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Abstract
With the recent progress made in areas such as head-mounted displays and vision-correcting devices, there is a growing
interest in fast and personalized algorithms for simulating aberrated human vision. Existing vision-simulating approaches are
generally hindered by the lack of personalization, computational cost of rendering, and limited types of supported aberrations.
This paper presents a fast vision simulationmethodwith interactive personalization capabilities for simulating arbitrary central
and peripheral aberrations of the human eye. First, we describe a novel, neural network-based solution for efficiently estimating
the physical structure of the simulated eye and calculating the necessary Zernike aberration coefficients for computing the
point-spread functions with varying pupil sizes, focus distances, and incidence angles. Our new approach operates in the sub-
second regime and produces highly accurate outputs, facilitating the interactive personalization of vision simulation. Next,
we present an improved PSF interpolation method for an existing tiled PSF splatting algorithm for rendering. The proposed
algorithm significantly improves the computational performance and memory efficiency of the previous approach, allowing
the simulation of peripheral vision with arbitrary visual aberrations in low-latency applications. Following the description
of our new techniques, we evaluate their performance characteristics and simulation accuracies on several different eye
conditions and test scenarios and compare our results to several previous vision simulation algorithms.

Keywords Human vision simulation · Eye structure estimation · Aberration estimation · Neural networks · Convolution ·
Point-spread function interpolation

1 Introduction

The field of ophthalmology has seen an increasing interest in
vision simulation methods, owing largely to recent advance-
ments in general computing and rendering. A great number
of applications exist [1–4], including the evaluation of visual
acuity [5–8], vision testing [9], studying the mechanisms of
the human eye [10–12], evaluating the impact of eye diseases
on our ability to perform real-world tasks [13], and the visu-
alization of eye diseases in synthetic [14–16], virtual reality
[17–19], and augmented reality [19–21] environments.
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Personalized vision simulations are enormously useful for
the proper planning of invasive vision-correcting processes
(such as intraocular lens implants [22] and laser surgery
[23]) because of the inherent risk of post-surgery com-
plications posed by these operations. Non-invasive vision-
correcting solutions (such as progressive lenses [24–27],
vision-correcting displays [28–32], head-mounted displays
[33], and holographic lenses [34]) are also rapidly evolving
and benefit greatly from improved vision simulation algo-
rithms.

Head-worn displays are common building blocks of many
vision-correcting devices and can cause discomfort over an
extendedperiodof use, owing largely to the disparity between
the vision of the eye and the synthetic images shown to the
user. Accounting for the characteristics of the wearer’s visual
system via the inclusion of depth-of-field (DOF) [35–38],
chromatic aberration [39, 40], and the eye’s own visual
aberrations [41] can significantly reduce the discomfort expe-
rienced by the user. Special-purpose fonts have also been
developed to reduce the fatigue from rapid context switches
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[42], a common issue with augmented reality applications.
Fast, accurate, and personalizable vision simulation methods
are essential in developing and implementing these features.

Wavefront aberrations are highly impactful for all optical
systems, and algorithms for synthetically generating images
that properly account for these effects have a long history in
computer graphics [43–47]. Such aberrations greatly affect
the human eye as well, and thus, numerous solutions exist for
simulating visual aberrations [48]. These methods are often
hindered by the disregard of peripheral aberrations, computa-
tional cost of the simulation, and lack of easy personalization
with user-specific information. Recently, Csoba and Kunkli
[49] solved the performance and personalization issues at the
expense of a long precomputation step. Furthermore, their
algorithm ignored peripheral aberrations, which is a com-
mon limitation of convolution-based approaches. Peripheral
vision is an important source of information for many vision-
dependent tasks [50–53] and canbehave inhighlyunexpected
ways when eye diseases are present. As an example, we illus-
trate relative peripheral hyperopia in Fig. 1, whereby the
blurriness of a myopic eye decreases as the angle of inci-
dence increases, causing the sharp region to fall outside the
central vision [54, 55].

In this paper, we present our new solution for the inter-
actively personalizable simulation of ocular wavefront aber-
rations, with arbitrary compositions of low- and high-order
aberrations, for central and peripheral vision. We improve
upon [49] in several critical ways; our main contributions
are:

• A neural network-based method for estimating the eye
structure and its aberrations in various states, which
achieves sub-second computational performance, facili-
tating the interactive personalization of the simulation.

• An improved PSF interpolation strategy for simulating
central visual aberrations, which vastly reduces the mem-
ory footprint of the previous process and leads to a fully
real-time performance profile.

• An extension of our new PSF interpolation approach,
which facilitates the simulation of peripheral vision across
the entire visual field with an approximately real-time per-
formance.

2 Previous work andmotivation

2.1 Algorithms with an offline performance profile

Among the earliest works utilizing vision simulation, Camp
et al. used paraxial ray tracing with a simplified eye model to
efficiently calculate the PSF of the eye and performed con-
volution with the PSF to simulate vision [56]. Greivenkamp

et al. improved the accuracy of this approach by using a full
aspherical eye model, exact ray tracing, and a model of the
Stiles–Crawford effect via an apodizing filter [7].

To facilitate personalized vision simulations, Barsky uti-
lized a Shack–Hartmann aberrometer to calculate the PSFs
frommeasurement data [57]. Ray tracingwas employedwith
the measured aberration surface to compute a small set of
depth-dependent PSFs, and the vision-simulated imagery
was acquired by partitioning the input image into depth
slices and performing convolution on each slice with the
corresponding depth-dependent PSFs. This approach causes
visible artifacts along the edges of the depth slices, which
Barsky solved using object detection [58].

To simulate peripheral aberrations of progressive addi-
tion lenses, Rodríguez Celaya et al. used a small 3D PSF
grid (with different axes corresponding to the horizontal
angle, vertical angle, and object-space distance) and trilin-
ear interpolation for approximating the per-pixel PSF of the
lens [26]. Alternatively, Gonzalez-Utrera utilized a similar
3D PSF grid with Barsky’s depth-dependent image-splitting
approach [27]. A critical limitation of the twomethods is that
the simulated peripheral area is highly restricted and the axial
resolution of the PSF grid is small for accurate simulations.

Instead of convolution, Mostafawy et al. utilized the Gull-
strand schematic eye model and a flat retina for simulating
vision using distributed ray tracing [59]. Personalization was
achieved by placing additional lenses in front of the eye
model andutilizing several corneal zoneswith varying refrac-
tive profiles. To properly handle peripheral vision, Wu et al.
utilized the aspherical Navarro eye model [60] and Dias et al.
investigated the impact of retina shape on vision [61]. The
contributions of these works were collected by Lian et al. and
further extended with other aspects (such as spectral ray trac-
ing [62] for simulating chromatic aberration and stochastic
ray-bending tomodel diffraction effects) in their open-source
vision simulation tool called ISET3d [63].

For an even more detailed and personalizable eye struc-
ture representation, Fink and Micol modeled the refracting
surfaces of the eye using the Zernike circle polynomials and
used ray tracing with 2D images to simulate vision [64]. A
significant drawback of this method is the high cost of the
iterative intersection calculations, which can be solved by
utilizing polygon meshes to describe the refracting elements,
facilitating the use ofmuch faster, triangle-based intersection
computation tools, as demonstrated by Wei et al. [65].

Another severe issue with ray tracing is the high levels of
noise stemming from its stochastic nature. To overcome this
issue, Vu et al. employed an interpolation-based approach,
whereby forward ray tracing and a coarse ray grid were used
with a 2D input image to compute a small set of retinal sam-
ples, with triangulation and interpolation utilized to fill in the
gaps in the grid and obtain a noise-free simulation [66].
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Fig. 1 Examples of visual aberration simulations generated using
our proposed approach for a highly myopic eye for demon-
strating the differences between ignoring (left) and simulating
(right) peripheral visual aberrations. Eye structure and aberration

estimation combined took 0.28 s (left) and 0.66 s (right) on an AMD
Ryzen 7 1700 CPU. Rendering took 6.68 ms (left) and 12.38 ms (right)
on an NVIDIA TITAN Xp GPU

2.2 Real-time vision simulation algorithms

The algorithms described thus far are only suitable for offline
applications. As an inexpensive alternative to PSF-based
convolution, Tang and Xiao utilized Gaussian kernels and
a neural network-based per-pixel blurriness map generated
with a schematic eye model [67]. This approach facilitates
the real-time simulation of peripheral vision, albeit limited to
low-order aberrations due to the characteristics of the kernel.

Alternatively, Lima et al. utilized a tree data structure for
encoding the list of image-space sample locations on layered
input images for several sample points from the pupil disk
[68]. This solution facilitates the real-time simulation of low-
order aberrations and efficiently handles partial occlusion, a
common issue with convolution-based algorithms. Periph-
eral vision, however, was not considered by this study.

For the real-time simulation of arbitrary central visual
aberrations, Csoba and Kunkli utilized a coarsely sampled
PSF grid [49], similar to Barsky’s concept. Tiled PSF splat-
ting and a GPU-based per-pixel PSF interpolation method
were employed to achieve interactive performance. To derive
the unknown aberration coefficients for the entire PSF grid
from a single aberration measurement, the authors described
a custom parametric eye model and eye structure estimation
process, which facilitates the simulation of chromatic aber-
ration, varying pupil sizes, and configurable focus distances
but hinders the performance of the system, because the eye
estimation process can take hours to complete.

Recently, Xiao et al. used convolutional neural net-
works and deep learning for simulating the DOF of the
human eye [35]. However, their main goal was to reduce
the vergence-accommodation conflict when wearing head-
mounted displays, and thus, their algorithm is limited to
healthy vision.

2.3 Summary andmotivation

In summary, despite the significant number of vision sim-
ulation algorithms, personalization is a mostly overlooked
aspect of the system. Although ocular wavefront tomog-
raphy [69] can be utilized for overcoming the issue, it
requires a lengthy optimization process and a large num-
ber of aberration measurements. Alternatively, to estimate
the eye structure from a single on-axis measurement, Csoba
and Kunkli [49] used an optimization-based approach with a
custom parametric eye model; however, their method is still
very time-consuming and often takes several hours to pro-
duce an output. To overcome these limitations, we leverage
the massive generalization capabilities of neural networks,
which facilitate the interactive estimation of the eye struc-
ture and aberration coefficients from a single measurement
for producing the PSFs of convolution-based vision simula-
tion algorithms.

Furthermore, there is a lack of high-performance algo-
rithms for simulating peripheral vision, with the existing
approaches either being unsuitable for interactive environ-
ments or unable to fully reproduce the true aberration
structure of the eye. We solve these problems by utilizing the
tiled PSF splatting approach of Csoba andKunkli [49] during
the rendering stage and proposing a significantly faster and
more memory-efficient PSF interpolation method, facilitat-
ing the efficient simulation of arbitrary central and peripheral
visual aberrations in highly interactive and real-time environ-
ments.
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Fig. 2 Optical concepts of the human eye discussed in this section.
a Cross sectional view of the eye model proposed in [49]. b Plot of
a wavefront aberration surface calculated using this eye model. c The
PSF computed using the aberration surface shown in (b)

3 Mathematical background of eye optics

In this section, we provide a brief overview of the necessary
concepts of human eye optics to describe our new results.
The main concepts discussed are visualized in Fig. 2.

3.1 Structure of the parametric eyemodel

Despite the existence of numerous schematic human eye
models in the scientific literature,mostmodels focus on accu-
rately representing a healthy eye. To handle arbitrary eye
conditions and estimate the simulated eye’s physical struc-
ture, Csoba and Kunkli constructed a simplified parametric
eye model with the aim of balancing the number of model
parameters and physical accuracy of the model. Figure 2a
displays a cross sectional view of their eye model.

Their parametric model is based on Navarro’s unaccom-
modated aspherical eye model [70] and uses a spherical
surface as the retina, a plane with a variable circular hole
as the pupil, and four refracting surfaces to model the cornea
and crystalline lens: the front (anterior) and back (posterior)
surfaces for both components. These four surfacesweremod-
eled as quadrics of revolution with the following formula:

z(x , y) � x2 + y2

Rs ·
(
1 +

√
1 − (1 + k) · x2+y2

R2
s

) , (1)

where Rs is the radius of curvature and k is the conic con-
stant (asphericity factor), which identifies the surface type:
a hyperboloid (k < −1), paraboloid (k � −1), prolate
spheroid (−1 < k < 0), sphere (k � 0), or oblate spheroid
(k > 0).

Additionally, the authors split the radii of curvature of
the two corneal surfaces into separate terms for simulating
corneal astigmatism and added an offset function to the front
surface for modeling its fine-scale irregularities. Thus, their
proposed anterior cornea surface can be defined as follows:

zAc (x , y) � zc(x , y) + �(x , y), (2)

zc(x , y) �
x2
Rx

+ y2

Ry

1 +

√
1 − (1 + k) ·

(
x2

R2
x
+

Ry
Rx

·y2
R2
y

) , (3)

�(x , y) �
∑
n,m

αm
n ·Um

n (x , y), (4)

where zc is the astigmatic surface, � is the offset function,
Rx and Ry are the astigmatic radii of curvature, Um

n is the
Zernike polynomial of radial order n and azimuthal order m
(as defined by (2.19) in [71], with n ≥ |m| ≥ 0, n − |m|
even), and αm

n is the expansion coefficient for Um
n .

Finally, the authors also added a rotation term (around the
optical axis) to the cornea and a set of tilt and decentration
parameters (along the x- and y-axis) to the lens.

3.2 Wavefront aberrations and the PSF of the eye

The PSF of the human eye is the projection of an infinitesi-
mal point source on the retina and heavily depends on many
parameters, including light wavelength, distance of the point
source from the eye, horizontal and vertical incidence angles,
pupil size, and focus distance. The terms on-axis and off-axis
are generally used to refer to the origin of the point source
with respect to the optical axis. Among the main uses of
the PSF is the simulation of the eye’s optical performance,
whereby the PSF is utilized as a kernel to perform a convo-
lution on the input image.

One way of calculating the PSF is using diffraction theory
and wavefront aberrations of the eye. Wavefront aberrations
describe the differences in optical path length between a ref-
erence wavefront (locus of points with the same phase) and
the emerging wavefront as incoming waves pass through the
optical system. The wavefront aberrations of the human eye
are often described using Zernike polynomials [72]:

W (ρ, φ) �
∑
n,m

αm
n ·Um

n (ρ, φ), (5)

where (ρ, φ) are polar coordinates in the exit pupil plane,
Um
n is the circle polynomial of Zernike of radial order n and

azimuthal order m (with the same definition as in (4)), and
αm
n is the aberration coefficient corresponding to Um

n . An
example of an aberration surface is shown in Fig. 2b.

To obtain the aberration coefficients of the human eye,
a wavefront aberrometer is often employed for measuring
the aberrations for a set of parameters (pupil size, focus dis-
tance, and incidence angles), with the results often being
made available in eye aberration studies. Conversion formu-
las also exist for simulating common eye conditions (such as
myopia, hyperopia, and astigmatism) using corrective spec-
tacle lens prescriptions [73]. Alternatively, ray tracing can
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be employed if the physical structure of the eye is available,
which can be obtained using eye structure estimation from
aberration measurements, as demonstrated in [49], where a
generalized pattern search (GPS) algorithm was utilized to
estimate the physical eye structure from on-axis aberrations.

Given an input set ofwavefront aberration coefficients, the
extended Nijboer-Zernike (ENZ) diffraction theory [74] can
be utilized for efficiently calculating the corresponding PSF
at arbitrary defocus. The ENZ theory provides several differ-
ent formulations of the PSF; for the human eye and arbitrary
defocus, the large-defocus scalar formula is suitable:

U (r , φ, f ) � 2
∑
n,m

βm
n i

|m|V |m|
n (r , f ) exp{imφ}, (6)

whereU is the PSF, (r , φ) are polar coordinates in the image
plane (normalized by the diffraction unit λ/NA, where NA
is the image-side numerical aperture of the system), f is the
defocus parameter ( f � 0 at best focus and f � −2πu0

λ
z,

where z is the amount of focus shift in free-space, u0 �
1 −

√
1 − s20 , s0 � NA/n, and n is the refraction index in

the image space of the optical system). Additionally, the Vm
n

functions are basic integrals of the Zernike radial polyno-
mials and the βm

n terms are complex expansion coefficients
that can be derived from the real-valued αm

n phase-aberration
coefficients. The authors of [49] used theBessel-Bessel series
expression for Vm

n (as given by (26) in [72]) and the fitting
strategy described by (30) in [75] to calculate the βm

n val-
ues corresponding to a set of αm

n aberration coefficients. An
example of a PSF generated using (6) is shown in Fig. 2c.

The ENZ PSF formulation has several benefits. Firstly, it
facilitates the computation of the depth-dependent PSFwith-
out the need for additional aberration coefficients. Secondly,
the Vm

n terms can be cached for significantly shortening the
PSF computation process. Finally, the Vm

n terms can also be
rearranged in a GPU-friendly manner for computing large
sets of PSF in a highly efficient, GPU-based manner [76].

4 Our proposedmethod

An overview of the main steps of our proposed vision simu-
lation approach is presented in Fig. 3, which comprises three
main phases: training, precomputation, and rendering. Dur-
ing training, we construct a set of neural networks to estimate
the unknown eye structure and aberration coefficients. To
simulate vision, we adopt the tile-based rendering approach
of Csoba and Kunkli [49] and utilize the trained networks
during all subsequent precomputation and rendering steps.

During precomputation, we generate the PSF grid for the
online rendering stage using a GPU-based PSF computa-
tion approach [76]. We employ the networks trained during
the training phase for efficiently estimating the structure of

the eye in the relaxed and focused states and computing the
aberration coefficients for an input set of PSF parameters
(comprising object distance d, angles of incidence h and v,
light wavelength λ, aperture diameter A, and focus distance
f ).
In the rendering stage, we utilize tiled convolution [49],

whereby screen-aligned tiles are constructed out of the pix-
els of the input color and depth images and traversed for
each output pixel to generate the vision-simulated image,
utilizing a 3DGPU texture to approximate the PSFwith hard-
ware acceleration. We improve this approach with a much
morememory-efficient and thus significantly faster sampling
scheme for on-axis aberrations and an extension facilitating
the fast and efficient rendering of off-axis aberrations.

5 Estimation of eye parameters
and wavefront aberrations using neural
networks

5.1 Overview of our neural networks

Conceptually, estimating the eye structure and its unknown
aberrations requires the following main steps:

1. Find a set of parameters for the relaxed eye with aberra-
tions closely matching the input aberrations.

2. Modify the crystalline lens parameters to focus the eye
at each user-defined focus distance.

3. Compute the aberration coefficients using the resulting
eye models for each PSF parameter combination.

We constructed a separate network to solve these tasks; the
exact network inputs and outputs are summarized in Table 1.
First, we built an eye structure estimator and a focused eye
estimator network to estimate the relaxed and focused eye
parameters from an input set of aberrationmeasurements and
focus distances. Next, we created an aberration estimator
for computing the Zernike aberration coefficients using the
focused eye parameters and input PSF parameters. Finally,
we also constructed a discriminator network for computing
the on-axis aberrations for an input set of eye parameters,
which we used during the training of the eye structure esti-
mator, as described in Sect. 5.4.

Despite the theoretical possibility of merging certain net-
works, our approach facilitates the use of multiple smaller
networks, and thus, significantly reduces their individual
memory footprints, increases the training accuracy and per-
formance, and keeps the inference costs low. Furthermore,
the estimated eyemodel parameters can be directly observed,
providing additional knowledge about the simulated eye.
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Fig. 3 Overview of our proposed solution for simulating aberrated
human vision. A set of neural networks are first trained to estimate
the relaxed (ρ) and focused (ρ̂(i)) eye structure parameters using the
input aberration measurement settings (Z, A, λ), aperture sizes (A(i)),
and focus distances (f(i)), and another network to compute the aberra-
tion coefficients (Z(i)) of the focused eye for a set of PSF parameters
(P(i)). During precomputation, these networks are used to construct a

coarse PSF grid, stored on the GPU. At runtime, vision is simulated
using the tiled PSF-splatting approach of [49] and an improved PSF
interpolation method proposed in this paper, whereby a 3D PSF texture
is constructed from the precomputed PSF grid, and the output vision
simulation is generated using tiled convolution with an input color map,
depth map, and the per-sample approximation of the PSF

Table 1 Inputs and outputs of our neural networks

Network Inputs Outputs

Eye structure estimator Z2−28, A, λ ρ1−45

Discriminator ρ1−45, A, λ Z2−28

Focused eye estimator ρ1−45, A, f �LD , �AT

Aberration estimator ρ1−45, A, λ, h, v Z2−28

The variable names are described in Sect. 5.2

5.2 Training data generation

The use of the custom parametric eye model described in
Sect. 3.1 necessitated the construction of custom datasets for
network training. We generated a different dataset for each
estimator because the network inputs and outputs (and the
means to obtain them) vary considerably per network.

To further reduce the complexity of the eye model and
make its parametrization better suited for neural network
learning, we modified the modeling of the cornea. Instead
of defining the radius of curvature separately for the ante-
rior and posterior surfaces, we defined the posterior radius of
curvature using an anterior-to-posterior ratio parameter and
used a dedicated astigmatism term (ratio of Ry to Rx ). The
resulting list of parameters is listed in Table 2.

5.2.1 Aberration datasets

Because the eye structure estimator, aberration estimator, and
discriminator networks are all based on aberrations and eye
structure parameters, we used the same approach to gen-
erate the training datasets for all three networks. First, we

constructed a modified set of eye parameter domains (sum-
marized in Table 2) using the eye population data described
in [49]. We then generated a set of samples for each dataset
by randomly sampling (with a uniform distribution) the eye
parameters ρ1−45 (comprising the Cornea, Aqueous, Lens,
and Eye parameters in Table 2) and other network inputs (the
PSF parameters A,λ, h, and v).Next, we calculated the corre-
sponding aberration coefficients Z2−28 (the first six degrees
of Zernike polynomials, with the Z1 piston term ignored)
using ray tracing. Finally, we formed feature and target pools
from the columns of the eye parameters and corresponding
aberration coefficients, based on the roles of the columns in
the network the dataset is being generated for.

As noted by the authors of [49], the cost of aberration
computation contributed greatly to the length of their eye
structure estimation step, because the GPS optimizer com-
putes aberrations for a high number of samples. To reduce
the cost of eye reconstruction, the authors skipped the steps
where the ray bundles are aligned to the pupil center and
the outgoing ray grid is fit to the physical pupil disk. These
simplifications introduce inaccuracies into the resulting aber-
ration coefficients, because the non-centered samples alter
the distribution of asymmetric coefficients and the incom-
plete wavefront information causes deviations from the true
aberrations. Although the GPS algorithm can recover from
noisy sample locations, an inaccurate dataset can substan-
tially hinder the training of neural networks. Furthermore,
the authors only considered on-axis input locations, which
further exacerbates the impact of the simplifications outlined
above, because our goal of estimating peripheral aberrations
also requires the computation of off-axis aberrations.

To overcome the aforementioned limitations, we extended
the aberration computation approach described in [49] with
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Table 2 Parameters and ranges
used to compute our training
datasets

Parameter Unit Value Parameter Unit Value

Cornea T mm [0.5, 0.6] Aqueous T mm [1.5, 4.5]

RA mm [7, 8.6] Lens V mm3 [150, 165]

AP [0.9, 1.1] kA [−10, −1]

r PR [0.8, 0.85] kP [−6, −1]

kA [−1.5, −0.01] �x mm [−0.2, 0.2]

k p [−1.5, −0.01] �y mm [−0.2, 0.2]

φA deg [−45, 45] αx deg [−3, 3]

φP deg [−45, 45] αy deg [−3, 3]

Z A
1−2 mm [−0.1, 0.1] Eye T mm [22.5, 25.5]

Z A
3−4 mm [−0.06, 0.06]

Z A
5−6 mm [−0.03, 0.03]

Parameter Unit Eye Focus Aberration

Lens D mm [9.25, 9.75] [9.25, 9.75] [8.4, 9.75]

Pupil D mm [3, 6] [2, 7] [2, 7]

Focus f D − [0.125, 8.125] −
Rays λ nm [450, 900] − [450, 700]

h deg − − [−45, 45]

v deg − − [−26, 26]

Themain eye parameter types are: thickness (T ), radius of curvature (R), astigmatism (A), ratio of anterior-to-
posterior radius of curvature (rR ), diameter (D), conic constant (k), rotation around theoptical axis (	), Zernike
offset surface coefficient of radial order n (Zn), volume (V ), translation (�), and tilt (α). The superscripts
indicate whether a parameter belongs to the anterior or posterior surface

several extra steps, leading to a much more physically cor-
rect approach that significantly improves the accuracy of the
wavefront aberration computation process. Themain steps of
our modified algorithm are shown in Fig. 4 and an in-depth
description is provided in Appendix 1.

5.2.2 Focused eye parameters dataset

Our approach for generating the training dataset of the
focused eye estimator was similar to the one described in
Sect. 5.2.1.We generated a set of random input samples (each
comprising the 45 eye parameters ρ1−45, a pupil diameter
A, and a diopter-based focus distance f ) and calculated the
corresponding changes of the eye parameters (lens diameter
�LD and aqueous chamber thickness �AT ) that focus the
sampled eye models on the object distances of the samples.

To calculate �LD and �AT , we used the eye-refocusing
method described in [49]. It attempts to mimic the real focus-
ing process of the human eye and works by testing a set of
modified eye models with shrunken crystalline lens diam-
eters, adapting the radii of curvature of the lens surfaces
accordingly for retaining a constant lens volume [78].A small
grid of rays is traced through each test eye to obtain a set of
retinal sample locations for eachmodel, selecting as the result
the model with the least spread of the test ray grid.

Fig. 4 Visualization of the main steps of our extended aberration com-
putation process used to generate our aberration-based training datasets.
First, a single ray is cast through the center of the pupil to find the retinal
starting location for reverse ray tracing. An outgoing ray grid is then
fit to the physical pupil and traced through the optical system to find
the output coordinates. Finally, the ideal and emerging ray locations
are used to calculate the local wavefront tilts, from which the resulting
aberration coefficients are calculated via least-squares fitting [77]. The
full algorithm is provided in Appendix 1
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Fig. 5 Schematic of our modified ResNet architecture. Several hid-
den blocks are placed between the input and output layers, with each
comprising fully connected (dense), Mish activation, and Layer Nor-
malization layers. The residual blocks also contain shortcut paths for
facilitating the efficient training of deep networks

To ensure that each sample eye in the training dataset
is included in the highest number of different focus states
possible, we sampled the focus distance separately from the
other parameters. A set of samples were generated for both
the focus distance and eye model parameters, using linear
and uniform random sampling, respectively. To produce the
final training dataset, we then obtained the feature vectors by
combining the two sets of samples using a Cartesian product
and utilized the focus estimation approach outlined above for
computing the corresponding target (�LD and �AT ) values.

5.3 Neural network structure

Due to the large number of eye parameters, we used a
modified version of the residual neural network (ResNet)
architecture. ResNet is a model purposefully designed for
the efficient training of deep networks and has recently been
adopted by Chen et al. for solving deep regression prob-
lems [79]. ResNet utilizes fully connected (dense) layers,
an activation function to transform the layer outputs, and
normalization layers to stabilize and speed up the training
procedure. What differentiate ResNet from traditional feed-
forward networks are the shortcut paths that facilitate the
skipping of dense layers, providing ResNet with its outstand-
ing deep network-training performance. An overview of our
modified version of the architecture by Chen et al. is shown
in Fig. 5.

The rectified linear unit (ReLU) [80] activation function is
commonly used by deep neural networks and was utilized by
the ResNet regressor described in [79]. However, the loss of
gradient information from clamping negative inputs to zero
causes the Dying ReLU phenomenon, which we avoided by
using the Mish activation function instead [81]:

f (x) � x tanh
(
ln

(
1 + ex

))
. (7)

We only used Mish in the hidden blocks and employed a
linear output in the last network layers. However, we used the
tanh function in the output layer of the eye structure estimator,
because of its ability to force the network outputs within the
range of valid population-based eye parameters if the target
columns are transformed into the range [−1, 1].

Finally, instead of the Batch Normalization (BN) [82]
approach utilized in [79], we used Layer Normalization (LN)
[83] based on our experimental results. Furthermore, unlike
the original ResNet regressor proposed in [79], we placed
the normalization layers both after the activation function
and before the shortcut connections, because this placement
performed the best in our experiments.

5.4 Discriminator-based eye estimator training

With the highly nonlinear relationship between the eyemodel
parameters and aberration coefficients and the possibility of
inducing the same aberrations by multiple different model
parametrizations, simply comparing the true and predicted
eye model parameters is dissatisfactory for describing the
goodness of an eye estimation.Toovercome this issue,weuti-
lized our discriminator network during the training of the eye
estimator for computing the proper inputs of the loss func-
tion. Discriminators are often employed during the training
of neural networks, and although training the discriminator in
parallel with the network is a common practice, pretraining
the discriminator has been shown to substantially improve
and stabilize the training process [84, 85].

Therefore, we also pretrained our discriminator network
and proceeded with the training of the eye structure estima-
tor afterward. An overview of our process is shown in Fig. 6.
During each training step of the eye estimator, we used the
discriminator to compute the aberration coefficients (Ẑ2−28)
corresponding to the predicted eye parameters (ρ̂1−45) for the
input aberration coefficients of the training sample (Z2−28).
We then computed the training loss by evaluating the net-
work’s loss function using Z2−28 and Ẑ2−28 as inputs. This
approach measures the goodness of the estimation using the
functional performance of the eye model instead of the raw
model parameters. Consequently, the predicted eye models
can reproduce the input aberrations significantly better than
a network trained via the naïve approach.
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Fig. 6 Ourdiscriminator-based approach for computing the training loss
of the eye structure estimator. The discriminator is used for estimating
the aberrations of the eye parameters predicted by the network. The
training loss is then calculated by evaluating the loss function with the
input (target) and predicted aberrations

6 Improved GPU-based kernel interpolation

6.1 On-axis aberrations

The texture-based PSF interpolation approach described
in [49] works by storing each precomputed PSF in every
possible blur radius and sampling the PSF texture twice
per channel. This approach requires six texture samples
to approximate a single chromatic PSF value, significantly
reducing the overall throughput of the interpolation process.
Furthermore, thememory requirements are also considerably
high, increasing the cost sampling and making it non-trivial
to extend the layout with off-axis object locations.

To overcome these issues, we used the object-space dis-
tance as the z-axis of the 3D PSF texture. This approach
substantially reduces the memory footprint and facilitates
the computation of a full chromatic PSF sample using only
a single texture lookup. Our layout and the computation of a
single depth layer are visualized in Fig. 7.

Each 2D layer of our PSF texture corresponds to a dis-
tinct object distance and is constructed by computing the
interpolated blur radius and neighboring precomputed PSFs
along the blur size and object distance axes for each channel.
The PSFs are also aligned to the center of the texture, with
empty regions filled with zeros and the texture dimensions
computed from the maximum possible PSF sizes.

To sample the PSF texture for an output pixel po and sam-
ple pixel ps , we calculate the 2D sample coordinates using
the image-space coordinates of ps relative to po and utilize it
as an offset from the texture center. The object-space depth of
ps is then used to calculate the third sample coordinate based
on the smallest and largest PSF object distances. Because the
texture is padded with zeros, samples falling outside the PSF
will naturally not contribute to the output, which is criti-
cal for properly handling the varying per-channel blur radii
stemming from chromatic aberration.

Fig. 7 Our on-axis PSF texture layout for a single PSF wavelength.
Each object distance dk in the precomputed PSF grid is assigned a depth
layer. Next, transitional layers are inserted between neighboring slices,
using the differences in blur sizes for determining the number of layers
inserted. Each layer is computed by interpolating the corresponding
PSFs of the grid along the blur size and object distance axes

6.2 Non-uniform depth sampling

The sampling of the object-space depth parameter is cru-
cial when constructing the texture layers. A dense sampling
causes excessive texture sizes, wasting GPU memory and
negatively impacting performance. However, a large distance
between two slices can lead to blur size differences exceed-
ing one, producing visible artifacts. To avoid these problems,
we employ non-uniform sampling, whereby we take a set of
layers corresponding to the object-space depths of the PSF
grid and insert a varying number of layers in-between. The
number of transitional layers is computed as:

Lk
d � �|Rk+1 − Rk |� − 1, (8)

where dk is the k th object distance in the precomputed PSF
grid, Lk

d is the number of transitional layers inserted after the
layer corresponding to dk , and Rk is the largest blur radius
(across all wavelengths) of the precomputed PSFs at dk .

This sampling scheme guarantees that the total number
of depth slices is minimal and ensures that the blur size dif-
ference between two neighboring slices never exceeds one,
resulting in fast and artifact-free PSF interpolations. The lay-
ers inFig. 7were computedusing this approach,with Lk

d � 4.

6.3 Off-axis aberrations

A significant benefit of our on-axis texture layout is that the
reduced sample counts and memory footprint facilitate its
extension with off-axis PSFs by using the on-axis texture as a
block corresponding to a single horizontal and vertical angle.
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Fig. 8 Our off-axis PSF texture layout, an extension of our on-axis lay-
out shown in Fig. 7, for a single wavelength. A layer is assigned to each
unique PSF parameter combination

(
hi , v j , dk

)
. Transitional layers are

then inserted along each axis and the neighboring precomputed PSFs
are interpolated to produce the final texture values

Multiple blocks are simply laid out horizontally and verti-
cally for multiple input directions. We start with one layer
corresponding to each unique combination of precomputed
incidence angles and object distance (denoted

(
hi , v j , dk

)
)

and place transitional layers in-between along the three axes,
with the number of layers inserted determined as follows:

Li
h � max

j�0, ..., Nv−1
k�0, ..., Nd−1

L
(
Ri , j , k , Ri+1, j , k

)
, (9)

L j
v � max

i�0, ..., Nh−1
k�0, ..., Nd−1

L
(
Ri , j , k , Ri , j+1, k

)
, (10)

Lk
d � max

i�0, ..., Nh−1
j�0, ..., Nv−1

L
(
Ri , j , k , Ri , j , k+1

)
, (11)

L (R1, R2 ) � �|R1 − R2|� − 1, (12)

where Ri , j , k is the largest blur radius (across allwavelengths)
of the precomputed PSFs at

(
hi , v j , dk

)
, Nh , Nv , and Nd are

the number of horizontal, vertical, and depth samples in the
PSF grid, and Li

h , L
j
v , and Lk

d are, respectively, the numbers
of transitional layers inserted along the horizontal, vertical,
and depth axes after the layer at

(
hi , v j , dk

)
. This layout is

visualized in Fig. 8 with Li
h � 2, L j

v � 1, and Lk
d � 1.

Aberrations of off-axis object locations are often much
higher, considerably increasing the sizes of their PSFs. Com-
bined with the increased number of texture layers, the PSF
texture dimensions grow exponentially, making the total
memory requirements unsuitable in many scenarios. To alle-
viate this issue, we apply a layer reduction term to L in (12):

L ′(R1, R2) � (s · L(R1, R2))
−p · L(R1, R2), (13)

where s and p are user-controllable parameters. Alterna-
tively, a fixed number of transitional layers can also be used
(L ′(R1, R2) � C , with C a configurable parameter), but our
dynamic formulation in (13) is much more robust to coarse
PSF parameter sampling and large blur size differences.

To obtain an interpolated off-axis chromatic PSF sample,
we determine the closest two horizontal and vertical blocks,
take a sample from all four blocks using the on-axis sampling
strategy described in Sect. 6.1, and produce the output using
a bilinear interpolation of the four samples, based on the
fractional block indices corresponding to the sample.

We note that continuously storing blocks of PSF pixels
is a viable alternative, whereby each block corresponds to
a single PSF pixel and the number of blocks equals the
largest PSF size. Although this layout facilitates the off-axis
PSF computation using a single hardware-accelerated tex-
ture sample, it displayed highly suboptimal memory access
patterns in our experiments, significantly degrading the ren-
deringperformance. Furthermore, the fragment-merging step
of tiled PSF splatting causes fractional image-space sample
locations, which necessitates the manual sampling and inter-
polation of the PSF across the visual field, further reducing
the overall rendering throughput. Consequently, we consider
this layout unsuitable for practical applications.

6.4 Variable pupil sizes and focus distances

To facilitate the on-the-fly change of the pupil size and focus
distance parameters, Csoba and Kunkli extended their PSF
grid with the corresponding dimensions and sampling [49]
and constructed the PSF texture in each frame using the
current pupil and focus settings. Because the inclusion of
the incidence angles extends the PSF parameter space by
two additional dimensions, computing a single pixel of our
per-frame off-axis PSF texture requires 192 samples (64 per
channel) from the precomputed PSF grid, which enormously
increases the cost of the per-frame PSF construction process.

To overcome this problem, during precomputation, we
construct a GPU texture for each combination of pupil size
and focus distance sample using the strategy outlined in
Sect. 6.3. To construct the per-frame texture, we sample the
four relevant neighboring textures (selected using the current
pupil and focus settings of the simulation) and use bilinear
interpolation to compute the PSF pixel. Finally, to keep the
memory costs tractable, we exclude transitional blocks from
the caches and per-frame texture when utilizing dynamic eye
settings. Consequently, the precomputed and per-frame PSF
textures share the same dimensions, facilitating the sampling
of the caches using a single texture lookup, significantly
reducing the length of per-frame PSF texture preparation.
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7 Results

7.1 Estimators

We first evaluate our new neural network-based estimators.
We used the Python programming language for data genera-
tion, the TensorFlow [86] programming library to construct
and train our neural networks, the C++ binding of Tensor-
Flow (with a CPU backend) to utilize the trained networks
in our rendering framework, and the patternsearch optimizer
of MATLAB [87] to implement the previous GPS-based eye
estimation method of Csoba and Kunkli [49] for compar-
ing our results against. Finally, we used an AMD Ryzen 7
1700 3.00 GHz CPU for data generation and an NVIDIA
TITAN Xp graphics card for network training.

7.1.1 Training data generation

We generated 2,000,000 samples for the aberration-based
datasets, which took approximately five days per on-axis
dataset (discriminator and eye structure estimator) and seven
days for the off-axis dataset. Regarding the focused eye esti-
mator, we generated 40 focus distance and 25,000 eye param-
eter samples, resulting in a dataset of 1,000,000 samples and
taking approximately six days to generate. The statistical
properties of the datasets are provided in Appendix 2.

Our experiments with smaller datasets displayed a consid-
erable decrease in network accuracies, and thus, increasing
the size of the training datasets would likely be beneficial to
the precision of our estimators. Our largest dataset consumes
about 1.1 GB of memory; therefore, space is not a limiting
factor at all. However, reducing the length of the data genera-
tion procedure would be necessary for increasing the dataset
sizes while keeping the computational costs tractable.

7.1.2 Network training

Before training, we split the training datasets into train-
ing (85%) and validation sets (15%) using uniform random
sampling. The feature and target columns were then stan-
dardized as x̂ � (x − x)/σx , where x and x̂ are the original
and standardized columns, and x and σx are the mean and
standard deviation of x across all samples. However, to
ensure that predicted eye parameters are valid and because
of the tanh output function of the eye estimator, we nor-
malized the target columns of the eye estimator into the
range [−1, 1] (as described in Sect. 5.3) as x̂ � −1 +
2(x − xmin)/(xmax − xmin), where xmin and xmax denote,
respectively, the minimum and maximum values of x across
all samples.

To train the neural networks, we employed the Rectified
Adam optimizer [88], a modified version of the commonly
used Adam algorithm [89]. We also utilized the lookahead

mechanism [90] for improving the training speed and weight
decay [91] for regularization. Each network was trained for
30 epochs using mini-batches of size 1024 and exponentially
decaying learning rates and weight decay rates. For the train-
ing loss, we utilized themean absolute error (MAE) function:

MAE
(
y, ŷ

) � 1

n

n∑
i�1

∣∣ŷi − yi
∣∣, (14)

where yi and ŷi are, respectively, the i th columns of the true
and predicted output vectors. Finally, training took two and
a half hours (discriminator), six hours (eye estimator), three
hours (aberration estimator), and one hour (focus estimator).

7.1.3 Ablation study

We tested the following network configurations for evaluat-
ing the accuracy of our estimators and training process:

• FFN : A feedforward networkwith hidden blocks compris-
ing a dense, BN, and ReLU layer.

• ResNet [79]: The ResNet regressor proposed by Chen
et al., with ReLU activations, BN normalization, and the
placement of the BN layers following the model in [79].

• ResNet (ours): OurmodifiedResNet architecture proposed
in Sect. 5.3, with Mish activation, LN normalization, and
our modified LN layer placement.

The networks were constructed such that the numbers
of network parameters are similar in each network cor-
responding to the same estimator, which ensures that our
results demonstrate the differences stemming from the net-
work structures.

The results, summarized in Table 3, clearly demonstrate
that our modified ResNet model performed the best for all
estimators. Despite the ResNet regressor by Chen et al.
being more accurate than the classic feedforward approach,
our modified ResNet architecture showed significant fur-
ther improvements. Additionally, unlike some of the tested
network configurations, all the estimators built using our
proposed architecture were sufficiently accurate for our eye
structure and aberration estimation purposes, demonstrating
the benefits of our proposed network configuration.

In general, off-axis aberration estimation was the most
challenging problem, owing largely to aberrations being sig-
nificantly larger for off-axis object locations, as demonstrated
by the statistical properties of the datasets inAppendix 2. The
MAE differences between the discriminator and aberration
estimator are consistent with this observation.

Finally, we also trained the eye structure estimatorwithout
the discriminator for evaluating our proposed discriminator-
based training approach. We used the discriminator on the
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Table 3 Properties related to the
structure and training of our
neural networks

Network Architecture h n p Val. MAE

Eye structure estimator FFN 19 3.5 K 221 M 0.123248

ResNet [79] 2 3.5 K 221 M 0.021555

ResNet (ours) 2 3.5 K 221 M 0.009016

ResNet (ours) (no discriminator) 2 3.5 K 221 M 0.075660

Discriminator FFN 19 2 K 72 M 0.070620

ResNet [79] 2 2 K 72 M 0.013066

ResNet (ours) 2 2 K 72 M 0.003137

Focused eye estimator FFN 19 2 K 72 M 0.003099

ResNet [79] 2 2 K 72 M 0.001538

ResNet (ours) 2 2 K 72 M 0.000429

Aberration estimator FFN 19 2 K 72 M 0.087222

ResNet [79] 2 2 K 72 M 0.037234

ResNet (ours) 2 2 K 72 M 0.015308

h and n denote the number of hidden blocks and neurons in each fully connected layer, and p is the total
number of network parameters. We also provide the final mean absolute errors (MAE) produced by the
trained networks on the corresponding validation datasets

trained network to obtain the MAE of the aberrations on the
validation dataset. The result, included in Table 3, demon-
strates that the MAE of the network trained using our
proposed approach (0.009) is an order of magnitude smaller
than that of the straightforward approach (0.076), verifying
that our proposed loss computation method is vital for esti-
mating the physical eye structure with sufficient accuracy.

7.1.4 Computational performance

We measured the computation times of the eye structure,
focus, and aberration estimation steps using the previous
and our new approach. We used several different conditions
with distinct aberration profiles; emmetropia, myopia, and
astigmatism for eyes with only low-order aberrations, and
keratoconus, cataract, and post-LASIK surgery to evaluate
arbitrary aberration compositions. For PSF parameter sam-
pling, we used Nλ � 3 wavelengths, NA � 6 pupil sizes,
and N f � 7 focus distances for focus estimation and on-
axis aberrations, and Nh � 19 horizontal angles, Nv � 11
vertical angles, a relaxed eye, and a 5 mm pupil for off-axis
aberrations.

The results, shown in Table 4, demonstrate the suitability
of our approach for interactive applications, with the com-
bined length of the computations consistently staying in the
sub-second regime. Themost time-consuming stepwas aber-
ration estimation, resulting from the large number of network
evaluations. Compared to the previous approach, our new
solution was at least three orders of magnitude faster in all
computations, with the largest difference displayed in eye
structure estimation. The cost of the previous process is the

large number of aberration computations, which is fully cir-
cumvented by our new approach, whereby the eye structure
is estimated using a single neural network evaluation.

7.1.5 Estimation accuracy

Despite our main goal being to reduce computational costs,
we evaluated the six eye conditions described in Sect. 7.1.4
for verifying that our approach retains an accuracy similar
to the previous method and testing our method on realis-
tic inputs. Our results, listed in Table 5, contain the mean
absolute errors produced by the previous and our proposed
approach and the mean absolute target values as reference.

Our proposed approach achieved very high accuracy in
these realistic scenarios, with the eye estimator showing
similar accuracy as the previous solution, despite the sub-
stantially shorter computation times. Furthermore, our neural
network-based approach even outperformed the previous
method in one scenario (cataract), demonstrating the robust-
ness of our proposed solution. In the other tasks, the previous
method formed the baseline and thus produced no errors. For
our approach, the most challenging problem was estimating
focus, owing largely to the nonlinearities of the eye parame-
ter changes that comprise the network targets. However, our
estimators achieved high accuracies, making our proposed
approach perfectly suitable for real-world applications, espe-
cially considering the significant reduction in computational
costs compared to the previous method.
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Table 4 Computation times (in
seconds) of the eye and
aberration estimation steps using
the previous and our proposed
approach for various eye
conditions, with the number of
invocations shown in parentheses

Cond Eye (1) Focus (42) On-axis (126) Off-axis (627)

Prev Prop Prev Prop Prev Prop Prev Prop

Emmet 3521 0.079 77.53 0.046 25.51 0.170 213.45 0.638

Myop 6270 0.088 46.17 0.056 24.10 0.134 250.39 0.512

Astig 7306 0.064 56.19 0.063 21.06 0.129 208.38 0.548

Kerat 10,642 0.061 35.62 0.051 30.61 0.159 207.81 0.643

Cata 4582 0.073 59.33 0.065 28.44 0.146 201.71 0.583

LASIK 4696 0.085 32.97 0.059 31.72 0.175 194.82 0.617

Table 5 Mean absolute target
values and estimation errors
produced by the previous and our
new eye and aberration
estimation procedures for the
different eye conditions
evaluated in this paper

Task Emmet Myop Astig Kerat Cata LASIK

Eye estim Target 0.0000 0.2005 0.3440 0.2894 0.1655 0.0583

• Prev Error 0.0008 0.0010 0.0011 0.0076 0.0361 0.0029

• Ours Error 0.0044 0.0047 0.0038 0.0083 0.0048 0.0024

Focus estim Target 0.3171 0.0411 0.0122 0.2000 0.2130 0.4124

• Prev Error 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

• Ours Error 0.0111 0.0058 0.0020 0.0046 0.0174 0.0033

On-axis ab Target 0.1484 0.2137 0.3376 0.3167 0.4254 0.2506

• Prev Error 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

• Ours Error 0.0079 0.0093 0.0093 0.0107 0.0143 0.0086

Off-axis ab Target 0.7013 0.7009 0.7031 0.7872 0.4156 0.9545

• Prev Error 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

• Ours Error 0.0152 0.0152 0.0149 0.0182 0.0208 0.0197

7.2 Rendering

In the remainder of the section, we evaluate our improved
on-axis and new off-axis rendering approach. To this end,
we utilized the six eye conditions described in Sect. 7.1.4
and a 50° vertical field-of-view (FOV) with a 1280 ×
720 resolution. The input images were rendered using a
rasterization-based pipeline and pinhole camera model, with
vision simulation performed as a post-processingfilter.Alter-
natively, other image-forming methods (such as ray tracing
or RGB-D cameras) could be used to obtain the input images,
provided that per-pixel color and depth information is avail-
able.

Regarding the input test scenes, we utilized a simple setup
(Primitives) and a more realistic test scene (San Miguel) to
evaluate our proposed solution, which correspond to dif-
ferent application scenarios and display different overall
characteristics. Simulations for other input scenes and eye
configurations are also available as supplementary material.

7.2.1 On-axis aberrations

We implemented the tiled PSF-splatting approach described
in [49] using the C++ programming language and OpenGL

graphics library [92]. We utilized a GPU-based implementa-
tion [76] of the ENZ approach [74] to compute the PSFs and
our new neural network-based solution to obtain the aberra-
tion coefficients; we used Nd � 33 object distances, NA � 6
aperture diameters, N f � 7 focus distances, and Nλ � 3
wavelengths to construct the grid, resulting in 4,158 unique
PSFs and taking approximately fifteen seconds to compute.

To compare our results against, we implemented the orig-
inal PSF texture layout proposed in [49] as well as our
new, significantly improved approach. We also implemented
Barsky’s layered algorithm [58], using Nd � 41 object dis-
tances, Nλ � 3 wavelengths, and the ENZ PSF model.
Finally, to produce the ground-truth reference simulations,
we utilized a CPU-based method that uses the dense PSF
grid, whereby each input pixel was assigned to a depth-based
bin and convolved with the corresponding PSF. The binning
process resulted in 595 (Primitives) and 419 (San Miguel)
depth bins, taking approximately eleven minutes to compute
each image. The simulations are shown in Figs. 9 and 10.

We first compare the per-frame PSF texture sizes and tex-
ture computation times of the layout proposed in [49] and our
improved approach. The results are summarized in Table 6.
As demonstrated by the results, our depth-based texture lay-
out significantly reduces the number of texture layers, with
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Fig. 9 On-axis simulations for the three eye conditions comprising only
low-order aberrations

our dynamic layer insertion strategy ensuring that the num-
ber of layers is minimal. Consequently, thememory footprint
of the texture is also greatly reduced, significantly shortening
the per-frame computation costs.

Next, we measured the total rendering times for Barsky’s
method [58] as well as the tiled approach with the previous
[49] and our new PSF interpolation strategies. The results,
summarized inTable 7, clearly demonstrate that our proposed
method significantly outperforms both previous approaches.
Since Barsky’s algorithm relies on CPU-based convolution
and object detection, its computation time is not suitable
for interactive applications. However, our proposed solution
achieves a large speedup compared to the previous tile-based
approach as well, with the rendering performance more than
doubled in all cases, owing mainly to the reduced memory
footprint and texture sample counts. Critically, our proposed

Fig. 10 On-axis simulations for the three eye conditions comprising
mixed aberrations

method also facilitates the simulation of arbitrary eye condi-
tions in fully real-time environments, a task impossible with
the previous approaches.

We also evaluated the accuracy of all approaches by com-
puting the peak signal-to-noise ratio (PSNR) for all outputs
using the ground-truth simulations as references. The results,
summarized in Table 8, verify that our proposed approach
achieves very low error levels and accurately approximates
the true PSF.Additionally, our proposedmethod significantly
outperformed Barsky’s method in all scenarios, despite the
lower number of depth-dependent PSFs used in the coarse
grid of our approach. This behavior can be attributed mostly
to the lack of proper per-pixel PSF approximation, and the
handling of partial occlusion being limited to the edges of
depth slices in Barsky’s algorithm. Finally, our proposed
texture layout caused no meaningful increase in the errors
compared to the tile-based approach of Csoba and Kunkli
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Table 6 Properties of the
previous and our proposed PSF
texture layouts

Condition Layers Memory Interpolation

Prev Prop Prev Prop Prev Prop

Emmetropia 1419 65 39.11 MB 1.79 MB 0.63 ms 0.26 ms

Myopia 957 65 11.86 MB 0.81 MB 0.26 ms 0.21 ms

Astigmatism 891 65 9.55 MB 0.70 MB 0.26 ms 0.17 ms

Keratoconus 1320 65 31.43 MB 1.55 MB 0.45 ms 0.24 ms

Cataract 957 65 11.86 MB 0.81 MB 0.38 ms 0.23 ms

LASIK 1221 65 24.82 MB 1.32 MB 0.49 ms 0.19 ms

Table 7 Total rendering times of
the two previous approaches and
our proposed on-axis aberration
simulation method

Cond Primitives San Miguel

Barsky
[58]

Csoba and Kunkli
[49]

Ours Barsky
[50]

Csoba and Kunkli
[49]

Ours

Emmet 21.93 s 24.68 ms 10.57 ms 13.41 s 16.13 ms 7.43 ms

Myop 12.33 s 21.73 ms 9.53 ms 13.51 s 23.06 ms 8.66 ms

Astig 11.98 s 26.51 ms 7.51 ms 13.29 s 30.62 ms 10.70 ms

Kerat 17.10 s 27.08 ms 12.93 ms 14.62 s 24.66 ms 9.87 ms

Cata 15.53 s 24.50 ms 9.38 ms 15.22 s 17.09 ms 6.81 ms

LASIK 16.46 s 21.29 ms 8.67 ms 11.86 s 20.60 ms 8.73 ms

Table 8 PSNRs for the
simulations generated using the
two previous and our proposed
on-axis approaches

Cond Primitives San Miguel

Barsky
[58]

Csoba and Kunkli
[49]

Ours Barsky
[58]

Csoba and Kunkli
[49]

Ours

Emmet 31.92 dB 46.52 dB 46.43 dB 33.70 dB 46.29 dB 46.14 dB

Myop 33.39 dB 46.80 dB 46.77 dB 33.52 dB 50.75 dB 50.60 dB

Astig 33.61 dB 47.07 dB 47.09 dB 33.89 dB 49.35 dB 49.33 dB

Kerat 33.64 dB 45.74 dB 45.77 dB 32.61 dB 48.91 dB 48.83 dB

Cata 31.53 dB 45.55 dB 45.53 dB 30.81 dB 45.51 dB 45.45 dB

LASIK 31.07 dB 45.76 dB 45.73 dB 30.89 dB 48.10 dB 47.95 dB

either, despite the substantial reduction in memory require-
ments and computational costs. Our new method essentially
works by discarding all unused data from the PSF texture,
leading to no significant loss of information.

Finally, we also highlighted a few areas with the largest
deviations from the references in Figs. 9 and 10 for all out-
puts. As can be seen, our proposed approach approximates
the ground-truth reference simulations with high accuracy,
producing almost identical outputs to the ground-truth refer-
ences. Although the previous method by Csoba and Kunkli
is capable of the same accuracy, our new method achieves
these results with significantly less memory and computation
costs. The limitations of Barsky’s approach are also apparent,
as the inaccurate convolution kernels and the lack of per-pixel
treatment of partial occlusion led to visible deviations from
the references.

7.2.2 Off-axis aberrations

We extended our implementation of the tiled PSF-splatting
approach described in Sect. 7.2.1. with our proposed off-
axis PSF layout. Due to the significantly larger amount of
PSF data, we considered two distinct use cases:

• quality mode: The PSF grid was sampled using Nh � 31,
Nv � 21, Nd � 9, NA � 1, N f � 1, and Nλ � 3 samples,
resulting in 17,577 total PSFs and taking ca. twominutes to
compute. Transitional layers were utilized in the per-frame
PSF texture using (13), with s � 1 and p � 1/2 chosen
empirically, providing a good balance between quality and
texture memory.

• dynamicmode: The PSF grid was sampled with Nh � 23,
Nv � 13, Nd � 9, NA � 5, N f � 5, and Nλ � 3
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samples, resulting in 201,825 total PSFs and taking ca.
twenty minutes to compute. No transitional layers were
used in the per-frame PSF texture.

To compare our results against, we implemented the algo-
rithm of Rodríguez Celaya et al. [26]. We constructed a PSF
grid using the ENZ PSF model with Nh � 5, Nv � 3,
Nd � 2, and Nλ � 3 samples (covering the near and far
plane of the input 50° vertical FOV) and performed convo-
lution with per-pixel PSF interpolation to obtain the output.
We also implemented the layered algorithm by Gonzalez-
Utrera [27] with Nh � 11, Nv � 11, Nd � 3, and Nλ � 3
PSF grid samples. The input images were split into three
depth-based layers, which were convolved using a per-pixel
interpolation of the off-axis PSFs and composited to obtain
the outputs. Finally, we utilized a CPU-based method using
the dense PSF grid for producing the ground-truth reference
simulations. Each input pixel was assigned to a unique bin
(based on depth and incidence angles) and convolvedwith the
corresponding PSF. The binning process resulted in 194,243
(Primitives) and 127,548 (San Miguel) PSF bins, with the
total computation taking several hours per image. The simu-
lations are shown in Figs. 11 and 12.

First, we evaluate the properties of the per-frame PSF tex-
ture, which are summarized in Table 9. The only memory
cost of the quality setup is the per-frame PSF texture, which
is smaller in the dynamic setup, owing to the smaller PSF grid
and omission of transitional layers. The dynamic setup also
requires several cached PSF textures, the main bottleneck of
the setup. However, it also represents the worst-case scenario
ofmemory requirements, demonstrating the suitability of our
approach for commodity graphics hardware. Moreover, the
PSF grid sampling can also be reduced for a smaller mem-
ory footprint of the cache. Finally, because the aperture and
focus parameters are static, the quality setup also facilitates
the skipping of the per-frame texture-building step, which is
an extra cost in the dynamic setup.

Next, we measured the total rendering times of the previ-
ous algorithms and the two setups of our proposed approach.
The results, summarized in Table 10, demonstrate that both
existing approaches are highly inadequate for interactive
environments, with the computations taking at least one hour
per image. The computation times also vary highly with
the input eye condition. Our new approach, however, dis-
plays performance characteristics suitable even for real-time
applications, with a very small difference between the two
setups. Furthermore, the rendering times are also much more
consistent across all eye conditions, with the main differenti-
ating factor proving to be the input scene. Overall, Primitives
appeared to be more challenging, owing largely to the
higher number of memory transactions needed to access the
per-frame PSF texture, as demonstrated by the higher num-
ber of depth bins generated by the ground-truth algorithm.

Fig. 11 Off-axis simulations for the three eye conditions comprising
only low-order aberrations

Critically, however, our proposed method also facilitates the
interactive change of eye settings, whichwas impossiblewith
the previous approaches.

We also evaluated the accuracy of all methods using the
ground-truth reference images, with the resulting PSNRs
summarized in Table 10. The results for the outputs gen-
erated using our approach indicate perfect suitability for
real-world applications, with the quality setup consistently
outperforming the dynamic setup due to the significantly
more information in the per-frame PSF texture. However,
compared to the previous methods, our proposed approach
achieved significantly higher accuracy, owing mostly to the
ability of our new method to utilize substantially higher
amounts of PSF information, properly handle per-pixel par-
tial occlusion, and much more accurately approximate the
true, per-pixel PSF of the simulated eye.

A few areas with the largest mismatches between the ref-
erence images and our simulations are also highlighted in
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Fig. 12 Off-axis simulations for the three eye conditions comprising
mixed aberrations

Figs. 11 and 12, using the quality setup of our approach.
These regions clearly demonstrate that the previous methods
are unable to faithfully simulate the true blurriness levels
and PSF shapes of the simulated eye, with the object bound-
aries also highly morphed in many regions. However, both

configurations of our new approach closely approximate the
ground-truth simulations and avoid all these artifacts. The
varying sharpness over the visual field is also faithfully repli-
cated by our approach, which is critical to properly evaluate
the performance of the simulated eye and study the effects
of conditions like relative peripheral hyperopia (which was
outlined in Sect. 1). The previous techniques are unable to
properly handle such conditions and give a false representa-
tion of the true optical performance of the simulated eyes.

Finally, rendered videos using our approach are also
available as supplementary material, which demonstrate the
stability and lack of interpolation artifacts under motion, and
provide further examples for the outputs of our method.

8 Conclusion

In this paper, we presented an efficient solution for simulat-
ing the central and peripheral visual aberrations of the human
eye.We first proposed a novel, neural network-based method
for estimating the physical structure and unknown aberra-
tion coefficients of the simulated eye. Our new method is
substantially faster than the previous approach and operates
in the sub-second regime, facilitating the fully interactive
exploration of visual aberrations. We also described an
improved PSF interpolation strategy for a tiled PSF-splatting
approach for efficiently computing the per-pixel PSFs and
extended it for peripheral vision as well. We demonstrated
that our proposed solution significantly outperforms previ-
ous convolution-based approaches both in terms of rendering
speed and memory requirements, without sacrificing render-
ing quality. Critically, our new solution also facilitates the
simulation of off-axis aberrations with high accuracy and
an approximately real-time performance profile, which sub-
stantially increases the plausibility of the resulting vision
simulations and was previously impossible with such low
computational costs.

Regarding future research directions, other neural net-
work architectures and dataset generation strategies could
lead to further improvements in accuracy and computation

Table 9 Per-frame PSF texture
properties for the two off-axis
configurations and various eye
conditions evaluated in this paper

Condition Quality Dynamic

Layers Memory Cache Texture Interpolation

Emmetropia 51 × 27 × 17 1.54 GB 5.71 GB 234.06 MB 1.94 ms

Myopia 50 × 26 × 17 1.13 GB 4.70 GB 192.67 MB 1.90 ms

Astigmatism 50 × 26 × 17 1.13 GB 4.43 GB 181.58 MB 1.93 ms

Keratoconus 55 × 27 × 17 2.14 GB 7.68 GB 314.38 MB 2.43 ms

Cataract 37 × 30 × 17 0.46 GB 3.09 GB 85.01 MB 1.36 ms

LASIK 56 × 32 × 17 2.32 GB 6.50 GB 266.08 MB 2.12 ms
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times, and the recent advancements in hardware-accelerated
ray tracing could facilitate the efficient generation of much
larger datasets. Extending the eye estimator with multiple
input aberration measurements (such as off-axis aberrations)
could be beneficial as well. Experimenting with different
eye elements (such as gradient-index lenses and intraocular
lens implants) is straightforward and could further increase
the applicability of our model, which our rendering method
naturally supports. Regarding rendering, reducing the GPU
memory usage of the precomputed off-axis PSF cache would
make it easier to support dynamic pupil and focus changes.
Furthermore, our approach could be adapted for other opti-
cal systems to provide even more application areas. Finally,
experimenting with neural network-based solutions for the
full simulation of aberrated vision could be a promising
future research direction, with the DeepFocus method of
Xiao et al. [35] being a great starting point.
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tarymaterial available at https://doi.org/10.1007/s00371-023-03060-0.
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Appendix 1: Our extended approach
for computing the aberration coefficients
using reverse ray tracing

The aberration estimation process plays a critical role in the
trainingdataset generation step, andwemade some important
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changes to the process proposed in [49]. Therefore, in Algo-
rithm 1, we provide an in-depth description of our extended
algorithm for computing the aberration coefficients of our
aberration-based datasets, which contains all the modifica-
tions that we outlined in Sect. 5.2.1.

Appendix 2: Statistical properties of our
synthetic datasets

Table 11 provides a summary of the statistical properties of
the synthetic datasets generated for the training of our neu-
ral networks. We discussed the input domains and sampling
strategies for obtaining the input vectors in Sect. 5.2; there-
fore, we only consider the corresponding computed values
in this section. We also excluded the eye estimator dataset, Ta
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because the training dataset of the discriminator was gener-
ated with the exact same input domain (only the random
number generator seed differed) and thus displayed very
similar statistical properties. Finally, we also grouped the
aberration coefficients into three groups based on the radial
order n (n � 1, 2, n � 3, 4, and n � 5, 6), because
the magnitudes of aberration coefficients behaved similarly
in these groups.

See Table 11.
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