten-
tion in 3D shapes. However, most of these attempts rely on
hand-crafted operators and geometric cues, such as Gaussian
curvatures, or global and local rarity, to determine which
parts of a 3D mesh would attract more attention [10–13].
These approaches usually succeed in identifying the most
conspicuous parts of the geometry, but still suffer from lim-
ited expressive capabilities, as they donotmodel the semantic
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Fig. 1 In this work, we present a novel 3D mesh saliency predictor
trained on real, captured viewing data. We have captured a large dataset
of 32 participants viewing 58 different meshes in a virtual reality-based
environment, and have then trained a deep learning-based model to pre-

dict saliency in any unseen 3D mesh. We have evaluated our model and
compared it to available previous approaches, with our model yielding
results that outperform the state of the art

and top-down cues that play a fundamental role in human
viewing behavior. On the other hand, some other works have
resorted to data-driven techniques [14–16] to create compu-
tational models of attention. Nevertheless, these works have
been trained on datasets gathered in rather constrained con-
ditions, far from natural viewing: In some cases, users were
required to view static, 3D-printed figures without any pos-
sible movement [17] (i.e., using a chin-rest and within fixed
distances and viewpoints), while in other cases, users had to
view2Ddisplays that showed a limited number of viewpoints
of the meshes [18].While these works have shown the poten-
tial of data-driven techniques for attention modeling, none of
them were trained on data that accurately captures natural,
human viewing behavior.

To address these limitations, we have first collected what,
to our knowledge, is the largest dataset of real gaze data on
3D shapes. It comprises 58 different meshes from several
open-source databases, and we have gathered gaze and head
data from 32 participants viewing these stimuli for over 20
s each in a VR setting. In contrast to previous works, which
often recorded viewing data under highly constrained labora-
tory conditions (e.g., using chin-rests, or fixing the viewpoint
of the shapes), VR allows for easy and efficient manip-
ulation of the stimuli and facilitates gaze data collection,
while also offering more natural viewing conditions, includ-
ing depth perception, motion parallax, or stereo viewing,
among others. Leveraging this dataset, we have developed a
deep learning-based model built upon a state-of-the-art clas-
sification network for pointclouds [19] to predict saliency
on 3D meshes, which represents the likelihood of viewers
directing their attention to different regions of the meshes.
An overview of this work can be seen in Fig. 1. We have

evaluated the performance of our proposed model with com-
monly used metrics, and comparing it with existing methods
for predicting attention in 3D meshes. Our results show that
our model achieves higher accuracy than existing methods.

Our contributions can be summarized as follows:

• We have collected the largest dataset of real gaze data
to date, which comprises gaze data from 32 participants
viewing 58 different 3D meshes in a VR setup.

• We have built a deep learning-based saliency prediction
model upon a state-of-the-art classification network.

• We have qualitatively and quantitatively evaluated our
model, which yields more accurate results than previous
approaches.

We will make our model and data publicly available to
foster future research.

The rest of the manuscript is structured as follows: Sect. 2
provides an overview of the state of the art in predicting and
modeling attention. Section 3 is devoted to the capture and
processing of our dataset of viewing behavior in 3D meshes.
Then, Sect. 4 delves into our proposed saliency prediction
model, which is then thoroughly evaluated in Sect. 5. Finally,
Sect. 6 summarizes the work and proposes lines for future
work.

2 Related work

In this section, we first summarize the state of the art in visual
attention prediction in both traditional and 360◦ images, and
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then move to existing approaches that address attention pre-
diction in 3D shapes, our main objective.

2.1 Predicting andmodeling attention in 2D content

In the last decades, attention prediction has been an active
research area. In the late 90’s, Koch and Ullman [2] and Itti
et al. [1] introduced their seminal works on saliency predic-
tion. They extracted and leveraged low-level cues, such as
color, intensity and orientation, to define the most interest-
ing regions of a scene. Since them, several works followed
such heuristic-based approach [20, 21]; however, their hand-
craftedmethods have fallen short to effectivelymimic human
viewingbehavior.With the proliferation of data-driven strate-
gies anddeep learning techniques,more sophisticatedmodels
have arisen [22–27], achieving strikingly better results. Most
of them have resorted to the so-called convolutional neural
networks (CNN), which allow to encounter and model inher-
ent spatial patterns and features from the stimuli themselves.
Lately, scanpath (i.e., trajectory of gaze points) prediction
has posed as a more sophisticated approach toward attention
prediction, where not only the spatial properties of the stim-
uli are taken into account, but also the temporal evolution
of such attention [3–5, 7, 28]. Further, and with the recent
proliferation of virtual reality, understanding human behav-
iors in virtual environments has gained increased attention
[29]. Many works have applied the knowledge acquired in
traditional content (as aforementioned) to understand view-
ing behavior in VR, including saliency prediction in 360◦
still images [30], saliency prediction in 360◦ videos [8, 31],
or scanpath prediction [6, 7, 32].

While the stimuli these works have worked with differs
from ours, they have proven the potential of data-driven and
deep learning approaches toward achieving unprecedented
results on attention modeling.

2.2 Predicting andmodeling attention in 3D content

While the previous section shows the increasing interest in
attention prediction for 2D content, a much narrower body
of literature has been devoted to attention modeling in 3D
content, despite its importance toward more realistic expe-
riences. So far, most of the existing approaches have been
based on statistical methods: Lee et al. [10] defined mesh
saliency based on the differences ofGaussian-weightedmean
curvatures at different scales. Leifman et al. [11] proposed an
algorithm that detected regions that are distinct both locally
and globally, while also providing descriptive presentation
of the shape. Later, Song et al. [12] introduced a model
based on the log-Laplacian spectrum of the mesh, captur-
ing saliency in the frequency domain, while also following
a multi-scale approach. Tasse et al. [13] proposed a cluster-
based approach to point set saliency detection, by evaluating

cluster uniqueness and spatial distribution of each cluster.
All of these works build upon the premise that the most con-
spicuous parts of a shape (i.e., the parts that stand out more)
are more likely to draw attention. In a similar fashion, Wu
et al. [33] captured geometric features of several regions,
and computed local contrast and global rarity (i.e., contrast
between features) to obtain mesh saliency. Hu et al. [34] also
took into account rarity to obtain a set of salient regions glob-
ally distinct from each other. Additionally, mesh saliency can
be computed utilizing curvature entropy [35] or curvature
co-occurrence histograms [36]. However, all the aforemen-
tioned works depend on extracting handcrafted descriptors
[10, 37, 38]. Such operations suffer of reduced expressive
capabilities, since they only work on geometric space, and
do not take into account the context of semantic informa-
tion of the meshes themselves. Different to them, we address
this problem from a data-driven approach:We do not resort to
hand-crafted features, but instead train a deep learning-based
model to learn from real user data.

Some works have already implemented convolutional
neural networks to predict saliency on 3D meshes [14–16],
usually based on the features extracted by neural networks
designed and used for classification problems. These works
have been trained either on aweakly supervisedmanner, or on
datasets either obtained frommore low-level geometric prop-
erties, orwhere participantswere asked tomanually select the
interesting regions of the meshes [39, 40], instead of using
real gaze information. Indeed, some of these meshes have
also been used in other works [17, 18, 41] to study human
viewing behavior when looking at different meshes under
different conditions (e.g., material, point of view, room light-
ing). In our work, we aim to model real viewing behaviors,
and thus we conduct an eye-tracking guided experiment to
capture a dataset of real viewing behavior on 3D meshes to
train our model.

3 A dataset of viewing behavior in 3D shapes

We aim at understanding viewing behavior in 3D shapes.
Previous approaches have either gathered gaze data from
2D pictures depicting different perspectives of 3D models
[18], or have used real, physical objects in rather constrained
conditions [17]. Virtual reality poses itself as a better suited
alternative, since it provides more natural interactions (e.g.,
stereo viewing and motion parallax) and simpler tools for
designing and presenting 3D stimuli to viewers, allows for
easier manipulations (e.g., rotating or moving) of such stim-
uli, and eases capturing attentional behaviors. Thus, we have
resorted to VR to develop an experiment to collect head and
gaze data from multiple viewers observing a larger set of 3D
shapes than previous approaches.
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Fig. 2 Subset of the 3D meshes used during our experiment. We
have collected several meshes from different open-source datasets (see
Sect. 3.1), and have conducted a large experiment to gather gaze and
head data from 32 different participants viewing those meshes

3.1 Stimuli

We have gathered a total of 58 different 3D meshes from dif-
ferent public databases (Aim@Shape1, TOSCA2, SHREC
20073, Georgia Tech Models Archive4, FREE3D5, Tur-
boSquid6, CGTrader7). They depict humans, animals and
creatures, familiar objects, or mechanical parts, among oth-
ers (see Fig. 2), and are all textureless. Once gathered, we
have processed all of them to have the same size and orienta-
tion, following the work from Qi et al. [19]. In particular, we
have centered and normalized all meshes to occupy a 2-by-2
meter cube. When presented to the participants, all shapes
were uniformly colored in a neutral gray color with a light
blue background, andwith two identical light sources located
above the users and slightly to the left and right, respectively
[18].

3.2 Participants

A total of 32 participants took part in the experiment. Twenty-
three of them identified as male, nine of them identified as

1 http://visionair.ge.imati.cnr.it/ontologies/shapes/
2 http://tosca.cs.technion.ac.il/book/resources_data.html
3 http://watertight.ge.imati.cnr.it/
4 https://www.cc.gatech.edu/projects/large_models/
5 https://free3d.com
6 https://www.turbosquid.com
7 https://www.cgtrader.com

Fig. 3 Overview of our experimental setup. Each participant viewed
each of the meshes for 22 s, while the mesh was rotating 360 degrees
to ensure all parts of the mesh were actually disclosed. Each of such
visualizations was transformed into a gaze map. Color encodes vertex-
wise gaze time

female, and none of them identified as non-binary, not listed,
or preferring not to disclose their gender, aged between 21
and 56. They voluntarily took part in the study and pro-
videdwritten consent. The participantswere naïve to the final
purpose of the experiment, and had normal or corrected-to-
normal vision. Thirteen participants reported playing video
games regularly, and 22 had used a virtual reality headset
before. Our data collection procedure was approved by our
local Ethics and Research Committee.

3.3 Hardware

Our stimuli were presented on an HTC Vive Pro head-
mounted display with a nominal field of view of 110◦, a
resolution of 1440 × 1600 pixels per eye (2880 × 1600 pix-
els combined), and a frame rate of 90 frames per second. We
installed in our headset a Pupil Labs8 eye tracker to gather
gaze information throughout the experiment.Our experimen-
tal setup contained two HTC Vive stations to additionally
track participants’ head position during the experiment. Our
whole procedure was designed using Unity.

3.4 Procedure

We divided our experiment in two different sessions. In
the first session, participants were introduced the experi-
ment, gave written consent, and filled a demographic and
a pre-experiment sickness questionnaire. Then, they seated
on a non-rotating chair, properly adjusted the HMD, and
conducted an eye-tracking calibration process.When the cal-

8 https://pupil-labs.com/
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Fig. 4 Our computed gaze maps (first and third row) are generally
sparse, as in traditional media [29]. Therefore, and inspired by previous
works, we apply a distance-based mean filter. Second and fourth row
shows the result of applying this technique to their sparse counterpart.
See Sect. 3.5 for additional details

ibration was completed successfully, the main experiment
began.

In each session, a total of 30 meshes were presented to the
participant in a randomized order. To ensure the participant
uniformly saw the whole mesh, each mesh was rotated 360◦
with respect to its vertical axis. Such rotation was set to last
22 s, which we empirically found to be a reasonable trade-off
between the time taken to visualize themesh andmaintaining
participants’ engaged (see Fig. 3 for an overview). Note that
previousworkswere limited to showing participants different
two-dimensional viewpoints of the same mesh, thus not all
parts were uniformly seen. In our case, the rotation allowed
for all the viewpoints of the mesh to be equally seen.

We calculated the point of the mesh where participants’
gaze was falling and logged it in real time, along with addi-
tional head and gaze information. After the presentation of
each mesh, the eye-tracking calibration process repeated, to
ensure the gaze information was still being properly col-
lected, and the next mesh was shown. Once all the session’s
meshes had been presented, participants had to complete a

post-session sickness questionnaire, to assess whether any
symptoms appeared through the experiment. The second ses-
sion of the experiment was identical to the first one, but with
the remaining meshes. We asked the participants to take a
break of at least 30 minutes between both sessions, to avoid
fatigue symptoms which may bias the gathered data.

3.5 Data processing

We logged participants’ gaze and head direction during the
whole experiment. We created a gaze map per mesh and par-
ticipant. A total of 1,856 (32 participants × 58 meshes) gaze
maps were obtained. Each of those maps stored how much
time the participantwas looking at eachmesh vertex. To com-
pute such maps, we checked at each timestamp whether the
current gaze direction intersected the mesh. If so, we added
the elapsed time since the last gaze point to the gazed vertex.
We finally aggregated all gaze maps per mesh, and normal-
ized them.

This process nevertheless yielded sparse maps, with many
points having received very few gaze points. Thus, and
inspired by traditional approaches for smoothing saliency
prediction [29] and by gaze density maps [17], we apply
a distance-based mean filter. In our case, for each vertex v

with a gaze time higher than a threshold τ = 0.1, we spread
its value to its N closest neighbors, proportionally to their
distance to v. After several experiments, we empirically set
N = 500, which are the 2.5% vertex’s closest neighbors. We
devised this procedure to resemble error ellipsoids around
fixations [17]. Figure 4 shows some sample meshes before
(first and third row) and after (second and fourth row) apply-
ing this smoothing procedure.

4 Amodel for 3Dmesh saliency prediction

We have built a 3D mesh saliency prediction model upon a
backbone based on the state-of-the-art network PointNet++
[19], since it has shown promising performance in extracting
and leveraging inherent point cloud features in tasks, such
as classification and segmentation. It partitions a point cloud
into local regions, extracts local features from the mesh’s
fine geometric structures from small neighborhoods, and then
groups those features into larger units to produce higher-level
features. This process is repeated several times until enough
features are extracted. PointNet++ allows for simultaneously
classifying the whole mesh and segmenting its parts. In this
work, we resort to the part-segmentation branch of their net-
work. In this section, we briefly describe the PointNet++
backbone (Sect. 4.1) and our final architecture (Sect. 4.2).
Then, we go through our loss function (Sect. 4.3) and addi-
tional training details (Sect. 4.4).
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Fig. 5 Overviewof ourmodel.We build it upon a PointNet++ backbone
[19]: We first include three abstraction sets that enable encoding latent
features from our meshes. Then, we leverage three propagation mod-
ules to propagate such features to the whole original mesh. We finally
include a saliency module that allows our network to transform the seg-
mentation features from PointNet++ into saliency. Further details on

our model and training procedure can be found in Sect. 4, while we also
refer the reader to the original work of PointNet++ [19] for exhaus-
tive information on both abstraction and propagation sets. This figure
is adapted from Fig. 2 of the PointNet++ original paper; please refer
to Table 1 for further details on the parameters used in the PointNet++
backbone

4.1 PointNet++ backbone

Since PointNet++ is aimed at segmentation and classifica-
tion of point clouds, its ultimate goal is to learn set functions
f that take sets of points as the input and produce information
of semantic interest. The network is composed by a number
of set abstraction levels and a set of feature propagation
levels. Set abstraction levels process sets of points, abstract-
ing feature vectors from them and producing a new set with
fewer elements. Feature propagation levels propagate point
features obtained from the set abstraction levels.

Each set abstraction level is made of three layers: a sam-
pling layer, a grouping layer, and a PointNet layer. The
sampling layer selects a subset of points from the input points
by using the Farthest Point Sampling algorithm, and which
define the centroids of the local regions. The grouping layer
builds sets of local regions by finding neighbor points around
the centroids defined in the sampling layer by means of the
Ball Query algorithm, a method that finds all points that are
within a radius from the query point. Finally, the pointNet
layer encodes local region patterns into feature vectors. In
feature propagation levels, point features are hierarchically
propagated to the original neighbors of the aforementioned
subsets, by means of a distance-based interpolation.

Please refer to Table 1 for an overview of the parameters
used in our backbone, and to the original work [19] for addi-
tional details on the architecture and further explanations on
the parameters of the original network.

4.2 Model architecture

Our model is composed of three different elements. The first
element is a set of three consecutive set abstraction levels
from PointNet++, which encode the main features of our
meshes. Then, we include a symmetric set of three consecu-
tive propagation levels, which propagate such features to the
original point cloud.Wefinally include a small saliencymod-
ule, which translates the segmentation features into saliency.
An overview of our model can be found in Fig. 5.

4.3 Loss function

Many previous approaches for saliency prediction have
resorted to different loss functions or metrics tailored to
the specific problem of attention prediction in 2D media,
including dynamic timewarping (DTW) (e.g., [6]), Pearson’s
Correlation Coefficient (CC), Normalized Scanpath Saliency
(NSS), or Kullback–Leibler Divergence (KLDiv) (e.g., [8]).
Since the latter has shown good performance in different
saliency prediction models, we resort to it to optimize our
network to learn the spatial distribution of saliency across
the mesh. We define our loss function as:

KLDiv (G, P) =
∑

x,y,z

Gx,y,z log

(
ε + Gx,y,z

ε + Px,y,z

)
(1)

where Px,y,z , Gx,y,z , are the saliency values of vertex
(x, y, z) in the predicted and ground-truth gazemaps, respec-
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Table 1 Overview of the main parameters used in the PointNet++ [19] backbone used in our model

M r K in_channels mlp group_all

Abstraction module Set abstraction 512 0.2 64 input_size [64, 64, 128] False

Set abstraction 128 0.4 64 128 + 3 [128, 128, 256] False

Set abstraction – – – 256 + 3 [256, 512, 1024] True

– – – in_channels mlp bn

Propagation module Feature propagation – – – 1024 + 256 [256, 256] True

Feature propagation – – – 256 + 128 [256, 128] True

Feature propagation – – – 28 + 6 [128, 128, 128] True

We refer the reader to the original work for further details on the meaning of these parameters

tively, and ε is a regularization term penalizing zero-valued
predictions.

4.4 Training details

To train themodel, we have first normalized all ourmeshes—
and their corresponding gazemaps—to have 20,000 vertices,
which was the mode in terms of mesh size in our dataset. We
have trained our model on a NVIDIA RTX 2080 Ti with
11GB of VRAM. We trained our model for 150 epochs, for
a total time of approximately and hour and a half, until con-
vergence. We set batch size to 1, and resorted to the Adam
optimizer [42], with a learning rate lr = 10−3 and a weight
decay [43] wd = 5−4. We added the learning rate scheduler
StepLR to our optimizer, decaying the learning rate by a fac-
tor of γ = 0.8 every 30 epochs. We have trained our model
on 50 (90%) of the gathered meshes, while leaving the rest
for evaluation purposes. The 8 meshes corresponding to the
test set are displayed in Fig. 6.

5 Evaluation

In this section, we perform an exhaustive evaluation of our
model. We first briefly review the set of metrics we resort to
for our evaluation (Sect. 5.1). Then, we discuss the main
results from our model and compare them to some available
state-of-the-art works (Sect. 5.2).

5.1 Metrics

To validate our model performance, and compare it to
other approaches, we have resorted to three meaningful,
well-known metrics commonly used in saliency evaluation,
namely Pearson’s correlation coefficient (CC), mean squared
error (MSE), and Kullback–Leibler Divergence (KLDiv).

Pearson’s Correlation Coefficient interprets both the pre-
dicted and the ground-truth saliency maps as random vari-
ables, and measures the linear relationship between them as

follows:

CC(P, Q) = σ(P, Q)

σ (P) × σ(Q)
(2)

where P and Q are the predicted and the ground-truth maps,
respectively, and CC(P, Q) ∈ [−1, 1], where positive val-
ues indicate positive correlation, values under zero indicate
negative correlation, and close-to-zero value indicate no cor-
relation.

Mean Squared Error (MSE)measures the point-wise error
between the predicted and the ground-truth saliency map by
means of a square L2 norm:

MSE(P, Q) = 1

N

N∑

i

(Q(i) − P(i))2 (3)

where P and Q are the predicted and the ground-truth maps,
respectively, and i is the i-th vertex vi = (xi , yi , zi ). The
closer the MSE value is to zero, the more similar P and Q
are.

Kullback-Leibler Divergence (KLDiv) measures the dif-
ference between two probability distributions. We also use
this metric as loss function (Sect. 4.3), and its formulation
can be seen in Eq. (1).

5.2 Results and comparisons with previous work

Figure 6 shows our model’s predictions for our test set, seen
from three different viewpoints each. Our model is able to
yield accurate predictions, focusing on the relevant parts of
the meshes (e.g., animals’ heads, or some specific regions
from the statues), while mostly ignoring the less relevant
parts. Interestingly, our model slightly focuses on some other
regions (such as the armadillo’s hands) that are less observed
in the ground truth, yet are still conspicuous. Besides this
qualitative evaluation, we have also resorted to the metrics
introduced above to quantitatively measure our model’s per-
formance. The first row in Table 2 shows the results of such
evaluation.
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Fig. 6 We show here the results
from our model in our test set.
For each mesh, we show three
different viewpoints
(parameterized as (elevation,
azimuth)) for the ground truth
(top rows) and our model’s
result (bottom rows). As in
previous figures, color codes
saliency. Note that our model is
able to focus on the most
relevant (red) parts, while
mostly ignoring the irrelevant
(blue) parts. Quantitative
evaluations can be found in
Table 2, while further discussion
can be found in Sects. 5.2 and 6

We have also compared our results to the two works
that have attempted saliency prediction in 3D meshes before
whose code was publicly available, namely Song et al. [15]
and Nousias et al. [14]. We have run their model with their
default parameters on our test set to obtain their saliency
maps. Figure 7 shows, for four different meshes from our
test set, the ground truth, our model’s prediction, and the pre-
dictions yielded by their models. Note that only our model is
trained on real, captured viewing data, and thus it better mim-
ics human behavior. Our model is able to predict maps that
better resemble the ground-truth ones. Nousias et al.’s model
mainly focuses on small regionswith geometrical salient fea-
tures, such as high-frequency details (e.g., the lion’s eyes or
the skull’s eyes border), failing to capture the wider variabil-

ity in viewing attention. Song et al.’s model, while focusing
on actual relevant regions, overestimates saliency. Quantita-
tive evaluations for this comparison can be found in Table 2.

6 Conclusions

In this work, we have presented a deep learning-based
approach to saliency prediction in 3D meshes. Different
to previous approaches, which have been trained either on
low-level geometrical features, or with data gathered in labo-
ratory constrained and unnatural conditions, we have trained
our model on a dataset of real, captured gaze and head
data from an extensive experiment showing 58 different 3D
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Fig. 7 Qualitative results of our comparisons. For each mesh, we show
two different viewpoints (parameterized as (elevation, azimuth)) for the
ground truth (top row), our model’s result (second row), and the results
for the works of Nousias et al. [14] (third row) and Song et al. [15]
(fourth row). As in previous figures, color codes saliency. Our model
is able to yield predictions much closer to the human ground truth.
Nousias et al.’s model ten to focus on very small regions with high
frequencies, with very sparse results. SOng et al’s, on the other hand,
tends to correctly find the salient regions of themesh, albeit yielding too
high values in too large areas. Quantitative results from this comparison
can be found in Table 2, and further discussion can be found in Sect. 5.2

meshes to more than thirty participants. Then, we have built
a computational model upon a state-of-the-art point cloud
segmentation network, and trained it on our captured data
to predict saliency on unseen meshes. Additionally, we have
evaluated our model resorting to well-known saliency met-
rics, and have qualitatively and quantitatively compared it to
available state-of-the-art approaches in saliency prediction
for 3D meshes, with our model yielding results that better
resemble the ground-truth data.

Table 2 Quantitative results of our evaluation

CC ↑ KLDiv ↓ MSE ↓
Ours 0.6616 (0.0723) 0.3051 (0.1559) 0.0204 (0.0033)

Song et al. [15] 0.1249 (0.1401) 0.7034 (0.3296) 0.3220 (0.1140)

Nousias et al. [14] 0.0570 (0.0976) 1.9618 (0.5187) 0.0759 (0.0189)

We compute three different well-known saliency metrics (see Sect. 5.1)
to evaluate our model (first row), and compare it to two available state-
of-the-art approaches (Song et al. [15] and Nousias et al. [14]). Best
results are in boldface, and eachmetric indicateswhether higher or lower
is better. Ourmodel consistently outperforms both previous approaches.
Qualitative comparisons can be found in Fig. 7

6.1 Limitations and future work

Several exciting future avenues remain open with this work.
As with most data-driven methods, gathering larger, and
even more varied—semantically or even geometrically—
datasets is key to enhance the model and ensure a more
robust generalizability. Besides, while this approach differs
from previous ones based on geometric and low-level cues,
combining the knowledge from both types of approaches is
indeed an natural next step in this problem: Providing our
computational model with priors on low-level features could
enhance its overall performance. Our viewing data, while
less restricted and more natural than previous attempts, has
been captured under some particular circumstances: The vir-
tual environment where we showed was empty, and figures
were textureless, at a fixed direction, with some fixed light
sources, and in uniform, controlled motion. Investigating the
effect of semantic context, illumination, or distance, among
others, remain an interesting avenue. Moreover, 3D environ-
ments are generally designed for users to interact with them;
however, in our experiment, participants were seated looking
at the shapes. Further studying how attention varies as users
interact with the object remains an exciting line of research.
Our dataset currently contains viewing data from 32 differ-
ent participants; recruiting additional participants fromwider
backgrounds to extend our dataset could further improve the
generalizability of our results.

We believe our work is a timely effort toward better under-
standing attention and 3D, and we will make our code and
data publicly available to foster future research.
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