
The Visual Computer (2023) 39:3797–3809
https://doi.org/10.1007/s00371-023-02975-y

ORIG INAL ART ICLE

A neural builder for spatial subdivision hierarchies

Iordanis Evangelou1 · Georgios Papaioannou1 · Konstantinos Vardis1 · Anastasios Gkaravelis1

Accepted: 14 June 2023 / Published online: 24 July 2023
© The Author(s) 2023

Abstract
Spatial data structures, such as k-d trees and bounding volume hierarchies, are extensively used in computer graphics for
the acceleration of spatial queries in ray tracing, nearest neighbour searches and other tasks. Typically, the splitting strategy
employed during the construction of such structures is based on the greedy evaluation of a predefined objective function,
resulting in a less than optimal subdivision scheme. In this work, for the first time, we propose the use of unsupervised deep
learning to infer the structure of a fixed-depth k-d tree from a constant, subsampled set of the input primitives, based on the
recursive evaluation of the cost function at hand. This results in high-quality upper spatial hierarchy, inferred in constant
time and without paying the intractable price of a fully recursive tree optimisation. The resulting fixed-depth tree can then
be further expanded, in parallel, into either a full k-d tree or transformed into a bounding volume hierarchy, with any known
conventional tree builder. The approach is generic enough to accommodate different cost functions, such as the popular surface
area and volume heuristics. We experimentally validate that the resulting hierarchies have competitive traversal performance
with respect to established tree builders, while maintaining minimal overhead in construction times.

Keywords Rendering · Neural networks · Spatial hierarchies · Ray tracing

1 Introduction

Spatial data structures are extensively used in computer
graphics for the acceleration of spatial queries, with the
most notable applications being ray-geometry intersection
tests and nearest neighbour search in point clouds. Typi-
cally, a hierarchical spatial data structure of a bounded spatial
domain, containing a population of primitives, follows one of
two strategies: spatial subdivision and bounding volume hier-
archies (BVH). The first, mainly represented by the k-d tree
and octree data structures, follows a spatial decomposition
methodology and ensures that no overlapping bounding vol-
umes are encountered among siblings, but does not guarantee
a tight enclosing of the contained primitives at each node. On

B Iordanis Evangelou
iordanise@aueb.gr

Georgios Papaioannou
gepap@aueb.gr

Konstantinos Vardis
kvardis@aueb.gr

Anastasios Gkaravelis
agkar@aueb.gr

1 Department of Informatics, Athens University of Economics
and Business, Athens, Greece

the other hand, BVH subdomain bounds can be—and usu-
ally are—fitted on the corresponding subset of primitives, but
cannot guarantee the non-overlap-ping property. However,
both strategies share a common problem: determining the
optimal bound hierarchy is not a trivial task. Current state-of-
the-art builders have a high build and traversal performance,
but typically rely on the local tree cost evaluation, resulting in
nearly optimal hierarchies. Exploiting a fully recursive tree
cost evaluation would yield an optimal tree, but the evalu-
ation itself is intractable, even for shallow trees and small
inputs.

In this paper, for the first time, we exploit the generality of
unsupervised deep learning to infer the structure of a k-d tree,
based on the recursive evaluation of the cost function at hand,
including the very popular surface area heuristic (SAH). The
immediate benefits from addressing the hierarchy construc-
tion from a deep learning standpoint are: (a) the decoupling
of hierarchy construction time from the primitive count, lead-
ing to constant hierarchy inference times, (b) compatibility
with any linear recursive cost function (see Eq.4) and (c) the
mapping of the construction process to efficient generic hard-
ware (tensor cores). As shown later in the paper, the explicit
use of arbitrary recursive cost functions in our model, result

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00371-023-02975-y&domain=pdf
http://orcid.org/0000-0003-4556-390X
http://orcid.org/0000-0003-4774-0746
http://orcid.org/0000-0003-2282-4644
http://orcid.org/0000-0002-9673-2462

3798 I. Evangelou et al.

in highly optimised hierarchies without paying the respective
(intractable) cost.

At a glance, the proposed neural builder produces a high-
quality spatial partitioning of the top levels of the hierarchy of
an input scene. During the inference (tree construction) step,
the input of the network is a subsampled, fixed set of input
primitives, that decouples the scene size from the number of
network parameters. Then, the architecture determines the
splits by exploring all possible path permutations. The output
of the network is a fixed-depth k-d tree. This tree is then triv-
ially transformed and expanded into a complete acceleration
data structure (of the same node layout), using any conven-
tional builder and whose exact form is driven by the needs of
the application at hand. The disjoint clusters stemming from
the neural hierarchy, allow for trivial data parallelism in both
CPU and GPU architectures in order to expand its subtrees.
We experimentally validate the hybrid building process with
two prominent cases (see Sect. 6): nearest neighbour queries,
by expanding the subtrees into a traditional k-d tree and ray-
primitive intersection tests, by transforming the upper tree
into a BVH and expanding (in parallel) the resulting leaves.

It is important to note here, that our approach directly
optimises the tree cost, rather than the tree structure itself,
e.g. as in similarity-based inference, since the latter would be
problematic. First, similarity-based inference would depend
on the evaluation of the final loss against reference trees in
a supervised manner, requiring the definition of a robust and
tolerant distance metric between hierarchical data structures.
We avoid this, since this is an ill-formed problem. More
importantly, employing such an approach, directly assumes
that a unique cost-minimising tree configuration exists for
every input, which is probably not true, in the general case.
Second, although the algorithm to compute the recursive
cost function is straightforward, it fits poorly to the gradi-
ent descent paradigm, at least in an intuitive way. In this
paper we provide the necessary details to make this mapping
possible.

2 Preliminaries

In this paper we focus on the construction of k-d trees and in
particular, 3-d trees—which we further transform, as neces-
sary, although the methodology is easily generalized. A k-d
tree is a binary spatial partitioning hierarchy, whose internal
nodes act as axis-aligned hyper-planes that decompose the
node’s bounding volume into two non-overlapping subdo-
mains.

The construction of a k-d-tree takes an input a set of
points P ⊂ R

3 and recursively subdivides them until a cer-
tain condition is met. In the following, all points and local
bounds at each node to be split are expressed in the nor-
malized root node space, hence, P ⊂ [0, 1]3. Construction

begins from the root node P = (P,B), splitting the bound-
ing box B = (bmin, bmax) into two child nodes PL and
PR , by first choosing a plane with an axis-aligned normal
n ∈ {nx ,ny,nz}

and offset b ∈ [bmin, bmax]. Child nodes are initialized
with the mutually exclusive point subsets PL and PR con-
tained in the non-overlapping partitions:

BL = gL(n, b,B) = (bmin, (1 − n) � bmax + bn) (1)

BR = gR(n, b,B) = ((1 − n) � bmin + bn,bmax), (2)

where � denotes component-wise vector multiplication.
Note that, in general, the tight bound of the points in each

subspace may be smaller than the corresponding subdivision
of P . If a transformation of a k-d tree into a BVH is required
(Sect. 6.4), tight bounds must be calculated during the con-
version process.

In order to build an acceleration data structure that is effi-
cient to traverse, the quality of a tree is typically measured
using an objective function C and an optimisation algorithm
decides whether to stop exploring alternative topologies.
Candidate configurations for a node P are directly drawn
from the composite domain D = Dx ∪ Dy ∪ Dz that con-
tains every possible pair of discrete axis-aligned splits and
continuous offsets:

Dx = [nx , b], Dy = [ny, b],
Dz = [nz, b], b ∈ [bmin, bmax]. (3)

Child nodes are recursively generated with bounds given
in Eqs. 1 and 2. A general recursive form for the tree traversal
cost, that encompasses most practical cost functions encoun-
tered in computer graphics algorithms, is:

C(P) =
min
D

{
p(P) + wL(P)C(PL) + wR(P)C(PR) internal
q(P) leaf

,

(4)

where wL/R(P) is a weighting function for each branch,
q(P) is the cost of visiting a leaf and p(P) is the traver-
sal cost for an internal node. A widely used cost function for
the optimisation of spatial hierarchies and particularly for ray
tracing, is the Surface Area Heuristic [8, 20]. Its mapping to
Eq.4 is:

wL/R(P) = SA(BL/R)

SA(B)
, p(P) = ct ,

q(P) = ci N (P), (5)

where SA(B) is the surface area of bounding box B, N (P) is
the number of primitives in P and ct , ci are constant penalty

123

A neural builder for spatial subdivision hierarchies 3799

factors for traversing a node and intersecting a primitive,
respectively. The goal of this objective is to reduce the cost
of non-terminating rays traversing the constructed hierarchy
by measuring the probability of hitting each node through
Eq.5.

Similar to the SAH, the Voxel Volume Heuristic (VVH)
[31] is a cost function employed in acceleration data struc-
tures for efficient nearest neighbour queries, mapped to Eq.4
as:

wL/R(P) = V (BL/R)

V (B)
,

p(P) = ct , q(P) = ci N (P), (6)

where V (B) is the corresponding volume of bound B,
expanded by a small offset in all directions. This offset
typically corresponds to the radius search as in the photon
mapping [13] algorithm, but may tend to zero for general
neighbourhood estimation.

From an algorithmic perspective, the process of subdivi-
sion selects all possible splits at each level, evaluates the cost
and then recursively repeats this process until the leaf condi-
tion ismet. The final cost can be aggregated upwards from the
leaves, through each hierarchy path and the minimum-cost
path is stored along the way.

It is worth clarifying here is that, while the k-d builder is an
inherently top-down recursive builder, the cost function eval-
uation may not be. The cost function can be either locally or
globallyminimised, the former case resulting in a greedy cost
evaluation and the latter leading to the global optimum. The
greedy, local cost evaluation is adopted in practical imple-
mentations, since the complexity of the fully recursive cost
function evaluation is computationally impractical.

3 Related work

Spatial data structures. Many algorithms have been pro-
posed for the construction of hierarchical spatial structures
via the minimisation of a cost function. Balancing between
construction time andfinal tree quality/traversal performance
can be notoriously difficult. The widely used approaches are
categorised as either spatial subdivision methods or object-
based strategies.

Spatial decomposition into non-overlapping domains is
typically performed via axis-aligned domain splits. Themost
popular space partitioning scheme and indexing structure is
the k-d tree [1], forwhich bothCPU andGPUalgorithms [31,
32, 36] exist, optimising the greedy SAHandVVHcost func-
tions, to accelerate ray traversal and radius search queries,
respectively. A notable alternative is the use of shallow and
wide regular [14] or irregular [27] grids, optimised with a
greedy variant of SAH and targeting fast index construction.

Hierarchical clustering for nonzero area primitives, such
as triangles, can also be done with object-based subdivision.
Contrary to spatial subdivision, the notable property guaran-
teed here is the unique correspondence between primitives
and nodes. Node boundaries correspond to tight primitive
cluster extents, maximising empty space. The Bounding Vol-
ume Hierarchy adopts this strategy and has seen a wide
attraction in the literature, especially for the ray tracing task.
Several approaches have been proposed for BVH construc-
tion, based on the SAH heuristic and most notably for the
greedy case [29, 30]. Specialised optimisation algorithms
can also be employed as a post-processing step to further
improve the quality of an already constructed BVH [6, 15,
23], or guide the construction from auxiliary hierarchies [7,
10, 12]. For a detailed analysis on relevant data structures,
the interested reader is referred to the recent survey by [24].

Point-based learning. Here we briefly summarize sev-
eral neural architectures that have been proposed for learning
representations of unstructured point sets. Most notably,
the PointNet architecture [4] has set the baseline for shape
classification and segmentation tasks, while the theoretical
foundation of robust point learning was established with
Deep Sets [35], where the authors have rigorously defined
and applied permutation-invariant and equivariant layers for
feature extraction.

Point-based learning has also demonstrated its expressive
power with generative models for 3D shape generation and
reconstruction. Most recent approaches either rely on shape
priors or exploit the input set as a prior to generate the actual
mesh, in the SP-GAN [18] and Point2Mesh [9] architectures,
respectively.

Our work diverges from the above literature, investigating
a different geometric task; we process input point sets and
learn a hidden representation that optimises an analytic form
of a recursive cost function to infer a spatial subdivision data
structure.

Structure-aware learning. Several learning-based
approaches operate hierarchically to exploit the local struc-
ture of the data representation. Although these methods
originate from a different application domain, address differ-
ent tasks and are orthogonal to this work, we briefly discuss
them in order to clearly distinguish them from our contribu-
tions.

Fixed k-d trees, with trainable layers as nodes, have been
shown to assist in the agglomeration of features for shape
recognition, retrieval and part-based segmentation [17].

Similarly, uniform grid [21] and Octree [28] hierar-
chies also exploit spatial subdivision for hierarchical feature
extraction. While these structures are statically constructed,
adaptive Octrees [34] were also proposed for 3D shape
encoding, to handle issues related to learning effectiveness
and resource demands. They use learnable features to decide
on whether to split an octree node or not, up to a fixed depth.

123

3800 I. Evangelou et al.

Encoder block

Encoder block k

bx
bx|y|z by bz

Encoder block k+1

Encoder block k+2

Encoder block k+3

}Conv2D - (128, Mx1, 1)

mean
pooling

Conv1D - (128, 1, 1)

Conv1D - (64, 1, 1)

Conv1D - (3, 1, 1)

P

(over masked
 points)

Masking

Inverse transform
bx by bz

λx λy λz΄ ΄ ΄

x3

M : Number of primitives (2048)ReLU Linear

Expanded node

Fig. 1 Themapping of a binary spatial subdivision hierarchy to our neu-
ral network architecture. From left to right: an arbitrary axis-aligned
split is expanded as three individual ones and the resulting 6-way

branching node is mapped to a neural encoder block. Each encoder
is re-used across the nodes of the same tree level

On the contrary, in this work we focus on building a model
that implicitly determines the hierarchy, through minimisa-
tion of a recursive and task-specific cost function.

Last but not least, the pioneering graph processing meth-
ods using neural networks [5, 16], operate directly on input
nodes of fixed size, extract individual features and aggregate
them for graph classification or link prediction. This is con-
trary to the problem at hand, where disjoint clusters must be
discovered and hierarchically structured.

4 The neural k-d tree builder

A key observation in order to map the splitting hyperplane
selection to a neural network architecture is that the hyper-
plane normal is discretised. As a result, we can remove the
normal selection from the original domain D by expanding
each binary node into three separate tuples P , one for each
candidate splitting axis, and simultaneously evaluating the
cost for all of them (Fig. 1-left), similar to a pooling operator,
across all branches. The optimisation process is effectively
reduced to only determining the best splitting hyperplane
offsets b j , simultaneously over all axial split candidate sub-
trees, so that the tree cost C is minimised. For a formed tree
T (k) of depth k, we need to minimise the loss L(C; θ) over
the predicted recursive tree cost and ensure the proper differ-
entiation of the loss over trainable parameters θ , involving
gradient propagation through the cost Eq.4.

4.1 Architecture

As illustrated in Fig. 1, the k-d tree is modelled as a set of
cascaded encoders, each encoder representing a binary tree
node expanded into a hex node, encompassing all axial splits.
Each encoder receives the dataP corresponding to the current

spatial partition and outputs the offsets of the three poten-
tial splits, in a top-down, level-order fashion. Since nodes
belonging to the same tree level tend to be related in terms
of shape granularity, an encoder is shared among all nodes
in the same level (Fig. 1-right). This enforces invariance of
the encoders with respect to absolute position in the input
domain and the number of points in the subspace. To this
end, translation and scale are removed from the encoder’s
representation, due to prior normalisation of the encoder’s
input point set with respect to its tight bounds. Since the
same input is propagated down the tree and distributed (due
to the appropriate masks) across the nodes of a tree level,
the dimensions of the encoder’s latent representation and,
consequently, their descriptive capability, remains the same,
despite gradual expansion of the tree. Not surprisingly, shar-
ing the training parameters across the entire tree is not as
effective, since the distribution of primitives varies signifi-
cantly across levels, in general, thus requiring a far larger
network capacity.

Input sampling. Realistic applications tend to operate
on prohibitively large inputs for current neural network
architectures. To reduce the input size, we uniformly draw
a fixed number of M samples from the original popula-
tion, preserving the spatial distribution of the primitives. We
experimentally validated that a small, subsampled version
of the actual input is sufficient to retain the high quality of
the tree, up to a certain depth. In our implementation, 2048
samples are used. For more details, see Sect. 6.2.

It is important to note that subsampling is applicable
only because we estimate a spatial decomposition of non-
overlapping subdomains (a k-d tree here); the node bounds
are not directly computed from the contained points, so the
final hierarchy can be first computed and then populated with
the original primitives. This is in sharp contrast to object-

123

A neural builder for spatial subdivision hierarchies 3801

based subdivisions, where topology is invalidated when the
input is modified.

The encoder represents a tree node and receives a fixed
set of M points, normalised with respect to the bounding box
of the input partition, and shifted by one unit so that coordi-
nates are in the [1, 2] interval. This way, zero is used for the
representation of masked out points that do not reside within
the boundsB of the current space partition, acting as an atten-
tion mechanism.When the input points are propagated down
through the cascaded encoders, we check them against the
bounding box B of the current partition to generate a mask,
which retains or zeroes the respective point coordinates.

The output of the encoder is a vector λ′ containing the split
offsets along each axis, normalised with respect to the tight
bounds of the active points in the current tree node. Through a
linear transformation (denoted as Inverse transform inFig. 1),
these offsets are first converted to offsets λ = (λx , λy, λz)

within the partition bounding box and subsequently to root-
level offsets:

b = fb(n,λ,B) = n � [bmin + λ(bmax − bmin)]. (7)

Predicting the split offsets with respect to the tight point
set bounds is important. First, the input of the encoder must
be bound-agnostic, to allow the encoder block parameters to
be shared among nodes of the same level but also for the input
to be cascaded down the tree using identical encoder mod-
ules. Second, as explained in Sect. 5.2, the change of variable
from the global reference frame to the tight bounds of each
partition solves a serious differentiability issue, affecting the
partial derivatives of lower bounds with respect to splitting
offsets of upper bounds. Last but not least, it makes easier
to enforce valid parameters for split offsets, during optimi-
sation, as will be discussed next, in Sect. 4.2.

Our encoder consists of the layers presented in theEncoder
block of Fig. 1, resulting in 58113 trainable parameters.
In the above encoding scheme, the six-way branching of
each node and thus the expanded, simultaneous and inde-
pendent evaluation of the cost effectively reduces our task
to a one-dimensional problem and decouples the splitting
decision from the elements of the other dimensions. This
means that we can share the training parameters across
every dimension using standard convolutional layers, reduce
the domain dimensionality further and, most importantly,
implicitly force generalisation of the encoder to handle axial
permutations of the input coordinates.

4.2 Training

During the training phase, our model consumes batches of
M normalised points. The augmented tree is constructed
in a top-down, level-order manner, determining the offsets
bi for spatial subdivision in each node. Then, we agglom-

eratively traverse and apply the cost function (Eq.4) in a
bottom-up, level-order fashion to find the cost of the mini-
mum tree and consequently, minimise the loss over it. Since
this is an unsupervised method, the loss function embodies
the minimisation of its norm.

Loss function. In our model we experimentally found the
�2 norm to achieve the best quality:

L tree(C) = 1

|B|
|B|∑
i=0

∣∣∣
∣∣∣C̃i

∣∣∣
∣∣∣2
2
, (8)

where B is the batch and C̃ is the normalised optimal tree
cost relative to the cost of being a single root node.

Additionally, we force the local split offset λ′ to gracefully
remain within the normalised bound with the following, dif-
ferentiable penalty function:

Lb(λ
′) = Ix<0(x)�1soft(x) + Ix>1(x)�1soft(1 − x) (9)

where �1soft(·) is the Huber loss [11], with parameter 0.1.
The penalty over the entire tree is then:

Lbound(T)

= 1

|B|
|B|∑
i=0

|T (k)|∑
j=0

γ
(
Lb(λ

′
xi j) + Lb(λ

′
yi j) + Lb(λ

′
zi j)

)
,

(10)

where γ , is a positively defined function, controlling the rela-
tive contribution of the splitting offset constraint. Intuitively,
the higher in the hierarchy the split is, the larger the subtree
that an out-of-tight-bounds offset invalidates. Therefore for a
tree of depthd,we setγ proportional to the number of descen-
dant internal nodes from the current level k: γ = 2d−k − 1.
Finally, the total loss is the linear combination of the two
components:

L(C, T ; θ) = L tree(C) + Lbound(T). (11)

Gradients. Proper updates of the trainable parameters θ

during backpropagation, introduce two fundamental design
properties that must be taken into account. First, gradients
should only be accumulated from offset predictions that
actually participate in paths associated with the currently
minimum tree cost and the rest must be disregarded. Sec-
ond, since we are recursively evaluating the cost function,
we are imposing the dependence of each node to the deci-
sion of preceding nodes, up to the root. The latter implies
that proper gradients should exist and be accumulated from
every child node in the minimum tree, requiring special han-
dling of specific components, as well as proper scaling of the

123

3802 I. Evangelou et al.

gradients due to normalisation of the input in each cascaded
encoder.

The calculation of gradients for the encoder is discussed
in Sect. 5. We devote an entire section to this, since our con-
tributions to enable the differentiability of the recursive cost
function are crucial for the determination of a spatial subdi-
vision with a gradient-based optimiser.

4.3 Tree inference

In our method, the actual hierarchy does not explicitly par-
ticipate in the loss function, but is rather optimised implicitly
through its cost. The inference of the hierarchy can be per-
formed either recursively or greedily and expanded with any
traditional builder.

Recursive inference. Similar to the training phase, we
apply a forward pass that infers every path permutation and
then, starting from the leaves,we agglomeratively applyEq. 4
in a level-order fashion. When a path that participated on the
minimum tree is decided, we append the plane associated
with that cost. The process is terminated, when the root node
is evaluated.

Greedy inference. A more resource-efficient way to infer
the final tree is to follow a greedy splitting strategy. This
involves only a top-down, level-order traversal over the
inferred tree. For eachP , we can evaluate the local cost using
Eq.4 and decide whether to place a split and continue sub-
dividing until the maximum trained depth is reached or, stop
and declareP as a leaf. Please keep in mind that the offsets at
each node have been already estimatedwith the recursive cost
evaluation. Only the split axis selection is greedily estimated
here, based on that recorded cost. Therefore, in contrast to a
greedy builder, the solution provided by the greedy inference
step uses local decisions albeit for a globally optimised cost.

4.4 Hierarchy population

When the final structure is emitted, it must be populated with
the entire set of primitives. We exploit the fact that in a non-
overlapping spatial domain decomposition of a domainB, the
resulting hierarchy remains valid without any modifications,
for arbitrary subsets of the contained primitives in B. Hence,
after the inference of the splits using the subsampled input,
the application should only distribute the full set of primitives
to the leaf nodes and re-evaluate Eq.4 to get the final cost.

If adaptation of the leaf bounds is required, e.g. in order
to reform the tree as a BVH (Sect. 6.4), the hierarchy can
be refitted in a single linear pass, since the child-to-parent
connections are already inferred from the network.

4.5 Hierarchy expansion

Starting from the clustering produced by the leaves, any exist-
ing algorithm can be employed to extend the hierarchy. This
makes our method easy to integrate and combine with any
existing builder, as demonstrated in our application case stud-
ies (Sects. 6.3 and 6.4). It is important to note that having
generated a low-cost top part of the hierarchy, its subtrees
can be independently computed in a trivially parallel man-
ner.

5 Differentiability of the cost function

Herewe provide details about the end-to-end differentiability
of the builder. Using Eqs. 8 and 4, the partial derivative of our
objective loss function over a trainable parameter are:

∂L

∂θi
= ∂L

∂C

∂C

∂θi
. (12)

While the first partial is trivial, our work contributes to the
evaluation of the second partial derivative.

5.1 Gradients for splitting plane selection

At each tree node, during a forward pass through the tree,
the cost evaluation uses the minimum of the three separate
axial split costs. To be able to propagate gradients through
this three-way selector during back propagation, we do the
following.

First, for a formed binary tree T (k) of depth k, we expand
each node into three separate tuplesP , one for each candidate
splitting axis, so that we can now simultaneously evaluate
the cost for all of them (Fig. 1-left), similar to the pooling
operator. The number of nodes participating in the candidate
path formation becomes |T (k)| = (6k−1)/5 instead of 2k−1
for the binary tree. Now, the trainable parameters only affect
the splitting plane offsets b j and the gradient of the cost for
an arbitrary parameter θi becomes:

∂C

∂θi
=

|T (k)|∑
j=0

∂C

∂b j

∂b j

∂θi
. (13)

By exploiting both properties of axis-independence and
parameter sharing discussed in Sect. 4.1, we can now adapt
Eq.13 to obtain the partial derivative of the path selec-
tion using the negative LogSumExp function nLSE(·; t)
transformation during the backward pass, where parameter
t controls the sharpness of the approximation (here always
t = 1). This particular function has the nice property that
its gradient is the so f tmax function, which forces gradients

123

A neural builder for spatial subdivision hierarchies 3803

to propagate through the path with minimum cost and sup-
pressing the rest in a continuous and smooth manner.

It is nevertheless important to note that the agglomerative
pooling operator over the neural nodesmust be differentiable.
This is in sharp contrast to the usual approaches adopted
in convolutional networks, which apply non-differentiable
forms of pooling. The need arises when more than one paths
through an internal node evaluate to the same cost; due to the
recursive cost evaluation, arbitrarily choosing one of them
will lead to dropping the update of subtree configurations
through gradient back-propagation, which should normally
be updated.

5.2 Differentiating bound selection

When a split is followed at any level by a split in the same
axis (e.g. nx followed by ny and then by nx), the partial
derivatives of lower bounds with respect to splitting offsets
of upper bounds are zero. To overcome this, Eqs. 1 and 2
are re-parameterised, so that the split offset is evaluated as a
linear combination with factor λ of the partition’s bounding
box corners:

b = fb(n,λ,B) = n � [bmin + λ(bmax − bmin)]. (14)

The child node bounding boxes BL ,BR are now updated
according to the modified functions of Eqs. 1 and 2:

gL(n,λ,B) = (bmin, (1 − n) � bmax + fb(λ,B)) (15)

gR(n,λ,B) = ((1 − n) � bmin + fb(λ,B), bmax). (16)

The vector of interpolation parametersλ(m) is the output of an
encoder, operating on the point cloud at any node m through
learnable parameters θi (see Fig. 1-middle).

In order to make the encoder agnostic to bound extents
and therefore be able to generalise its use throughout the
data structure, as discussed in Sect. 4.1, instead of using the
offset λ defined above, the encoder computes and outputs an
offset λ′ for the splitting plane normalised with respect to the
tight bounds of the given input points. This is why the inverse
mapping of λ′ to global node bound space is necessary at the
end of the encoder (inverse transform in Fig. 1-middle).

5.3 Differentiating primitive count functions

Frequently, the constituent parts of the cost function depend
on the number of points N (P) included in the two subdo-
mains of a split node:

NL/R(b;P) =
∑
p∈P

Ip∈PL/R (b). (17)

This is a piece-wise constant function with respect to the
split offset, which, although trivial to implement algorithmi-
cally, results in zero gradient almost everywhere. To avoid
such an undesirable behaviour in a gradient-based optimisa-
tion process, we explicitly provide a replacement gradient,
which guides the optimiser out of the plateau of the piece-
wise constant function.

While in theory a suitable gradient replacement could
result from a linear combination of sigmoid functions, in
practice, this would be problematic, since careful parame-
terisation of the sigmoids is required individually for each
step in the query domain around the splitting offset to avoid
vanishing gradients (wide step) or exploding gradients (nar-
row step). In the following, we propose an alternative smooth
replacement function for gradient computation, which avoids
these issues.

We only discuss here the case of counting the elements for
the left half-space, since the analysis for the other subdomain
is symmetrical. Given Eq.17 and an arbitrary point b0 in the
valid domain we are interested in efficiently determining the
smallest step ε such that it minimally increments the total
count in the space partition by n:

N (b0 + ε;P) = N (b0;P) + n, (18)

or equivalently, at any point b0 we are interested in the gra-
dient that minimally increments the total count. Requiring
that the function’s gradient is additionally bounded, we can
define a replacement gradient for the step-wise function at
b0: ∂N/∂b = n/(ε +e), where e is a small positive constant.
The new gradient is continuous almost everywhere (except
at the finite step discontinuities) and bounded.

In the backward pass, the evaluation of ε at an arbitrary
node requires the masking of the input points at the current
offset b0 and the next step offset where:

b′ = b0 + ε = min
Pi

{|pi − 1|} + 1, (19)

where i is the queried axis. To determine the value of n, a
summation is required over the two unmasked points sets. To
accommodate for predicted offsets outside the current node’s
domain, in such an event, we zero the gradient stream and the
loss gradient is solely determined by the dedicated penalty
function of Eq.10.

6 Applications and evaluation

We implemented our architecture in Tensorflow 2.9 and
trained all our models using the Adam optimiser with learn-
ing rate 1.e-5 and the default settings. We also used batches
of size 64, input point clouds of size 2048 and He-uniform
weight initialisation for all layers excluding the last linear

123

3804 I. Evangelou et al.

Fig. 2 Illustration renderings of the scenes in the order of appearance in our experiments. Credits for scenes: Blue ©[3], Green ©[26], Red ©[19],
Magenta ©[22]

one. All experiments were performed on an NVIDIA RTX
3080Ti with 12 GB of VRAM and an Intel i7 12700K CPU.

Our approach was evaluated on two discrete applications:
nearest neighbour (Sect. 6.3) and ray tracing (Sect. 6.4). For
all experiments we used the greedy tree inference (Sect. 4.3)
due to its significantly faster hierarchy extraction at a similar
query performance (< 1% difference).

6.1 Dataset

We trained and tested the model separately on a customly
designed dataset consisting of 21 publicly available scenes
that capture a variety of cases, from outdoor and indoor envi-
ronments, to single-element meshes (Fig. 2). The primitive
count in these scenes ranges from 57K to 18.5M. It is of no
interest to apply the method to very small populations, since
the build and query overheads exceed the benefits of apply-
ing a recursive evaluation. For the special case of the nearest
neighbour query task, we choose 1 million area-weighted

samples from the surfaces of each scene and use these as the
initial dataset.

To train the network on point distributions that do not only
correspond to entire environments, but also capture structure
and primitive distributions at different detail levels, the train-
ing datasets are compiled as follows: for each scene in Fig. 2,
from Contemporary Bathroom (a) to Modern Hall (q), we
build a shallow k-d tree and sample 2048 points from every
node, excluding the root. In the nearest neighbour case, we
directly and uniformly draw 2048 samples from each node,
while for the ray tracing case, we uniformly sample the tri-
angle population, to retain the original primitive distribution
and then, draw a single uniform sample from the selected
primitive’s surface. Finally, each point set is augmented with
2 random rotations. The training dataset consists of 3162
point clouds for the nearest neighbours case and 3114 for the
ray tracing.

Even though this is an unsupervised method, we choose
not to measure the quality directly on the training data, but

123

A neural builder for spatial subdivision hierarchies 3805

Cost vs Input Size/Tree Depth

Depth 3 4 5 6 7 Subsampling 512 1024 2048

0

1.0

2.0
2.25

0.5

1.5

0.75

1.75

0.25

1.25

SAHVVH

Standard Deviation

Fig. 3 Normalised VVH/SAH tree cost for a greedy k-d tree builder,
using lower input sampling sizes, versus the entire data set (red line).
Trees 3 to 7 levels deep are examined, with different sample counts
(512, 1024 and 2048), averaged over all test scenes. Subsampled inputs

for trees less than 5 and 6 levels deep, for the VVH and SAH cost
functions, respectively, are able to properly represent the original point
distributions and yield hierarchies with cost comparable to the baseline
greedy k-d tree builder

rather construct a separate test set. The test set consists of
64 input point clouds sampled from the entire geometry of
each scene (a) to (q), using the same sampling scheme as
before, butwith different scene parts from the ones used in the
training set. Additionally, the test set includes 4 new scenes,
from Breakfast Room (r) to Sports Car (u) (see Fig. 2). To
conclude, validation is performed in 1344 point clouds for
each task.

6.2 Impact of input size

Todecide the appropriate depth of each inferred tree structure
presented in the application sections in the main paper, we
computed the average loss in quality, when constructing trees
of increasing depth from a fraction of the input data. The
results, averaged over all test scenes are shown in Fig. 3.
In this experiment, to isolate the particular parameter, the
(subsampled) input size, we constructed the trees with the
greedy builder, instead of the neural one. We observe that for
trees of depth up to 5 for the VVH cost (Fig. 3-left), and trees
of depth up to 6 for the SAH cost (Fig. 3-right), most of the
target quality is retained with input populations ranging from
1024 to 2048 samples, while the improvement of increasing
further the input size is marginal.

Given the capabilities of our hardware setup, which limits
the input size to 2048, it is not beneficial to train trees of 7
levels or more, as Fig. 3 confirms.

In order to train the model for deeper trees in each task,
we hypothesise that not only the sample population should be
increased, but also density priors on the input points should
be given, something we plan to investigate in the future.

It is worth noting that for the given input size and tree
depth, the inferred hierarchies are complete balanced trees.

6.3 Application: nearest neighbour search

Querying the nearest neighbours of points or gathering sam-
ples within a certain radius are common tasks in geometry
processing [2] and global illumination algorithms, such as
photon mapping [13] and its derivative methods. Such tasks
typically involve constructing a k-d tree and optimising the
VVH cost function (Eqs. 4 and 6).We set traversal and primi-
tive intersection parameters to ct = 1.2, ci = 1, according to
standard practice in the bibliography, and use a VVH radius
of 10−4 (see V (B) in Eq.6). To balance between degrada-
tion in quality due to subsampling and tree depth, we train
our model with 5 levels (24 leaves).

The typical approach to optimise such a function is to
greedily evaluate the locally optimal alternative cost at each
individual node. Since the VVH cost function is piece-wise
constant, one needs to exhaustively evaluate partition splits
only at the input point set member coordinates, for each split-
ting axis and keep the subdivision with the lowest cost. We
use such a builder with a greedy cost evaluation as the base-
line in our experiments. We use the inferred hierarchy of
the neural builder as the topmost part of our hierarchy and
fully populate the leaves and expand them with a greedy k-d
tree builder. Then, we compare query performance against a
corresponding k-d tree constructed entirely with the greedy
builder.

Traversal. To benchmark the quality of our tree, we apply
three query configurations as follows: (a) traversing the tree
and recording the population in the resulting leaf, as this
point-in-volume type of query is directly compatible with
the VVH cost function, (b) k-nearest search, with k = 1,
in order to avoid distorting the traversal time by overheads
introduced by extra result container updates on the GPU side

123

3806 I. Evangelou et al.

0

0.4

0.8
0.6

0.2

1.0
1.2
1.4

ba c d e f g h i j k l m n o qp r s ut avg

k-nn
Timings for Point Queries

0

0.4

0.8
0.6

0.2

1.0
1.2
1.4

ba c d e f g h i j k l m n o qp r s ut avg

Radius Search

0

0.4

0.8
0.6

0.2

1.0
1.2
1.4

ba c d e f g h i j k l m n o qp r s ut avg

Point-in-Volume

Fig. 4 Relative timings for point queries, where samples are uni-
formly distributed on the geometric surfaces. Results are normalised
with respect to the reference greedy k-d tree implementation (red line)

and (c) radius search with r = 1.e − 4, by reporting the
population in the queried domain.

For all query configurations we generate 10 batches of
1Mil. area weighted samples on the geometric surfaces of
each scene. This distribution is characteristic for common
applications, such as point cloud registration, particle trac-
ing and spatial illumination caching. For both hierarchies we
use the samenode layout inmemory andCUDA traversal ker-
nel identical to the backtrack strategy employed by [25]. In
Fig. 4 we report query times relative to the greedy standalone
builder indicating that the final tree quality can be improved
with our builder. Our results indicate that our approach, in
most cases, performs better than the reference method, for
all chosen tasks.

We also deem informative to mention that for the set of
experiments that perform radius search queries, a builder
using theVVHcost function ofEq.6 expands a node’s extents
by a radius r .While the baseline k-d tree and the lower part of
the hybrid hierarchy are computed using the specific search
radius at hand, our network is trained once, with a constant
value of r = 1.e−4. During the inference stage, using higher
radii r than what the network has been trained with (here
r = {0.5%, 1%, 2%, 4%} of the scene’s diagonal), has the
negligible performance impact of ±1%. This is attributed

to the fact that at shallower tree depths, the relative node
expansion due to different radii is not significant, affecting
minimally the overall structure shape, in contrast to the sig-
nificant extent changes that occur at the lower (and much
smaller) hierarchy nodes.

Construction. To build the topmost part of the hierarchy,
the neural builder requires a constant time of 2.5ms plus the
negligible cost of 1ms to distribute the actual data points into
the inferred leaves. Compared to a GPU k-d tree builder [36]
for building the top part of the tree , using the same num-
ber of samples as the neural builder, either via exhaustive
construction or binning (12 to 256 bins), our approach out-
performs the GPU builder by 5.32× and 3.33 × −18.01×,
respectively. From the remaining part of the tree, the expan-
sion of each subtree hierarchy can be fully parallelised using
the sameGPU builder. In total, we obtain a speedup of 1.26×
on average to construct our hybrid tree over the GPU imple-
mentation with any building strategy.

6.4 Application: ray tracing

Ray tracing is nowadays used for offline and real-time ren-
dering but also for other, non-image synthesis tasks, ranging
from collision detection to geometry analysis. In this appli-
cation category, ray-primitive acceleration data structures
typically employ the SAH cost function (Eqs. 4 and 5), greed-
ily (locally) evaluated at each node. For this task, we train
our model for trees with 6 levels (25 leaves), for which the
degradation in quality due to subsampling is marginal.

To build meaningful acceleration data structures for ray
traversal, we first convert the 6-level k-d tree produced by
the neural builder to a standard BVH layout. The conversion
is done by exploiting the non-overlap-ping property of the
k-d tree and assigning the corresponding bounds of clipped
primitives to the associated neural leaves. This comes at a
negligible cost of geometry duplication, which ranges from
0.4% to 7.6% for the Barcelona Pavilion (m) and Wooden
Staircase (p) scenes, respectively. After the final hierarchy
has been constructed and using the inferred connectivity, the
bounding boxes of the upper tree are tightly re-fitted in a lin-
ear bottom-up pass. Next, we extend the 6-level tree with the
publicly available implementation of ATRBVH [6] to obtain
an end-to-end BVH hierarchy and we also do the same for
the SBVH [29] implementation exposed through the Embree
v3.13.4 [33] custom builder API.

We include performance comparisons for trees built
entirely with both the SBVH and the ATRBVH algorithms.
For both builders, we use the default settings and for the
training/inference and the hierarchy construction stages, we
use ct = 1.2 and ci = 1, as is typical in the bibliography.
For every builder, we use the same node layout in memory
and CUDA traversal kernel as discussed by [24], where we
modify it to also exploit the non-overlapping bounds of the

123

A neural builder for spatial subdivision hierarchies 3807

0

0.4

0.8
0.6

0.2

1.0
1.2
1.4

ba c d e f g h i j k l m n o qp r s ut avg

Neural + ATRBVH

0

0.4

0.8
0.6

0.2

1.0
1.2
1.4

ba c d e f g h i j k l m n o qp r s ut avg

Coherent Rays Incoherent Rays

Neural + SBVH

Fig. 5 Relative traversal timings of neural + ATRBVH (top) and neural
+ SBVH (bottom), separately for primary (yellow) and 4 diffuse indirect
rays (blue). Times measured on path-traced scenes and normalised with
respect to baseline ATRBVH and SBVH (red line), respectively

upper part of the tree to terminate rays early, when traversing
it.

Traversal. To measure the performance of coherent and
incoherent ray distributions in typical rendering applications,
we employ path tracing using the viewpoints shown in Fig. 2,
along with 3 additional meaningful viewports for each scene.
We render the images at 3840 × 2160 resolution with 5
paths per-pixel—the primary rays followed by 4 purely dif-
fuse indirect bounces—and record the average ray wavefront
times over 5 independent iterations. In Fig. 5, we present
query times relative to the standalone builders. Our results
indicate that our builder is able to produce hierarchies of com-
petitive or better performance, for both ray distributions.

Construction. Building the final hierarchy involves three
main steps: first, the greedy inference for the top part of
the tree (see Sect. 4.3), with a constant time of 5ms mea-
sured with the Tensorflow API in Python that encompasses
overheads between tensor function calls. Here, constructing
the top part of the tree with the GPU k-d tree builder (as
in Sect. 6.3) using the same number of samples as the neu-
ral builder, we obtain 2.91× and 1.88 × −13.8× speedup
for exhaustive construction and binning, respectively. Next,
we assign the clipped bounds of the actual primitives to the
associated leaves. This operation can be fully parallelised in
the GPU and takes about 2ms on average for every scene,
excluding Pavilion (m) and Power Plant (s) which require
5ms and 13ms, respectively. Finally, the lower hierarchy is
constructed, using a standard builder, as explained next.

Expanding with the ATRBVH builder, we build all LBVH
trees in a single kernel call and then optimise and collapse
only once the expanded neural nodes. Since the ATRBVH

builder works on the entire, partitioned input, the total build
time increases, as expected, due to the segmented operations
invoked in the kernels. The cumulative overhead of inferring
the top part of the tree, distributing the primitives and invok-
ing the builder increases the build time by a factor of 3× on
average for all scenes.However, this largeoverhead is slightly
misleading, as ATRBVH requires less than 8ms on average
to build the final hierarchy for the relatively lighter scenes,
and consequently, the neural inference roughly amounts to
55% of the total build time.

For the case of hierarchy expansion based on Embree’s
SBVHbuilder we exploit the CPUparallelism and employ its
builder independently for every leaf. Similar to the previous
case, there is an overhead from the input partitioning, added
to the inference and the primitive distribution to leaves. For
this case, the average total build time increases by a factor
of 1.24× compared to the standalone builder. The smaller
overhead compared to ATRBVH is attributed to the fact that
theCPUstandalone builder is slower.Additionally, the thread
scheduling in the host side favours our method in several
cases.

7 Discussion and conclusions

In this work, we proposed an unsupervised neural method to
infer a spatial data structure through explicit optimisation of a
recursive cost function. We demonstrated its expressiveness
to generate low-cost solutions in two widely popular tasks
and experimentally validated its consistency and generali-
sation capabilities. Despite the fact that our implementation
for the data structure inference relies on a general-purpose
API, the simplicity and size of the resulting network makes
the neural builder an ideal candidate for a high-performance
single-kernel GPU implementation.

Employing a hybrid builder to produce the top part of
an acceleration data structure, our method can produce high-
quality spatial splits, in short and constant time, regardless of
the scene size, enabling early query termination and allowing
for a fast third-party builder to efficiently operate by distribut-
ing thework on the sub-trees, even for large inputs. To handle
prohibitively large inputs we applied uniform subsampling
and demonstrated that, after embedding the original input,
the hierarchy can still retain most of the original quality.
To adequately handle local structure at arbitrary tree depths,
either more elaborate input point priors or an adaptive input
sampling scheme could be explored. Finally, an interesting
future direction would be to investigate the application of
recursively cascading neural-network-based trees to fully
expand the tree since at its current state, naïvely sharing the
same parameters for lower treelet neural blocks is expected
to diminish the performance.

123

3808 I. Evangelou et al.

Acknowledgements This researchwas funded by theHellenic Founda-
tion forResearch and Innovation (HFRI) under the “3rdCall forH.F.R.I.
Research Projects to support Post-Doctoral Researchers” (Project No:
7310).

Funding Open access funding provided by HEAL-Link Greece.

Data availability Our code and datasets are publicly available at https://
github.com/cgaueb/nss under the MIT license.

Declarations

Conflict of interest All authors declare that they have no conflicts of
interest.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Bentley, J.L.: Multidimensional binary search trees used for asso-
ciative searching. Commun. ACM 18(9), 509–517 (1975)

2. Besl, P.J., McKay, N.D.: A method for registration of 3-D shapes.
IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 239–256 (1992)

3. Bitterli, B.: Rendering resources (2016)
4. Charles, R.Q., Su, H., Kaichun, M., Guibas, L.J.: Pointnet: Deep

learning on point sets for 3d classification and segmentation. In:
2017 IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pp. 77–85 (2017)

5. Defferrard,M., Bresson, X., Vandergheynst, P.: Convolutional neu-
ral networks on graphs with fast localized spectral filtering. In:
NIPS’16, pp. 3844–3852. Curran Associates Inc., Red Hook, NY,
USA (2016)

6. Domingues, L.R., Pedrini, H.: Bounding volume hierarchy opti-
mization through agglomerative treelet restructuring. In: Proceed-
ings of the 7th Conference on High-Performance Graphics, HPG
’15, pp. 13–20. Association for Computing Machinery, New York,
NY, USA (2015)

7. Ganestam, P., Barringer, R., Doggett,M., Akenine-Möller, T.: Bon-
sai: rapid bounding volume hierarchy generation using mini trees.
J. Comput. Graph. Tech. (JCGT) 4(3), 23–42 (2015)

8. Goldsmith, J., Salmon, J.: Automatic creation of object hierarchies
for ray tracing. IEEE Comput. Graph. Appl. 7(5), 14–20 (1987)

9. Hanocka, R., Metzer, G., Giryes, R., Cohen-Or, D.: Point2mesh:
a self-prior for deformable meshes. ACM Trans. Graph. 39(4),
126:1–126:12 (2020)

10. Hendrich, J., Meister, D., Bittner, J.: Parallel BVH construction
using progressive hierarchical refinement. Comput. Graph. Forum
36(2), 487–494 (2017)

11. Huber, P.J.: Robust estimation of a location parameter. Ann. Math.
Stat. 35(1), 73–101 (1964)

12. Hunt, W., Mark, W.R., Fussell, D.: Fast and lazy build of accelera-
tion structures from scene hierarchies. In: 2007 IEEE Symposium
on Interactive Ray Tracing, pp. 47–54 (2007)

13. Jensen, H.W.: Global illumination using photonmaps. In: Proceed-
ings of the Eurographics Workshop on Rendering Techniques ’96,
pp. 21–30. Springer, Berlin (1996)

14. Kalojanov, J., Billeter, M., Slusallek, P.: Two-level grids for ray
tracing on GPUs. Comput. Graph. Forum 30(2), 307–314 (2011)

15. Karras, T., Aila, T.: Fast parallel construction of high-quality
bounding volume hierarchies. In: Proceedings of the 5th High-
Performance Graphics Conference, HPG ’13, pp. 89–99. Associa-
tion for Computing Machinery, New York, NY, USA (2013)

16. Kipf, T.N., Welling, M.: Semi-supervised classification with graph
convolutional networks. In: 5th International Conference on Learn-
ing Representations, ICLR 2017, Toulon, France, April 24–26,
2017, Conference Track Proceedings. OpenReview.net (2017)

17. Klokov, R., Lempitsky, V.S.: Escape from cells: deep kd-networks
for the recognition of 3d point cloud models. In: 2017 IEEE Inter-
national Conference on Computer Vision (ICCV), pp. 863–872
(2017)

18. Li, R., Li, X., Hui, K.H., Fu, C.W.: SP-GAN: sphere-guided 3d
shape generation and manipulation. ACM Trans. Graph. 40(4), 1–
12 (2021)

19. Lumberyard,A.: Amazon lumberyard bistro, open research content
archive (ORCA) (2017)

20. MacDonald, D.J., Booth, K.S.: Heuristics for ray tracing using
space subdivision. Vis. Comput. 6(3), 153–166 (1990)

21. Maturana, D., Scherer, S.: Voxnet: a 3d convolutional neural
network for real-time object recognition. In: 2015 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS),
pp. 922–928 (2015)

22. McGuire, M.: Computer graphics archive (2017)
23. Meister, D., Bittner, J.: Parallel reinsertion for bounding volume

hierarchy optimization. Comput. Graph. Forum 37(2), 463–473
(2018)

24. Meister, D., Ogaki, S., Benthin, C., Doyle, M.J., Guthe, M., Bit-
tner, J.: A survey on bounding volume hierarchies for ray tracing.
Comput. Graph. Forum 40(2), 683–712 (2021)

25. Muja, M., Lowe, D.G.: Fast approximate nearest neighbors with
automatic algorithm configuration. In: VISAPP International Con-
ference on Computer Vision Theory and Applications, pp. 331–
340. INSTICC Press (2009)

26. Pharr, M., Wenzel, J., Humphreys, G.: Scenes for pbrt-v3 (2016)
27. Pérard-Gayot, A., Kalojanov, J., Slusallek, P.: GPU ray tracing

using irregular grids. Comput. Graph. Forum 36(2), 477–486
(2017)

28. Riegler, G., Ulusoy, A.O., Geiger, A.: Octnet: learning deep 3d
representations at high resolutions. In: 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 6620–6629
(2017)

29. Stich, M., Friedrich, H., Dietrich, A.: Spatial splits in bounding
volume hierarchies. In: Proceedings of the Conference on High
Performance Graphics 2009, HPG ’09, pp. 7–13. ACM, NewYork,
NY, USA (2009)

30. Wald, I.:On fast construction of sah-based bounding volumehierar-
chies. In: Proceedings of the 2007 IEEE Symposium on Interactive
Ray Tracing, RT ’07, pp. 33–40. IEEE Computer Society, USA
(2007)

31. Wald, I., Günther, J., Slusallek, P.: Balancing considered harmful—
faster photon mapping using the voxel volume heuristic—. Com-
put. Graph. Forum 23(3), 595–603 (2004)

32. Wald, I.,Havran,V.:Onbuilding fast kd-trees for ray tracing, andon
doi2ng that in o(n log n). In: 2006 IEEE Symposium on Interactive
Ray Tracing, pp. 61–69 (2006)

123

https://github.com/cgaueb/nss
https://github.com/cgaueb/nss
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

A neural builder for spatial subdivision hierarchies 3809

33. Wald, I., Woop, S., Benthin, C., Johnson, G.S., Ernst, M.: Embree:
a kernel framework for efficient CPU ray tracing. ACM Trans.
Graph. 33(4), 1–8 (2014)

34. Wang, P.S., Sun, C.Y., Liu, Y., Tong, X.: AdaptiveO-CNN: a patch-
based deep representation of 3d shapes. ACMTrans. Graph. 37(6),
1–11 (2018)

35. Zaheer, M., Kottur, S., Ravanbhakhsh, S., Póczos, B., Salakhut-
dinov, R., Smola, A.J.: Deep sets. In: Proceedings of the 31st
International Conference on Neural Information Processing Sys-
tems, NIPS’17, pp. 3394–3404. Curran Associates Inc., Red Hook,
NY, USA (2017)

36. Zhou, K., Hou, Q., Wang, R., Guo, B.: Real-time KD-tree con-
struction on graphics hardware. ACM Trans. Graph. 27(5), 1–11
(2008)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Mr. Iordanis Evangelou Iordanis
Evangelou was born in Athens,
Greece, in 1990. He received a 4-
year B.Sc. in Computer Science
from the Department of Informat-
ics at the Athens University of
Economics and Business and an
M.Sc. in Computer Science from
the same department. He is cur-
rently a doctoral student under
the supervision of Georgios
Papaioannou, and his main field
of research is high-performance
photo-realistic rendering and
machine learning methods for
computer graphics.

Prof. Georgios Papaioannou is an
Associate Professor at the Depart-
ment of Informatics of the Athens
University of Economics and
Business (AUEB) and head of the
department’s computer graphics
group. His research is focused on
real-time computer graphics algo-
rithms, photorealistic rendering,
shape analysis and geometry pro-
cessing. Prof. Papaioannou has
been the principal investigator for
AUEB in many EU and nationally
funded projects as well as R&D
collaborations with the industrial

sector. Prof. Papaioannou is also currently the director of the MSc
programme in digital methods for the humanities and member of the
UNESCO chair on digital methods for the humanities and social sci-
ences. He has more than 85 publications in peer-reviewed international
scientific journals, conference proceedings and volumes and is also a
member of ACM SIGGRAPH and Eurographics associations.

Dr. Konstantinos Vardis is a post-
doctoral fellow at the Department
of Informatics of the Athens Uni-
versity of Economics and Busi-
ness. His research work primar-
ily focuses on real-time render-
ing techniques, global illumina-
tion and interactive ray tracing
and has been published in peer-
reviewed scientific journals and
conference proceedings. Dr. Vardis
has also participated in several
national and European projects and
has served as a reviewer and a
program committee member in

leading international conferences and journals. Furthermore, he has
extensive industry experience, having delivered projects in a multitude
of areas such as game development, large data volume visualisation,
geoinformatics and GPU drivers.

Dr. AnastasiosGkaraveliswas born
in Larissa, Greece, in 1989. He
received his 4-year B.Sc. in Com-
puter Science from the Depart-
ment of Informatics at the Athens
University of Economics and Busi-
ness and a Ph.D. in Computer
Graphics in 2019 from the same
department, under the supervision
of Prof. Georgios Papaioannou.
The subject of his doctoral the-
sis was "Efficient Algorithms for
Inverse Lighting Design". His re-
search interests are focused on
computer graphics and, in partic-

ular, real-time and offline global illumination algorithms and photore-
alistic rendering.

123

	A neural builder for spatial subdivision hierarchies
	Abstract
	1 Introduction
	2 Preliminaries
	3 Related work
	4 The neural k-d tree builder
	4.1 Architecture
	4.2 Training
	4.3 Tree inference
	4.4 Hierarchy population
	4.5 Hierarchy expansion

	5 Differentiability of the cost function
	5.1 Gradients for splitting plane selection
	5.2 Differentiating bound selection
	5.3 Differentiating primitive count functions

	6 Applications and evaluation
	6.1 Dataset
	6.2 Impact of input size
	6.3 Application: nearest neighbour search
	6.4 Application: ray tracing

	7 Discussion and conclusions
	Acknowledgements
	References

