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Abstract
Monocular depth estimation is an open challenge due to the ill-posed nature of the problem at hand. Deep learning techniques
proved capable of producing acceptable depth estimation accuracy but the lack of robust depth cues within RGB images
severally limits their performance. Coded aperture-based methods using phase and amplitude masks encode strong depth
cues within 2D images by means of depth-dependent Point Spread Functions (PSFs) at the price of a reduced image quality.
In this paper, we propose a novel end-to-end learning approach for depth from diffracted rotation. A phase mask that produces
a Rotating Point Spread Function (RPSF) as a function of defocus is jointly optimized with the weights of a depth estimation
neural network. To this aim, we introduce a differentiable physical model of the aperture mask and exploit an accurate
simulation of the camera imaging pipeline. Our approach requires a significantly less complex model and less training data,
yet it outperforms existing methods for monocular depth estimation on indoor benchmarks. In addition, we address the image
degradation problem by incorporating a non-blind and nonuniform image deblurring module to recover the sharp all-in-focus
image from its blurred counterpart.

Keywords Monocular depth estimation · RPSFs · Image deblurring

1 Introduction

Depth estimation from a single RGB image is an ill-posed
inverse problem, thus, additional image priors or sophisti-
cated imaging systems are generally needed to account for
the lack of depth cues in captured images.

For example, the camera optics may be modified accord-
ingly, amore advanced image sensor design and task-specific
post processing algorithmsmay be developed in order to cap-
ture information well beyond the capabilities of conventional
imaging systems.

In this paper, we propose a computational camera wherein
the Point Spread Function (PSF) is altered in order to encode
depth information within a 2D image. The desired PSF is
obtained via an optimized phase mask inserted at the aper-
ture plane of the camera. Our system encodes meaningful
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and robust depth cues in single RGB images thus making
it easier for post-processing algorithms to produce accurate
depth data. However, such approach generally suffers from
image quality degradation due to the poor light efficiency
and/or the low Modulation Transfer Function (MTF) of the
engineered PSF for high spatial frequency components. In
fact, amplitude aperture masks block a significant amount of
light from reaching the image sensor resulting in low light
throughput, while using phase only masks solves such prob-
lem since it only acts on the phase component of the incoming
light wave. Still, the MTF drops rapidly in high frequency
regions and the depth-dependent blurring caused by the cam-
era’s engineered PSF produces low SNR and degrade image
quality.

We propose a full pipeline that takes as input a single RGB
image and produces an estimated depth map of the scene
along with the recovered sharp image from its PSF-blurred
counterpart. We introduce a novel end-to-end deep learning
model that jointly deals with the PSF design optimization
and the depth estimation task. To this aim, a differentiable
physical model of the aperture mask is introduced together
with an accurate simulation of the imaging pipeline includ-
ing the optimized optics. In this way the learned model is
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able to firstly predict the optimal parameters of the phase
mask design and then estimate the depth data from the
RPSF-blurred input. Finally, in order to address the image
quality issue, a deep learning based non-blind and nonuni-
form deblurring module is incorporated.

2 Related work

Rotating Point Spread Functions RPSFs have been theoret-
ically shown to increase the Fisher Information along the
depth dimension by at least an order of magnitude as they
have a uniformly lower Cramér-Rao bound across the axial
dimension [1], which makes them highly sensitive to depth
changes. RPSFs are obtained using pupil engineered cameras
by means of phase and/or amplitude masks that are inspired
by the concept of Orbital Angular Momentum (OAM) of
light beams [2]. A beam with a rotating light intensity dis-
tribution along the propagation axis can be generated by a
linear superposition of a set of suitably chosen Gaussian-
Laguerre (GL) modes [1, 3] that can be optically encoded by
the aperturemask. Thesemasks generate a PSFwith invariant
features that continuously rotatewith defocus.However, such
approach suffers from poor light throughput, some works
[4, 5] addressed this problem and proposed iterative opti-
mization schemes to ensure higher light efficiency of the
engineeredRPSF.Depth dependentRPSFs can be also gener-
ated by phase only masks. For instance, a phase mask design
inspired by Spiral Phase Plates (SPPs) [6, 7] was introduced
in [8] where the pupil is subdivided into a set of annular
Fresnel zones with an azimuthally increasing thickness pro-
file, the delay imposed on the incident light waves increases
azimuthally generating a corkscrew like wave-front carry-
ing an OAM with a rotating phase function. In [9] and [10],
the authors generalized the previous phase mask design by
considering a phase function that allows for generatingmulti-
order-helix RPSFs by introducing new design parameters:
the number of rotating lobes within the RPSF and the con-
finement of each zone, i.e., the inner and outer radii of each
annular region, in addition to the number of Fresnel zones.
While [9] and [10] used purely empirical approaches to deter-
mine the values for each design parameter, in this work we
optimize those parameters in an end-to-end fashion jointly
with the weights of a depth estimation deep neural network.
Depth estimation using coded apertures Levin et al. [11]
proposed an amplitude modulation mask that was placed in
front of the camera lens to encode depth via the diffracted
pattern of the camera’s PSF: as point-like sourcesmove along
a plane parallel to that of the camera sensor, themask shadow
would shift accordingly and as they move closer or farther
from the camera, the pattern would expand or shrink. This
information is later used to determine the object’s distance
from the camera. The mask introduced by [11] has opaque

regions blocking a significant amount of light from reach-
ing the image sensor. Zhou et al. [12] built upon [11] and
introduced two complementary amplitude masks.

In [1] the concept of depth from diffracted rotation was
introduced: a superposition of a set of suitably chosen
Gaussian-Laguerre modes generates a double helix RPSF
that was used to estimate the depth of a planar scene by
analyzing the blurring effects within the captured image.
However, low MTF by the mask leads to poor SNR within
the captured image, thus limiting the capability of signal-
processing based algorithms to recover sharp images or
accurate depth maps. In addition, earlier studies relied on
a design paradigm based on the separate optimization of the
camera optics and post-processing algorithms: they design
the mask first and then tailor a reconstruction algorithm that
fits the proposed physical design of the mask as in [10, 13–
15]. Such designmethodology, however, leads to sub-optimal
performance.
End-to-end learning formonocular depth estimationRecently,
an emerging trend appeared to tackle the separate design
issue and new frameworks for joint optical and digital
optimization using deep learning techniques have been
introduced. These methods exploit end-to-end learning to
optimize the mask’s height map together with the train-
able weights of a Convolutional Neural Network (CNN).
Haim et al. [16] proposed a differentiable phase mask con-
sisting of concentric rings that introduce depth-dependent
chromatic aberrations and encoding depth cues within single
captured images. In the work of Chang et al. [17] and Wu
et al. [18] (that exploits a layered depth map to generate the
coded image) a free-form differentiable phase mask design
parameterized using a set of superposed Zernike polynomials
[19, 20] was jointly optimized with the weights of a U-Net
[21]. However, the employed camera model was not realistic
accounting only for additive Gaussian noise [18]. Further-
more, unrestricted parameterized mask design and higher
degrees of freedom may cause the optimization to converge
toward local minimas as the objective function becomes too
complex leading to sub-optimal performance. In this work,
the mask is parameterized using only three design parame-
ters two of which are optimized in an end-to-end fashion, and
the PSF has clear and simple correlations with depth.
Image deblurring Non-blind image deblurring has been
extensively studied before (e.g., [22–25]), and a substantial
performance gain has been made easier using deep learning
based image deblurring techniques.

The authors of [26] used the separability property of
the pseudo-inverse kernel in Wiener deconvolution filter to
design a dedicated CNN. In [27], a two-stage deblurring pro-
cess was introduced using a Wiener deconvolution filter and
a simple MLP architecture. A novel deconvolution approach
was recently introduced by [28] where a Wiener deconvolu-
tion filter is applied to the input data in feature space.
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Fig. 1 The full architecture of our end-to-end learning framework

3 Depth estimation from diffracted rotation

We propose an end-to-end learning approach for depth from
diffracted rotation using RPSF-coded images. As shown in
Fig. 1, the full pipeline of the proposed solution encom-
passes three main stages. In the first stage, the height map
of the phase mask is jointly learned with the weights of a
neural network (DEPTH-DNN) trained to perform monocu-
lar depth estimation. This module is trained using noise-free
RPSF-blurred synthetic images. In the second stage, the opti-
mized phase mask is fitted within the optics module and
a digital image formation pipeline is applied to the RPSF-
coded synthetic images in order to simulate a realistic camera
model. Finally, we used the demosaiced images from the pre-
vious stage as input to fine-tune the weights of DEPTH-DNN
on noisy data obtaining a refined model (DEPTH-DNN-
TUNED) and to recover the all-in-focus sharp image using
a dedicated network (IMAGE-DNN) which performs non-
blind and nonuniform image deblurring. Both of these
modules make up the third and last stage of the proposed
architecture.

3.1 Engineered PSF

In this section, we briefly describe the effect of modified
optics on the system’s PSF (more details are in the supple-
mentary material). For simplicity, consider an on-axis ideal
point source situated at optical infinity, the light field Uin

with a constant amplitude P and a phase ψ emanating from
such source has the form: Uin = Peiψ . An optical element
(e.g., a lens or a phase mask) with a refractive index n and a
height profile h introduces a phase delay � = 2π(n−1)

λ
h on

incident light wave-fronts. If a phase mask is inserted at the
entrance of an imaging system, the total phase delay can be

expressed as the sum of the delay due to the lens with the one
due to the mask:

�optics = �lens + �mask (1)

The light field after the lens andmask system has the form:

Uout = A · P · ei(ψ+�optics ) (2)

Where A is the aperture mask simulating the finite aperture
area. The field Uout can be further propagated to the image
plane and the PSF can be obtained by the field’s intensity
distribution. Choosing the appropriate height profile of the
phase mask helps designing specific PSF patterns depending
on the target task.

3.2 Phasemask design

Both annular and free-form mask designs have been stud-
ied in the context of joint optimization of camera optics
with post-processing algorithms [16–18]. We build upon
the depth-dependent RPSF introduced by [8]. In this sec-
tion, the mathematical model of the mask’s phase profile is
described and in the next section a differentiable approx-
imation of the mask’s height map is derived to allow
for gradient back-propagation in our end-to-end learning
framework.

We use a Fresnel-zone-based design [8] that has an outer-
most radius R and L phase plates in the form of concentric
annular regions each of topological charge l = 1, ..., L and

bounded by two radii Rl−1 = R
√

l−1
L and Rl = R

√
l
L .
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The pupil plane phase can be written as in [8]:

�mask(ρ, φ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ 0 ≤ ρ <

√
1
L

...

lφ
√

l−1
L ≤ ρ <

√
l
L

...

Lφ

√
L−1
L ≤ ρ < 1

(3)

�mask is defined with the polar position vector ρ normal-
ized by the pupil’s outermost radius R, and is a step function
modeling the physical design property of concentric rings
each with its own phase profile. The phase profile in Eq. 3
can be generalized to account for multi-order-helix RPSFs
as in [10] and [9] by expanding it into:

�mask(ρ, φ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ 0 ≤ ρ < ( 1
L )ε

...

[(l − 1)N + 1]φ ( l−1
L )ε ≤ ρ < ( l

L )ε

...

[(L − 1)N + 1]φ ( L−1
L )ε ≤ ρ < 1

(4)

Notice that the inner and outermost radii of each zone are
now controlled by ε which lies in [0, 1], and the topological
charge of each ring is now [(l − 1)N + 1] instead of just l.
Besides the number of rings L , N and ε are two new design
parameters each having an effect over the resulting RPSF
shape. More precisely, N defines the number of peaks or the
main rotating lobes of the RPSF and L and ε both control the
peak separation and confinement of each peak. In the case
of a single helix rotating PSF (N = 1) the phase profile of
each ring would be reduced to the original expression as in
Eq. 3. Notice also that by increasing the number of peaks, the
practical depth range would be reduced because of rotation
ambiguities when peaks rotate beyond [− π

N , π
N ].

3.3 Differentiable phasemask design

The phase profile presented in Eq. 4 is not differentiable with
respect to the design parameters N and ε. Thus, a differen-
tiable approximation for this equation is necessary in order to
simulate the camera’s optical layer and enable both forward
and backward propagation. The number of Fresnel zones L is
considered as a hyper-parameter that can be manually tuned
to achieve better depth estimation performance.

The steps in Eq. 4 can be approximated with a set of 2D
rings in polar coordinates with increased radii as L increases
as illustrated in Fig. 2, each Fresnel zone is obtained by sub-
tracting the areas of two 2D tanh functions each with a radius

corresponding to the one of the two radiis of the desired ring.
We multiply the inner coordinates of each tanh by a large
constant (100 in our case) in order to get sharp mask edges.
The new approximated phase profile equation for L zones
can be written as:

�̃mask(ρ, φ) =
l=L∑
l=0

(
(l − 1)N + 1

)
φ︸ ︷︷ ︸

lth ring phase

× 1

2

(
tanh[100(ρ − rl)] − tanh[100(ρ − rl+1)]

)
︸ ︷︷ ︸

lth ring mask

(5)

Where r0 = 0, rl = R( l
L )ε; ∀l ∈ [1..L], and R is the outer-

most radius of the mask. φ and ρ are the polar coordinates.
Each phase profile�l

mask =(
(l−1)N +1

)
φ is multiplied

by the corresponding ring mask and the resulting zones are
added up to produce the final phase profile of the mask. We
produce the height map h of the mask as follows:

h(x, y) = λ

2π(n − 1)
·(arg{ei�̃mask } mod 2π

)
(6)

where arg is the complex argument function, and themodulo
accounts for the phasewrapping operation (phase values have
a 2π periodicity as shown in Fig. 3).

Notice that the height profile of the phase mask is wave-
length dependent: the resulting PSFs for the three RGB color
primaries have different rotation rateswhich introduces chro-
matic aberrations. Still, it will not be problematic in the
context of an end-to-end optimization framework since the
network could learn the correlations between the rotation rate
and the corresponding color channel. In fact, such aberrations
can be seen as depth-dependent and can also relay valuable
depth cues. For the physical design of the mask a reference
wavelength value (λ = 536.67 nm) is used to produce the
height map.

Figure 4 shows a double helix RPSF generated by a phase
mask with [N = 2, L = 5, ε = 0.9], it has two main lobes
rotating counterclockwise as a function of defocus. Notice
that even at the in-focus plane the RPSF has the same shape
thus objects that are “in-focus” are also blurred.

4 Training data generation

4.1 Datasets

A subset of FlyingThings3D dataset is used for the joint
optimization of the phase mask and depth estimation net-
work, and to train IMAGE-DNN. This dataset is a part of the
Scene Flow synthetic datasets [29]. This subset was previ-
ously used by [18] in a similar joint optimization approach,
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Fig. 2 Adifferentiable phasemask designwhere each Fresnel zone is simulated by a ringmaskmultiplied by the phase profile (�i
mask ) corresponding

to each zone

Fig. 3 The height map of the phase mask. From left to right, the phase distribution as the argument of eiψ̃ , the [0, 2π ] wrapped phase distribution,
and the obtained height map for [N = 2, L = 5, ε = 0.9]

it contains synthetic images of randomly placed objects with
pixel-accurate disparity maps. The training, validation, and
test sets contain respectively 5078, 555, and 420 images with
a resolution of 278 × 278 pixels. Additionally, in order to
evaluate the performance of our approach with the state-of-
the-art in the task of monocular depth estimation on real
data, NYUV2 [30] depth dataset is used to train and evaluate
DEPTH-DNN. Originally, the dataset contains 120k train-
ing images of indoor scenes with a resolution of 640 × 480
pixels along with ground truth depth maps acquired by a
Microsoft Kinect V1 depth sensor. The test set, as defined by
the split in [31], contains 654 images. In this work, a subset
of 50k samples of NYUV2 is used to train the depth estima-
tion network as in [32]. Finally, the test set of SUNRGBD
dataset [33] is used to evaluate the generalization capabil-
ity of DEPTH-DNN. This set contains 5050 test images of
indoor scenes with ground truth depth maps acquired by four
different depth sensors some ofwhich use active illumination
techniques and others incorporate passive stereo systems.

4.2 Image formationmodel

Light rays emanating from the scene are acquired by the
camera and optically coded by the phase mask via a depth-
dependent blurring process with the camera’s RPSF. For
our simulations, the ground truth depth maps are approxi-
mated with a layered model in which only a finite number of
depth planes are used to compose and render theRPSF-coded
image using the following image formation model:

Isim =
d=D∑
d=1

(Iai f ∗ RPSFd) � Md (7)

Where Isim is the simulated blurred image, Iai f is its all-in-
focus counterpart, RPSFd is the RPSF intensity distribution
at the depth plane d, � stands for element-wise multiplica-
tion, and {Md; d = 1, ..., D} are the depth masks presenting
the individual depth layers such that at each pixel location
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Fig. 4 A double helix RPSF obtained by a mask with [N = 2, L = 5, ε = 0.9]. The RPSF’s intensity distributions are shown as a function of
defocus

∑
d Md = 1, i.e., only one pixel mask is set to one at each

position.
Afterward, the image formation pipeline is applied to the

RPSF-blurred images to simulate real cameras. As illustrated
by Fig. 1, a Bayer CFA receives the full color resolution
RPSF-blurred image and produces down-sampled RGGB
color pattern. Although it is hard to accurately simulate the
noise behavior within the sensor chip, the final amount of
noise is mainly caused by sensor shot and read noises. To
this end, we simulated the read noise with an additive Gaus-
sianN (0, σ 2)with zero mean and a fixed standard deviation
σ = 0.01, photon shot noise follows a Poisson distribution,
in practice it is modeled by a Gaussian distribution whose
mean and variance depend on the expected photon count
over the exposure time. The resulting noisy sensor image is
quantized with an ADC module with a resolution of 8 bits.
Finally, a linear interpolation-based demosaicing technique
of [34] is used to recover the full color channels from theCFA
and produce the final output which will be used to fine-tune
DEPTH-DNN and train IMAGE-DNN.

5 Deep learning framework

5.1 Monocular depth estimation

In the first stage of the proposed solution (see Fig. 1), the
phase mask design parameters [N , ε] are jointly learned
with the weights of a U-Net [21] which is trained on a sub-

set of FlyingThings3D [29]. Two different learning rates,
Lmask
r = 0.1 and Ldnn

r = 1e − 4 are set for the phase mask
and for the depth estimation neural network.During the train-
ing process, the gradient error is back-propagated through the
network as well as the mask’s trainable parameters and the
weights are updated accordingly using TensorFlow’s auto-
matic differentiation framework [35]. The network of this
stage is trained for 150k iterations using a batch size of 20.
Adam optimizer [36] is used with exponential decay rates of
the first momentum and second momentum, respectively, set
to β1 = 0.99 and β2 = 0.999. The training takes roughly
12h using a single NVIDIA TITAN X GPU.

Similar to Wu et al. [18], we used a combination of Root
Mean Square Error (RMSE) loss Lrmse and gradient loss
Lgrad which forces the network to estimate accurate depth
maps with well defined object boundaries at different depth
planes. The total loss function is defined as:

Ldepth = Lrmse + Lgrad (8)

where Lrmse and Lgrad are defined as:

Lrmse(θ, θ∗) =
√

1

|T |
∑
θ∈T

(θ − θ∗)2 (9)

Lgrad(θ, θ∗) = Lrmse

(
∂θ

∂x
,
∂θ∗

∂x

)
+ Lrmse

(
∂θ

∂ y
,
∂θ∗

∂ y

)

(10)
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θ and θ∗ are, respectively, the predicted and the ground
truth disparity maps while the subtraction is done pixel-by-
pixel, x and y are the spatial dimensions, and |T | is the
number of disparity maps.

In the third stage, the same U-Net [21] which was previ-
ously trained on noise-free RPSF data is fine-tuned using 50k
training iterationswith noisy images simulated by the camera
model of the second stage (see Fig. 1), the phasemask is fixed
during this training pass and only the network’s weights are
updated. All hyper-parameters’ values are fixed to the same
values as in the first training stage.

For NYUV2 dataset [30], both the network and the mask
are learned using 50k training samples, the input images to
the network and the output depth maps have a resolution of
320 × 240 which correspond to half of that of the original
samples, a bilinear-upsampling is applied to the predicted
depth maps to recover the original resolution of 640 × 480
for evaluation purposes as in [32, 37, 38]. The network is
trained for 150k iterations with a batch size of 20, the phase
mask and the neural network learning rates as well as the
optimizer used in the training are the same as the ones used
for the subset of FlyingThings3D [29].

5.2 Image deblurring

Weused amodified version of the deblurringmodel proposed
by [28] wherein aWiener deconvolution is applied to a set of
feature maps extracted from the blurred input using a simple
CNN architecture as feature extractor, the deconvolved fea-
ture maps are then fed into a multi-scale feature refinement
stage in order to get the final deblurred image in a coarse-to-
fine based reconstruction technique. Such approach proved
capable of restoring very fine structural details allowing for
accurate image reconstruction. In this work, we adapted the
network proposed by [28] for the case of nonuniform image
deblurring as the blur kernel in our case is spatially variant.
More precisely, a separate deconvolution is performed for
every depth layer and the results are cropped using the cor-
responding depth masks Md as in Eq. 7. The deconvolved
feature maps are then combined in order to get the final
Wiener filter output. We found that, even though the Wiener
filter module is applied in feature space, some undesirable
deconvolution artifacts, most noticeably ringings, are visible
especially around image boundaries and object edges since
the FFT operatorwithin theWiener deconvolutionfilter sup-
poses circular periodicity of the input. To tackle this problem,
an edgetaper operation [39] was implemented on the blurred
input image to smooth out its boundaries which can consid-
erably reduce the ringing artifacts in the final reconstructed
sharp image.

We trained the network using the subset of FlyingTh-
ings3D [29] for 500 epochs with Adam optimizer [36] with
exponential decay rates of the first momentum and second

momentum, respectively, set to β1 = 0.99 and β2 = 0.999,
and a learning rate Limage

r = 1e − 4 which is halved after
250 epochs. The number of auto-encoders in the multi-scale
feature refinement modules is set to 2 as in the original work
of [28], the number of extracted feature maps from the blurry
input is 16, and the batch size is set to 8. For the loss func-
tion, it was experimentally seen that L1 norm leads to better
reconstruction results than the ones obtained with L2 norm.

Limage(θ, θ∗) = 1

|T |
∑
θ∈T

|θ − θ∗| (11)

where θ and θ∗ are, respectively, the reconstructed and the
ground truth sharp images and |T | is the number of images.

6 Experimental results

6.1 Experimental results on synthetic data

Monocular depth estimation on FlyingThings3D subset For
this set of experiments the phase mask’s trainable parameters
are initialized to [N = 1, ε = 0.1] and the number of Fresnel
zones L is set to 7 as it was empirically observed that such
value leads to a lower depth estimation error. In the case
of noise-free RPSF-blurred inputs, the network achieved a
RMSE of 0.392 on the test set. The corresponding learned
phasemask parameters are [N = 1, ε = 0.92]: the generated
RPSF as well as the height map of the mask are shown in
Fig. 5. The network learned a single-helix RPSF with high
confinement parameter ε meaning that the peak is spread out
across a large area. In all quantitative evaluations showed
later on we use the same error and accuracy metrics used by
prior works to assess the performance of monocular depth
estimation solutions. They are the following:

• Error metrics:

– Root Mean Squared Error (RMSE): it measures the
difference between predicted and ground truth depth
values.

RMSE(θ, θ∗) =
√

1

|T |
∑
θ∈T

(θ − θ∗)2 (12)

– Relative error: It measures the average absolute devi-
ation of predicted depth values with respect to ground
truth values by which it is normalized.

Rel(θ, θ∗) = 1

|T |
∑
θ∈T

|θ − θ∗|
θ∗ (13)

– Log10based error: Similar tomean absolute error, but
computed on the logarithm of the depth values. This
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Fig. 5 Learned RPSF shape at different defocus planes (left), height map of the phase mask (right)

metric is often used to account for the scale-invariant
nature of depth predictions.

Log10(θ, θ∗) = 1

|T |
∑
θ∈T

| log10(θ) − log10(θ
∗)|(14)

• Accuracy metrics:

– Accuracy under a threshold: These metrics assess the
percentage of pixels whose relative error falls below
a certain threshold δi

max(
θ

θ∗ ,
θ∗

θ
) < δ1 δ1 = 1.25

max(
θ

θ∗ ,
θ∗

θ
) < δ2 δ2 = 1.252

max(
θ

θ∗ ,
θ∗

θ
) < δ3 δ3 = 1.253

(15)

where θ and θ∗ are, respectively, the predicted and the ground
truth depth values, and |T | is the number of samples in the
test set. All metrics are calculated between the ground truth
and the predicted depth maps with pixel values in the range
]0, 10[ meters.

Qualitative results are shown in Fig. 6 (additional scenes
are shown in the supplementary material): notice how the
network is able to predict accurate disparity maps with fine
image details, e.g., the small leaves of the plant shown in
the third row or the very fine parts of the headset shown in
the last row. However, it becomes harder for the network to
predict accurate object boundaries due to the blurring arti-
facts introduced by the RPSF especially when the blur kernel
is larger than the image features. Some artifacts appear at
object edges mainly due to the nature of the image formation
model used to compose the RPSF-blurred images: the lay-
ered depthmodel used to render RPSF coded images does not
accurately simulate the discontinuities around object edges
as visible in the RPSF coded images (Fig. 6) due to the lack

of accurate occlusion modeling. Such issue can be addressed
using more advanced and sophisticated blending and mat-
ting approaches, e.g., Pyramid-based blending [40], at the
expense of much higher computation time and complexity
for a minor gain in performance.

As pointed out in Sect. 4.2, we also introduced an accurate
noise simulation model for a more realistic evaluation. To
handle noise we further fine-tune the DEPTH-DNN on noisy
images. In this case we achieve a RMSE of 0.712 on the test
set compared to 0.392 achieved on noise-free data. This is
of course expected but at the same time the robustness of the
system in real world applications should be enhanced.

In the first two columns of Fig. 6, one can observe image
quality degradation after simulating the noisy images where
the color down-sampling by the CFA and quantization arti-
facts by the ADC unit are visible (zoomed-in). The predicted
disparity maps from noisy inputs are shown in the last
column. Even though a small performance degradation is
noticeable on the noisy predictions, the fine-tuned network
is still able to learn fairly accurate disparity maps.
Image restoration

The sharp all-in-focus images are recovered by IMAGE-
DNN trained on the subset of FlyingThings3D [29]. Quanti-
tative and qualitative results are shown in Table 1 and Fig. 7,
respectively.

The simulated RPSF-coded images have a low mean
PSNR of roughly 19 dBwith respect to their sharp noise-free
counterparts whichwere used as the ground truth images dur-
ing training. As reported in Table 1, the mean PSNR of the
recovered images increased by about 5.5 dB reaching 24.46
dB. Also, the Structural Similarity Index Measure (SSIM)
achieved is 0.760 compared to 0.611 for the blurred and
noisy images. Deblurring results from the traditional Wiener
deconvolution filter [41] are also shown in Fig. 7: even if
we apply the deconvolution process independently for each
depth plane and generated the final result following Eq. 7, it
results in a low quality image reconstructionwith heavy ring-
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Fig. 6 Qualitative results on RPSF-blurred images from the test set of FlyingThings3D [29] subset

Table 1 Quantitative results of the image deblurring model on the test
set of FlyingThings3D [29] subset

PSNR (dB) SSIM

RPSF-coded images 19.01 0.611

Recovered images (Wiener) 18.75 0.449

Recovered images (Our approach) 24.46 0.760

Bold metrics indicate the best results

ing artifacts (see Fig. 7). This happens since theWiener filter
fails to handle the spatially variant blur producing significant
ringing artifacts.

Figure7 shows some recovered images alongwith the cor-
responding blurred inputs and the sharp all-in-focus ground
truth. Upon visual inspection, one can notice that the model

successfully restores very fine image details and high fre-
quency components, e.g., the small tree leaves shown in the
first row, or the various background details present in the
second row. Notice also how large regions with smooth as
well as textured structures are recovered. The quantization
noise and color down-sampling by the CFA make the task
even more challenging resulting in some ringing artifacts on
object edges.

Although an edgetaper [39] technique was used to limit
such artifacts, few are still present in the recovered images,
but are significantly reduced when comparing with the ones
produced by the Wiener filter.
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Fig. 7 Qualitative results of the image deblurring model on the test set of FlyingThings3D [29] subset

6.2 Experimental results on real data

NYUV2 depth dataset In order to compare our approach with
state-of-the-art methods, the DEPTH-DNN is trained on a
subset of NYUV2 indoor dataset [30] in an end-to-end fash-
ion with the phase mask’s height map. In this experiment,
only 10 depth planes are considered in the layered depth pre-
sentation (Eq. 7) due to memory constraints. The simulated
camera lens parameters are the following: f /4.0 with 4 mm
aperture diameter and 16 mm focal length focusing at a dis-
tance of 5ms. The RGB images are directly convolved with
a RPSF cube of the shape 10 × 23 × 23 × 3.

In the following evaluations, we applied the same crop
used in competing works (e.g., [31]) and excluded the invalid
pixels from the Kinect V1 sensor as done by competitors.

Figure 8 shows the learned RPSF and the corresponding
phase mask. For this dataset, the learned RPSF is a double-
helix [N = 2, ε = 0.99] with two main side lobes that
rotate with defocus. We argue that such behavior is mainly
related to the characteristics of the training data: for more
complex depth scenes, like in this case, the network tends to
converge to higher number of peaks as it makes it easier to
correlate between the rotation angle and the corresponding
depth plane. Similar to the previous scenario, the network

also converges toward a high confinement parameter ε =
0.99 producing more spread out peak regions.

Quantitative results on NYUV2 [31] test set are reported
in Table 2. Coded-aperture based competing approaches [17,
18] optimized a free-form phase mask parameterized with a
superposition of a set of Zernike polynomials [19, 20] using a
U-Net [21] architecture. Besides using a more accurate cam-
eramodel, differently from [17, 18], our approach learns only
a few design parameters for the mask and simultaneously
tackles the problem of image quality degradation. Table 2
shows quantitative results for the different error metrics used
in [30]. Our approach outperforms the competing methods
of [17, 18] in all but the last two accuracy metrics (where
all top approaches including ours are very close to 1 making
them not too significant). Note that for the more significant
accuracy metric δ1 (i.e., with the lowest threshold value), our
approach achieves the highest score, even if we trained the
network using a subset of 50k training samples which is less
than half of the default split of 120k training samples [30]
used by [17] and [18]. In particular, we achieve a significantly
lower RMSE value of 0.267 which is down by, respectively,
0.166 and 0.115 from the ones achieved by [17] and [18] and
is the lowest yet achieved on this challenging dataset for the
task of monocular depth estimation.
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Fig. 8 Learned RPSF shape at different defocus planes (left), the height map of the phase mask (right)

Table 2 Quantitative
comparison with the
state-of-the-art for monocular
depth estimation task on
NYUV2 test set [31]

Method RMSE ↓ Rel ↓ Log10 ↓ δ1 ↑ δ2 ↑ δ3 ↑
Eigen et al. [31] 0.641 0.158 – 0.769 0.950 0.988

Laina et al. [42] 0.573 0.127 0.055 0.811 0.953 0.988

Hao et al. [38] 0.555 0.127 0.053 0.841 0.966 0.991

DORN [43] 0.509 0.115 0.051 0.828 0.965 0.992

Qi et al. [44] 0.569 0.128 0.057 0.834 0.960 0.990

Yin et al. [45] 0.416 0.108 0.048 0.875 0.976 0.994

BTS [46] 0.392 0.110 0.047 0.885 0.978 0.994

DAV [47] 0.412 0.108 – 0.882 0.980 0.996

Alhashim et al. [48] 0.382 0.093 0.050 0.932 0.989 0.997

AdaBins [32] 0.364 0.103 0.044 0.903 0.984 0.997

DPT-Hybrid [49] 0.357 0.110 0.045 0.904 0.988 0.998

DeepOptics [17] 0.433 0.087 0.052 0.930 0.990 0.999

PhaseCam3D [18] 0.382 0.093 0.050 0.932 0.989 0.997

Ours 0.267 0.072 0.029 0.952 0.989 0.997

Bold metrics indicate the best results, underlined metrics indicate second best results

This performance gain is primarily related to the opti-
mized PSF shape, The one obtained by [18] has a generic
shape with no clear correlations between different defocus
planes, while the one obtained by [17] has an elliptical shape
with varying sectionwhich increaseswith depth.On the other
hand, the RPSF shape produces a clear and simple correla-
tion between the defocus plane and the corresponding angle
of rotation of themain peaks, thus encoding robust depth cues
within input images. This, thanks also to the small number of
parameters to be learned, explain why the network achieves
better depth estimation accuracy with significantly less train-
ing data.

Table 2 also presents quantitative results from the state-of-
the-art that mainly used sharp all-in-focus images as input.
Our approach outperforms all competingmethods in all eval-
uationmetrics except for δ3 accuracymetric where all the top
approaches including ours are extremely close. More specifi-
cally, we achieve substantially lower error metrics compared

to the competing approaches which used similar or larger
training sets, e.g. Eigen et al. [31], Laina et al. [42], DORN
[43], DAV [47], Alhashim et al. [48], AdaBins [32] and DPT-
Hybrid [49], notice that the latter used a pre-trained model
on a large combination of different datasets containing 1.4M
samples and fine-tuned it on NYUV2 dataset [31]. The rest
of the competing approaches used less training samples but
at the cost of more complexmodels with pre-trained weights,
e.g., Hao et al. [38] used a ResNet [50] backbone pre-trained
on ImageNet [51]. Our model uses a smaller training set but
the core network used for depth estimation is a simple U-Net
[21] architecture with approximately 8.6M trainable parame-
ters, the inference time needed to produce a single depth map
with a spatial resolution of 256× 256 pixels on an NVIDIA
TITANX is 15.85 msec and the GPUmemory needed is 200
Mb. In contrast, AdaBins [32] for example, like most other
competing methods used a more complex network architec-
ture with approximately 78M trainable parameters, making
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Fig. 9 Qualitative results from the proposed approach as well as those from AdaBins [32] on the test set of NYUV2 [31]

Table 3 Quantitative
comparison with the
state-of-the-art methods for
monocular depth estimation task
on SUNRGBD [33] test set

Method RMSE ↓ Rel ↓ Log10 ↓ δ1 ↑ δ2 ↑ δ3 ↑
Chen et al. [37] 0.494 0.166 0.071 0.757 0.943 0.984

Yin et al. [45] 0.541 0.183 0.082 0.696 0.912 0.973

BTS [46] 0.515 0.172 0.075 0.740 0.933 0.980

AdaBins [32] 0.476 0.159 0.068 0.771 0.944 0.983

Ours 0.335 0.114 0.034 0.937 0.981 0.992

Bold metrics indicate the best results, underlined metrics indicate second best results

it slower in both training and inference. In our case, the RPSF
encodes strong and robust depth cues making it easier for a
simple network to predict accurate depth maps compared to
those using conventional RGB inputs.

A qualitative comparison with AdaBins [32] (trained with
the same 50k samples as in this approach) is shown in Fig. 9
while further qualitative results are shown in the supplemen-
tary materials. Upon visual inspection, one can easily see
that our approach produces more accurate and realistic depth
maps with respect to the ground truth (the ground truth depth
maps are inpainted for visualization purposes, in the supple-
mentary material the ground truth data used for evaluation
are shown).Due to the scarcity of reliable depth cues in single
all-in-focus input images, Adabins [32] struggles to predict
accurate and sometimes realistic depth values in a consistent
manner and fails to predict correct values for images where

depth values span large ranges, e.g., the results shown in the
two last columns in Fig. 9. Moreover, sometimes Adabins
[32] produces erroneous depth predictions where the scene
semantics are somehow confusing and the network fails to
infer realistic values: such behavior exposes the main lim-
itation of semantic-based approaches, as visible in the last
column of Fig. 9 where the green carpet was misclassified. In
contrast, our network consistently produces accurate depth
maps for small and large depth ranges alike and is more
agnostic to the scene’s semantics. The main drawback of our
method is that it sometimes fails to learn well defined object
boundaries due to the blurring artifacts introduced by the
RPSF kernel.
SUNRGBD dataset We evaluate the generalization capabil-
ity of our model for the task of monocular depth estimation
where DEPTH-DNN that was previously trained on the
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Fig. 10 Qualitative results from our proposed method on the test set SUNRGBD [33]

Table 4 Quantitative results of
the ablation experiments on the
test set of FlyingThings3D [29]

Exp Input RMSE ↓ Rel ↓ Log10 ↓
1 All-in-focus 2.649 1.086 0.285

2 Fixed mask 1 [N = 1, L = 5, ε = 0.5] 1.117 0.461 0.161

3 Fixed mask 2 [N = 2, L = 5, ε = 0.5] 0.815 0.225 0.129

4 Learned mask [L = 5] 0.699 0.136 0.072

subset of NYUV2 [30] is evaluated using the test set of SUN-
RGBD [33] without any further fine-tuning. Quantitative and
qualitative results are present in Table 3 and Fig. 10 (addi-
tional qualitative results are in the supplementary material).
Metric values for competitors shown in Table 3 are taken
from [32] where methods with publicly available pre-trained
models on NYUV2 [30] have been evaluated on the SUN-
RGBD dataset.

As shown in Table 3, our approach outperforms the state-
of-the-art in all evaluationmetricswith a significant reduction
in error metrics, particularly the RMSE (where it achieved
0.335 compared to 0.476 of the best competitor) and Log10
(0.034 against 0.068). Notice also that our approach achieves
a δ1 accuracy value (corresponding to the smallest threshold
of 1.25) of 0.937, which is up by 0.166 compared to the best
performing competitor that achieves 0.771. This indicates
that our approach produces a higher percentage of accurately
predicted depth values. Such results support the suitability
of such engineered PSFs for depth acquisition applications
enabling reliable and robust passive monocular depth esti-
mation performance with real-time capabilities.

Figure 10 shows some prediction samples from SUN-
RGBD [33] test set, as in the previous case, the network
is able to predict overall accurate depth maps but with higher
mean RMSE compared to the test set of NYUV2 test set [31]
which is expected due to the different statistical properties
between the two datasets.

6.3 Ablation study

A number of experiments were carried out as an ablation
study to assess the contribution of the various components
in our framework. Quantitative results are shown in Table 4,
while the qualitative ones are in the SupplementaryMaterial.
In all simulations of the ablation study, the network architec-
ture as well as the training settings and hyper-parameters are
the same as indicated in the previous section except for the
usage of a simple Gaussian additive noise model instead of
the full image formation procedure. Furthermore, we set the
number of Fresnel zones in the mask design to L = 5.

The baseline is a U-Net trained on all-in-focus sharp
images from the subset of FlyingThings3D [29]. The RMSE
achieved in this first experiment is 2.649. In the second exper-
iment, a coded aperture with a fixed phase mask design
[N = 1, L = 5, ε = 0.5] is used to blur the sharp input
imageswith a depthdependent single-helixRPSF. In fact, this
particular mask design is the one which was first introduced
by [8]. The network trained with the fixed mask achieves a
RMSE value of 1.117, i.e., down by 1.532 with respect to the
baseline.

In the third experiment, the number of RPSF lobes is
increased to N = 2. Both the number of Fresnel zones L
and the confinement parameter ε are the same as in the sec-
ond experiment. The network trained with such phase mask
achieves even better RMSE value of 0.815 compared to the
1.117 achieved by the one in the previous experiment (see
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Fig. 11 The generated RPSFs for the ablation experiments: a Single-helix RPSF generated by the fixed mask 1 and its height map. b Double-helix
RPSF generated by the fixed mask 2 and its height map. c Single-helix RPSF generated by the learned mask and its height map
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Table 4). Such performance gain could be due to the more
discriminative shape of the double-helix RPSF compared to
the single-helix RPSF generated by the previous mask as the
rotation can be easily noticed from a depth plane to the other.
As shown in Fig. 11, the RPSF generated by the secondmask
has twomain side peaks rotating counterclockwise as a func-
tion of defocus, the same rotation aspect can be observed in
the RPSF shape generated by the first fixed mask (Fig. 11a)
except that in this case only one main side lobe is present.
It suggest that, for a fixed phase mask, a double-helix RPSF
conveys more discriminative depth cues than a single-helix
one.

In the fourth and last experiment, the phase mask’s train-
able parameters N and ε are jointly optimized with the
weights of the network, the number of Fresnel-zones is fixed
to L = 5. As expected, the network was able to outperform
the baseline as well as the ones trained with fixed masks,
reaching a RMSE of 0.699. Notice how the other two met-
rics shown in the table confirm the evaluation done onRMSE.
Furthermore, results can be improved by using more com-
plex backbone networks, as an example using a RESUnet
[52] allows to improve the RMSE to 0.572 but at the price of
a four times increase in the computation time. Since real-time
applications are a key target for the approach we decided to
stuck on the baseline model.

The learned phase mask parameters are [N = 1, ε =
0.91] meaning that the RPSF (shown in Fig. 11c) has a sin-
gle side lobe that rotate with defocus. Notice that also the
confinement parameter ε is high resulting in a more spread
out lobe compared to the one generated by the fixed mask.
It is therefore clear that a joint optimization approach helps
the network to effectively learn the correlations between the
rotation angle of the PSF and the corresponding depth plane
leading to better estimation accuracy.

7 Conclusion

In this paper, we presented a novel computational camera
model where an end-to-end learning framework is proposed
for the joint optimization of camera optics and imageprocess-
ing algorithms for the tasks of monocular depth estimation
from diffracted rotation. The learned phase mask generates
multi-order helix rotating PSFs as a function of defocus,
encoding strong depth cues within single 2D images and
enabling reliable and accurate depth estimation. Experimen-
tal results confirmed the capability of the proposed model
to outperform existing methods in the task of monocular
depth estimation and to generalize well beyond the training
environment. The depth estimation model complexity is sig-
nificantly reduced compared to the state-of-the-art due to the
3D cues encoded by the RPSF, making it suitable for real-
time applications without compromising accuracy. Finally,

the sharp all-in-focus images are also recovered through a
dedicated non-blind and nonuniform image deblurring mod-
ule.

Further research will focus on the fabrication of the phase
mask via photo-lithography which will be mounted on the
back side of the camera’s aperture, thus adding depth esti-
mation capabilities to a standard RGB cameras. This could
enable multiple downstream tasks such as 3D object detec-
tion, tracking and SLAM, even if the impact of the image
blurring due to the modified optics on these tasks need to
be considered and appropriately tackled. Post capture image
manipulation will also be considered.
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