Skip to main content
Log in

Underwater image enhancement algorithm based on color correction and contrast enhancement

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Due to the complex underwater environment and the selective absorption and scattering effect of water on light waves, underwater images often suffer from issues such as low contrast, color distortion, and blurred details. This paper presents a stable and effective algorithm for enhancing underwater images to address these challenges. Firstly, an improved color correction algorithm based on the gray world and minimum information loss is employed to remove the blue-green bias present in the images. Secondly, a contrast enhancement algorithm is based on the guided filter and wavelet decomposition to make the texture details of the image clearer. Then, the normalized weight map of the image is obtained to carry out multi-scale fusion. Finally, the fused image is applied to perform the multi-scale decomposition. The experimental results show that the algorithm proposed in this paper can correct the image color deviation, improve the image contrast and enhance the image details.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this article.

References

  1. Mcglamery, B.L.: A computer model for underwater camera systems. Proc. Spie 208(208), 221–231 (1980)

    Article  Google Scholar 

  2. Cox, L.J.: Optics of the atmosphere: scattering by molecules and particles. Opt. Acta Int. J. Opt. 24(7), 779–779 (1977)

    Article  Google Scholar 

  3. He, K., Jian, S., Fellow, F., et al.: Single image haze removal using dark channel prior. IEEE Trans. Pattern Anal. Mach. Intell.Intell. 33(12), 2341–2353 (2011)

    Article  Google Scholar 

  4. Galdran, A., Pardo, D., Picón, A., et al.: Automatic Red-Channel underwater image restoration. J. Vis. Commun. Image Represent.Commun. Image Represent. 26, 132–145 (2015)

    Article  Google Scholar 

  5. Peng, Y.T., Cosman, P.C.: Underwater image restoration based on image blurriness and light absorption. IEEE Trans. Image Process. 26(4), 1579–1594 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chang, H.H.: Single underwater image restoration based on adaptive transmission fusion. IEEE Access 8, 38650–38662 (2020)

    Article  Google Scholar 

  7. Liang, Z., Ding, X.Y., Wang, Y.F., et al.: GUDCP: generalization of underwater dark channel prior for underwater image restoration. IEEE Trans. Circuits Syst. Video Technol. 32(7), 4879–4884 (2022)

    Article  Google Scholar 

  8. Zhang, W.B., Liu, W.D., Li, L.: Underwater single-image restoration with transmission estimation using color constancy. J. Mar. Sci. Eng. 10(3), 430–446 (2022)

    Article  Google Scholar 

  9. Drews, P., Nascimento, E.R., Botelho, S., et al.: Underwater depth estimation and image restoration based on single images. IEEE Comput. Graphics Appl.Comput. Graphics Appl. 36(2), 24–35 (2016)

    Article  Google Scholar 

  10. Ancuti, C., Ancuti, C.O., Haber, T., et al.: Enhancing underwater images and videos by fusion. In: IEEE Conference on Computer Vision & Pattern Recognition. IEEE (2012).

  11. Ancuti, C.O., Ancuti, C., Vleeschouwer, C.D., et al.: Color balance and fusion for underwater image enhancement. IEEE Trans. Image Process. 27(99), 379–393 (2017)

    MathSciNet  MATH  Google Scholar 

  12. Fu, X., Fan, Z., Mei, L., et al.: Two-step approach for single underwater image enhancement. In: 2017 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS) (2017).

  13. Hou, G., Pan, Z., Huang, B., et al.: Hue preserving-based approach for underwater colour image enhancement. IET Image Proc. 12(2), 292–298 (2018)

    Article  Google Scholar 

  14. Luo, W., Duan, S., Zheng, J.: Underwater image restoration and enhancement based on a fusion algorithm with color balance, contrast optimization and histogram stretching. IEEE Access 9, 31792–31804 (2021)

    Article  Google Scholar 

  15. Lin, R.J., Liu, J.Y., Liu, R.S., et al.: Global structure-guided learning framework for underwater image enhancement. Vis. Comput.Comput. 38(12), 4419–4434 (2022)

    Article  Google Scholar 

  16. Muniraj, M., Dhandapani, V.: Underwater image enhancement by color correction and color constancy via Retinex for detail preserving. Comput. Electr. Eng.. Electr. Eng. 100(107909), 1–17 (2022)

    Google Scholar 

  17. Zhuang, P.X., Wu, J.M., Porikli, F., Li, C.Y.: Underwater image enhancement with hyper-laplacian reflectance priors. IEEE Trans. Image Process. 31, 5442–5455 (2022)

    Article  Google Scholar 

  18. Zhang, W.D., Wang, Y.D., Li, C.Y.: Underwater image enhancement by attenuated color channel correction and detail preserved contrast enhancement. IEEE J. Oceanic Eng. 47(3), 718–735 (2022)

    Article  Google Scholar 

  19. Wang, S., Chen, Z., Wang, H.: Multi-weight and multi-granularity fusion of underwater image enhancement. Earth Sci Inform 15, 1647–1657 (2022)

    Article  Google Scholar 

  20. Limare, N., Lisani, J.L., Morel, J.M., et al.: Simplest color balance. Image Process. On Line 1, 297–315 (2011)

    Article  Google Scholar 

  21. Kumar, M., Bhandari, A.K.: Contrast enhancement using novel white balancing parameter optimization for perceptually invisible images. IEEE Trans. Image Process. 29, 7525–7536 (2020)

    Article  MATH  Google Scholar 

  22. Land, E.: Lightness and retinex theory. J. Opt. Soc. Am. 61(1), 1–11 (1971)

    Article  Google Scholar 

  23. Li, C., Guo, C., Ren, W., et al.: An underwater image enhancement benchmark dataset and beyond. IEEE Trans. Image Process. 29, 4376–4389 (2019)

    Article  MATH  Google Scholar 

  24. Li, C., Anwar, S.: Underwater scene prior inspired deep underwater image and video enhancement. Pattern Recogn.Recogn. 98(1), 107038 (2019)

    Google Scholar 

  25. Wang, K., Hu, Y., Chen, J., et al.: Underwater image restoration based on a parallel convolutional neural network. Remote Sensing 11(13), 1591–1612 (2019)

    Article  Google Scholar 

  26. Li, C.Y., Guo, J.C., Guo, C.L.: Emerging from water: underwater image color correction based on weakly supervised color transfer. IEEE Signal Process. Lett. 25(3), 323–327 (2018)

    Article  Google Scholar 

  27. Xu, Z.F., Jia, R.S., Liu, Y.B., et al.: Fast method of detecting tomatoes in a complex scene for picking robots. IEEE Access 8, 55289–55299 (2020)

    Article  Google Scholar 

  28. Lai, Y., Xu, H., Lin, C., et al.: A two-stage and two-branch generative adversarial network-based underwater image enhancement. Vis. Comput. 1–15 (2022).

  29. He, K., Sun, J., Tang, X.: Guided image filtering. IEEE Trans. Pattern Anal. Mach. Intell.Intell. 6, 35 (2013)

    Google Scholar 

  30. Buchsbaum, G.: A spatial processor model for object color perception. J. Franklin Inst. 310(1), 337–350 (1980)

    Article  Google Scholar 

  31. Gasparini, F., Schettini, R.: Color balancing of digital photos using simple image statistics. Pattern Recogn.Recogn. 37(6), 1201–1217 (2004)

    Article  Google Scholar 

  32. Weng, C.C., Chen, H., Fuh, C.S.: A novel automatic white balance method for digital still cameras. In: IEEE International Symposium on Circuits & Systems. IEEE (2006).

  33. Jobson, D.J., Rahman, Z.U., Woodell, G.A.: Properties and performance of a center/surround retinex. IEEE Trans. Image Process. 6(3), 451–462 (1997)

    Article  Google Scholar 

  34. Lim, J.: On Edwin H. Land's retinex theory: developing a classroom demonstration for color vision. In: John Wesley Powell Student Research Conference, Atrium, Center for Natural Sciences, Illinois Wesleyan University, July 2012.

  35. Rahman, Z.U., Jobson, D.J., Woodell, G.W.: Multiscale retinex for color rendition and dynamic range compression. Proc. SPIE 2847, 183–191 (1996)

    Article  Google Scholar 

  36. Wei, D.Z., Pei, X.Z., Hai, H.S., et al.: Underwater image enhancement via minimal color loss and locally adaptive contrast enhancement. IEEE Trans. Image Process. 31, 3997–4009 (2022)

    Article  Google Scholar 

  37. Gonzalez, R.C., Woods, R.E.: Digital image processing. IEEE Trans. Acoust. Speech Signal Process.Acoust. Speech Signal Process. 28(4), 484–486 (1980)

    Article  Google Scholar 

  38. Polesel, A., Ramponi, G., Mathews, V.J.: Image enhancement via adaptive unsharp masking. IEEE Trans. Image Process. 9(3), 505–510 (2000)

    Article  Google Scholar 

  39. Fu, Q.Q., Jing, C.L., Pei, Y.L., et al.: Research on underwater image detail enhancement based on unsharp mask guided filtering. Haiyang Xuebao 42(7), 130–138 (2020)

    Google Scholar 

  40. Burt, P.J., Hanna, K., Kolczynski, R.J.: Enhanced image capture through fusion. In: 1993 (4th) International Conference on Computer Vision. IEEE (1993).

  41. Cheng, M.M., Zhang, G.X., Mitra, N.J., et al.: Global contrast based salient region detection. In: Computer Vision and Pattern Recognition. IEEE (2011).

  42. Zhou, J., Zhang, D., Zou, P., Zhang, W.: Retinex-based Laplacian pyramid method for image defogging. IEEE Access 7, 122459–122472 (2019)

    Article  Google Scholar 

  43. Zhang, W., Dong, L., Pan, X., et al.: Single image defogging based on multi-channel convolutional MSRCR. IEEE Access 7(1), 72492–72504 (2019)

    Article  Google Scholar 

  44. Panetta, K., Gao, C., Agaian, S.: Human-visual-system-inspired underwater image quality measures. IEEE J. Oceanic Eng. 41(3), 541–551 (2016)

    Article  Google Scholar 

  45. Mittal, A., Fellow, I.E.E.E., et al.: Making a “completely blind” image quality analyzer. IEEE Signal Process. Lett. 20(3), 209–212 (2013)

    Article  Google Scholar 

  46. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis.Comput. Vis. 60(2), 91–110 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by Fundamental Research Program of Shanxi Province (Grant Numbers 20210302123019, 202103021224195, 202103021224212, 202103021223189, 20210302123031) and Shanxi Scholarship Council of China (Grant numbers 2020-104, 2021-108).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongping Hu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, Q., Hu, H., Bai, Y. et al. Underwater image enhancement algorithm based on color correction and contrast enhancement. Vis Comput (2023). https://doi.org/10.1007/s00371-023-03117-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00371-023-03117-0

Keywords

Navigation