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Abstract
Real-time play recognition and classification algorithms are crucial for automating video production and live broadcasts of
sporting events. However, current methods relying on human pose estimation and deep neural networks introduce high latency
on commodity hardware, limiting their usability in low-cost real-time applications. We present PlayNet, a novel approach to
real-time handball play classification. Our method is based on Kalman embeddings, a new low-dimensional representation
for game states that enables efficient operation on commodity hardware and customized camera layouts. Firstly, we leverage
Kalman filtering to detect and track the main agents in the playing field, allowing us to represent them in a single normalized
coordinate space. Secondly,weutilize a neural network trained in nonlinear dimensionality reduction through fuzzy topological
data structure analysis. As a result, PlayNet achieves real-time play classification with under 55 ms of latency on commodity
hardware, making it a promising addition to automated live broadcasting and game analysis pipelines.

Keywords Handball play classification · Real-time multimedia · Neural networks · Kalman filtering · Dimensionality
reduction

1 Introduction

Small sports teams and organizations often struggle with
broadcasting their games and analyzing game data due to the
high costs associated with the necessary manpower, logis-
tics, and hardware. Automatic live video production with
commodity hardware and no human intervention offers a
low-cost solution to this problem. However, to accomplish
it, real-time play recognition is a crucial task that needs to
be addressed before the automatic broadcasting system can
operate reliably.
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The highly unpredictable nature of player movements in
invasive sports such as handball and the variability of the
background scenarios present many different issues when
applying classical computer vision algorithms. In this con-
text, learning-based approaches have emerged as promising
alternatives to enhance automatic video production and game
data analysis robustness. However, state-of-the-art methods
often address produced video content instead of raw video
footage, assume a broadcasting signal delay, use specialized
tracking hardware, or operate in fully offline regimes.

This paper presents PlayNet, a novel approach for hand-
ball play classification that can work with only raw video
footage and operate in real time using GPU commodity hard-
ware. Consequently, PlayNet can guide physical cameras in
real-time, such as motorized PTZs, or switch views from
multiple fixed cameras, as required for the automatic live
broadcasting of sporting events. In summary, the main con-
tributions of this work are:

– WeproposeKalman embeddings, a low-dimensional rep-
resentation for a game frame that leverages Kalman
filtering and a neural network trained to perform non-
linear dimensionality reduction. This representation has
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demonstrated its effectiveness in real-time play classifi-
cation throughout our experiments.

– We introduce the ONTV (Orthographic Normalized Top-
View) space, a normalized representation of the game
area. This space effectively decouples the game state
from camera configurations, enabling PlayNet to accom-
modate various camera setups and courts.

– We have developed PlayNet, a practical handball play
classifier implemented using the abstractions above.
PlayNet has been successfully deployed in a production
environment, enabling automatic live broadcasting.

The rest of the paper is organized as follows: Sect. 2
reviews the state-of-the-art in the automatic classification
of game states in sports videos. Section 3 introduces the
domain and the fundamentals of the problem at hand. The
PlayNet architecture is first outlined in Sect. 4, whereas its
main components are described in Sects. 5 and 6. Imple-
mentation details are shown in Sect. 7, and performance and
accuracy are evaluated and discussed in Sect. 8, compar-
ing them to other modern approaches on a sample dataset
and discussing system limitations and future work. Finally,
in Sect. 9, we provide our conclusions.

2 Related work

Shih et al. [35] have published a survey that provides a
comprehensive and in-depth interpretation of the potential
insights gained through content-aware sports video analysis.
Another survey by Cuevas et al. [11] discusses techniques
and applications for analyzing sports video sequences. They
include an in-depth discussion about event detection and
game analysis. Despite being focused on soccer, it remains
an interesting read related to our work. Other approaches [28,
30, 40] rely on specialized tracking hardware, such as iner-
tial measurement units (IMUs), to detect semantic events
and improve tracking. This section restricts our discussion to
closely related works with similar goals and avoids expen-
sive capture setups or tracking hardware. Next, we focus our
effort on contextualizing the principal contributions of our
work within the current state-of-the-art.
Semantic event detection in sports. Semantic event detection
research focuses on automated processes for identifying and
classifying relevant events that may occur during a sporting
event. This information provides a better understanding of
the game, and can be used for various purposes such as game
analysis, player evaluation, and generating highlights and
summaries of the game for broadcasting or replay.Most of the
proposed automated techniques for detecting semantic events
in sports rely on specific cues in the video footage [11, 12,
29, 39]. These cues can include captions, banners, scene cuts,
and various visual elements added during the live broadcast

or in post-production. However, it is important to note that
this contextual information is typically absent from the raw
video footage. As a result, automated sports broadcasting
systems like ours cannot depend on these cues to detect and
classify events.

Other works address raw video footage by performing
offline analysis after the end of the game or a fragment to be
produced [14, 17, 26, 27, 36], but none of them accomplished
real-time game state classification. In contrast, Schlipsing
et al. [34] analyze raw video footage of soccer matches in
real time, but their focus was player classification rather than
semantic event detection. Our work introduces a handball
play classifier working in real-time on raw video footage that
can detect meaningful semantic events for automatic broad-
casting.

Play state recognition for automatic video production. Play
state recognition is a prerequisite for automatic broadcasting
systems and video production [6, 11, 12, 39]. The connection
between semantic event detection and play state recognition
is that the detection of specific events can provide valuable
information that can be used to determine the current play
state of the game. For example, Quiroga et al. [32] achieve
automatic video production of basketball games using neural
networks. However, authors report up to 10 s. of latency since
their system operates in the cloud, which may be acceptable
for deferred live broadcasting, but not for live production
using PTZ cameras [5]. Our work aims to fill the real-time
game state classification gap for automatic live broadcasting
systems.

Supervised dimensionality reduction. Our method detects
and tracks game agents in the court, representing their move-
ment patterns in a normalized coordinate space. However, the
high dimensionality of this representation poses computa-
tional challenges. To address this, we employ dimensionality
reduction techniques for faster and more accurate results. In
previous studies such as [21, 22] this problem was addressed
using a two-dimensional extension of random projection for
feature extraction, and a two-dimensional discrete cosine
transform for feature fusion. While exploring more recent
relevant literature, promising techniques such as [1, 2, 25,
31] were studied, but they required processing all data points
for embedding new ones, rendering them unsuitable for real-
time applications.Another noteworthy approach is [2],which
showcases an interactive visual analytics system capable of
visualizing time-series data utilizing several dimensionality
reduction techniques. However, this approachwas unsuitable
for our problem as it was primarily developed for visualiza-
tion rather than classification. Among the options available,
IVIS [37] appears to be the most suitable approximation
for our specific use case. It employs a Siamese network
architecture to embed data points and, following testing, has
demonstrated its capability to perform in real time. Notably,
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Fig. 1 Example frames showcasing the seven classes considered in PlayNet, along with the number of frames of each class included in the dataset.
The corresponding ONTV representations are shown above the video frames

none of the evaluated approaches have surpassed our method
in terms of performance and accuracy in our use case.

Handball datasets. Most existing sports event detection
datasets predominantly use video data and cater to specific
sports, leaving handball with a paucity of publicly available
datasets. In addition, although some datasets annotate player
actions [17], game state annotation is generally absent. A
notable exception is EIGD-H [3], a multimodal benchmark
dataset containing synchronized video, audio, and positional
data for handball games. Their authors propose a unified tax-
onomy of high-level ball-centered events in invasion games
like handball. In addition, their dataset contains handcrafted
frame annotations by domain experts, adding up to a total
of 125 min. of playing time. Our work introduces an open
dataset for handball play classification released under the
CC-BY-NC license at Zenodo.1 Our dataset comprises 1mil-
lion labeled game states and their associated positional data,
corresponding to approximately 695 min of playing time.
However, we cannot release the raw video frames for com-
mercial and legal reasons. Additional information about our
dataset is disclosed in Sect. 8.

3 Problem statement

Our primary focus is the real-time classification of meaning-
ful states in handball games, using only rawvideo footage and
commodity hardware. This task is essential for the low-cost,
human-free seamless operation of production video cameras
while ensuring minimal latency in the live broadcast.

Handball play classification. From a live broadcast produc-
tion perspective, we consider the following possible states

1 https://doi.org/10.5281/zenodo.7180366.

in a handball game (see Fig. 1): left/right attack (Al/Ar ),
left/right transition (Tl/Tr , counter-attacks are included
here), left/right penalty (Pl/Pr ) and timeout (T ). Thus, the
problem could be summarized as classifying the current state
of the game into one of the seven aforementioned classes. The
algorithm takes as input a full-court video stream that could
be obtained by just a single camera or an array of cameras
arranged in any layout that fully covers the court.

Camera layout abstraction. Production camera setups for
sports broadcasting can change due to multiple factors, such
as the number of cameras, budget constraints, and unique
characteristics of each indoor arena. As a result, even when
an agent occupies the same position on the court, the obtained
agent positions can differ. Variations in camera location,
perspective, lens configuration, sensor resolution, and other
factors cause these discrepancies. The problembecomes even
more challenging when using multiple cameras with a cus-
tom layout to cover the entire playfield. In addition, creating
a robust algorithm for game state classification faces a gen-
eralization problem due to the variability in data resulting
from tasks like object detection and tracking. These prop-
erties can significantly differ across camera sources, mosaic
layout setups, or camera parameter configurations.

Working hypothesis. In this work, we propose that tracking
the ball and analyzing the movement patterns of individuals
on the court might be adequate for classifying the various
states of a handball game. Our system considers 16 game
agents and the ball, including 14 players divided into two
teams, and two referees. We do not explicitly differentiate
between players of the two teams or players and referees,
except for the ball, which is distinguished from other agents
due to its particular significance.

123

https://doi.org/10.5281/zenodo.7180366


O. A. Mures et al.

Fig. 2 System overview of PlayNet. The upper diagram shows the data
flow in the system, starting with the video ingestion from an arbitrary
number of cameras and finishing with PlayNet’s output, the probabil-
ity distribution for the current frame over the seven classes considered
by the system. Below the diagram, examples of the data traversing the

pipeline are shown: first, a frame obtained from a 2-camera setup; next,
bounding boxes from agent detection and details from agent tracking
across the last three frames; then, the ONTV representation for the
current frame; and finally, the Kalman embeddings (e1 . . . en) used to
classify the frame and produce the output

4 System overview

This section provides a general overview of the proposed
solution for real-time handball game state classification
(Fig. 2). Our method, named PlayNet, consists of the fol-
lowing main stages.

Calibration. The system requires an initial calibration step
for all cameras in the mosaic layout to ensure the proper
operation of PlayNet. Using in-house software, camera oper-
ators manually identify the field borders and the region of
interest within each camera image. This step significantly
enhances agent tracking and effectivelymitigatesmost detec-
tion issues.

Input pre-processing. In this stage, the system decodes and
optimizes the data from each input video stream for efficient
processing in subsequent phases. Standard image processing
operations are applied to each frame, including pixel for-
mat conversion, resizing, cropping, and color normalization.
These operations generate batches of downsampled images,
maximizing the object detection and tracking throughput.

Normalized Game State Representation. During this stage,
the system identifies the relevant handball game agents in the
frame and utilizes their spatiotemporal information to create
a unified game state representation within a common coordi-
nate space. Our proposed approach employs anOrthographic
Normalized Top-View (ONTV) space, described in detail in
Sect. 5. In addition, to manage the positions and velocities of
game agents in the ONTV space, we implemented a custom
Kalman filter.

Prediction engine. In the final stage, our system performs
nonlinear dimensionality reduction based on manifold learn-
ing techniques and fuzzy topological data analysis. This step
results in a condensed version of the game state representa-
tion, referred to asKalman embeddings (described inSect. 6),

ultimately serving as input for a classifier responsible for the
final decision in play classification.

In Sect. 5 and 6, we detail the two main stages of the
PlayNet architecture. In Sect. 7 we provide some implemen-
tation details required to replicate the inner-workings of the
PlayNet system.

5 Normalized game state representation

In this stage, according to our working hypothesis, our sys-
tem aims to obtain a normalized and unified representation
of the game state, summarizing its dynamics from the per-
spective of a handball play classifier. This module receives
one or multiple streams of images from cameras arranged
in a mosaic layout, ensuring comprehensive coverage of the
play area. This work primarily focuses on a setup with two
wide-angle cameras horizontally shifted to cover the entire
playfield (see Fig. 3).

We propose utilizing an object detector followed by an
object tracker to identify and track each game agent across
frames. As a result, the location coordinates of the game
agents (including the game ball) are obtained in separate
coordinate spaces corresponding to each camera in the
mosaic layout. To create a unified and normalized repre-
sentation of the game state, PlayNet projects all positional
information into a consistent coordinate space.

To further enhance the game state representation, a
Kalmanfilter is employed.This filter corrects precision errors
in agent locations detected by the system and incorporates
velocity vectors, capturingmovement speed and direction. In
the following subsections, we provide detailed explanations
for our object detection and trackingmethods, the coordinate
space utilized in PlayNet, and the Kalman filter implemen-
tation.
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Fig. 3 Four-point transform
used to convert coordinates from
per-camera local image spaces
into ONTV space in our
experimental setup. Camera
frames are shown at the top of
the figure and the corresponding
ONTV space is depicted at the
bottom. The corners of the court
are drawn in red and its limits in
green and cyan. Dashed lines
show the mapping between
image space and normalized
corners: cx,y ⇒ ζx,y . Points in
ONTV space are represented as
column vectors

5.1 Agent detection

The agent detection module is a fundamental piece for the
proper operation of PlayNet. Having accurate estimates of
game agent positions is critical for our game state represen-
tation. The main requirement imposed by our system is that a
good balance between detection accuracy and speed is neces-
sary. As long as this requirement is fulfilled, we could replace
the object detector module with a better one, and the whole
system should benefit from it. When starting the design of
PlayNet, we found that YOLOv4 [4] was a reasonable choice
as it fulfills the need to ascertain all game agent locations at
every frame with noticeable robustness and speed.

At this stage, we identify the ball as a separate case of
an agent that requires special treatment, e.g., during the
tracking stage. In terms of considering wrong external game
agents, i.e., coaches or players on the bench, as actual in-
game agents, which would introduce additional noise in our
game representations, we opted to prefilter them by simply
using a strict per-camera region of interest approach.

In our system, the object detector receives per-frame
image data that should cover thewhole playfield and returns a
vector of bounding boxes, one for each game agent detected,
determined by their lower-left corner position x, y, and their
dimensions w × h.

5.2 Agent tracking

To provide a comprehensive representation of the game agent
dynamics that accurately reflects the state of a handball
game, PlayNet incorporates estimations of both the location
and instant dynamics of the game agents, including move-
ment direction and speed. Therefore, it is crucial to establish

the correspondence between game agents across consecutive
frames, precisely the objective of the agent tracking module
in PlayNet. This module analyzes the position of in-game
agents across frames of an input video streamestimating their
trajectories and speeds. Specifically, we perform matching
operations on consecutive frames for all the detected agents.

The Euclidean-Jaccard index.We adapt the Intersection over
Union (IoU), also known as the Jaccard index [33], a widely-
used distance metric for object detection, to incorporate the
Euclidean distance between the involved bounding boxes
(BBs). The Jaccard index quantifies the similarity between
twoBBs (A and B) by comparing the ratio of their overlapped
areas to the area of their union, expressed as J (A, B) = A∩B

A∪B .
However, in fast-paced games like handball, where theremay
be no overlap between consecutive frame BBs, the Jaccard
index fails to differentiate between closer and farther BBs.
To address this limitation, we propose extending the Jaccard
index as a dissimilarity metric by considering the Euclidean
distance between the centroids of consecutive frame BBs:

Jδ(A, B) = δ(cA, cB)(1 − J (A, B)), (1)

Here, δ(cA, cB) represents theEuclideandistancebetween
the two BB centroids cA and cB . In our scenario, to identify
whether two BBs correspond to the same game agent, we
rely on two user-defined parameters: a minimum IoU (Jmin)
and a maximum distance between centroids (δmax ), which
should be tailored for each specific application.

Caching scheme for agent tracking.Our agent tracking mod-
ule maintains a cache C with relevant information for the
detected agents. Initially, a new agent A0 is detected, and
a new entry is created in the cache. In subsequent frames,

123



O. A. Mures et al.

when a new agent Ai is detected, the system searches
for a matching entry by selecting the entry A j that mini-
mizes Jδ(Ai , A j ) ∀ j ∈ C , satisfying δ(ci , c j ) ≤ δmax and
J (Ai , A j ) ≥ Jmin . If A j is a valid match, Ai and A j are
considered the same agent, and the cache entry is updated
accordingly (replacing the position and BB information of
A j with the corresponding data from Ai ). If no match is
found, a new entry is created in C for Ai .

Cache entries that are not matched can persist for several
frames, up to a maximum of fmax , to mitigate the effects
of missing agent detections over consecutive frames. It is
important to note that legitimate agents may not be properly
detected for various reasons, such as the potential loss of
agents during transitions from one part of the field covered
by one camera to another or due to occlusions. In such cases,
PlayNet leverages this cache and the agent dynamics com-
puted by the Kalman filter (described in Sect. 5.4) to estimate
the position of the agent in the playing field. By updating
agent positions with an estimate, PlayNet effectively miti-
gates the problem of missed detections.

Considering the unreliable nature of network connections
and possible variations in processing time, which may result
in skipped frames, the information passed to the following
stages of the PlayNet pipeline always includes an attribute
Δt . This attribute accounts for possible frame skips and rep-
resents the elapsed time between the current and the last
processed frame, enabling accurate computation of agent
dynamics and predictions.

5.3 Orthographic normalized top-view space

Weintroduce theOrthographicNormalizedTop-View (ONTV)
space, a decoupled representation of the handball game state
from a specific camera setup. ONTV resembles a bird’s-
eye view perspective of the entire field (Fig. 3). This 2-D
coordinate space ranges from 0.0 to 1.0 in each dimension,
providing a normalized abstraction of agent positions across
different camera sources. By utilizingONTV,we can abstract
agent positions from the specific image space coordinates
of each camera, making our solution adaptable to various
arena types and camera layout configurations. Additionally,
employing a unified representation eliminates the need for
retraining or creating different versions of the play classifier
algorithm for different camera layouts.

Pre-requisites to operate in ONTV space. The detected agent
positions are initially expressed in local pixel coordinates,
i.e. the image space of a given camera source stream which
may belong to a more complex layout with an arbitrary num-
ber of cameras N . These pixel coordinates correspond to
the lower-center point of the agent BBs obtained during the
detection stage (Sect. 5.1). To ensure accurate operation in
ONTV space, our calibration stage requires the camera setup

to meet two criteria: i) comprehensive coverage of the entire
play field across all camera sources, and ii) clear limits for
each camera to avoid significant overlap with other sources
(as depicted in Fig. 3 for our two-camera setup). Any agents
detected outside of this enclosure are disregarded during the
detection stage.

ONTV perspective transformation. To transform coordinates
from the image space of a camera source into ONTV space,
our system employs perspective transformations [10]. The
perspective transformation for each camera is described by
a 3× 3 homography matrix, Hc, and a scaling factor, u, that
accounts for the projection distance.

The region of interest covered by camera source c
is defined by its four corner points within the court:
(ctl , ctr , cbl , cbr ), expressed in the image space of that cam-
era. We define a four-point perspective transformation to
convert these corner points into ONTV space. By solving a
system of linear equations for each camera source, we obtain
the corresponding Hc and u, enabling us to transform any
point in the image space of a camera into ONTV space (see
A.1 for the complete formulation).

Once we compute Hc and u for each camera source, we
can convert the coordinates (px , py) of an agent in its corre-
sponding camera image space to the final ONTV coordinates
(ox , oy) using the equation:

⎡
⎣
ox
oy
1

⎤
⎦ = 1

u
· Hc ·

⎡
⎣
px
py
1

⎤
⎦ (2)

From this point on, the system utilizes the converted
ONTV coordinates for all agents in the field. For each pro-
cessed frame, k, the output from this step is a collection of
vectors containing the ONTV space position for each agent,
as well as the elapsed time since the previously processed
frame.

5.4 Agent dynamics

The last component of the Normalized Game State Repre-
sentation stage is a Kalman filter that estimates the agent
information needed to characterize the game state (position,
direction, and speed).

Kalman filtering [18, 45] is a well-known solution to esti-
mate the current state of a linear dynamic system based on
inaccurate and uncertain measurements, as well as a widely
adopted technique to predict future system states based on
past estimations. The Kalman filter component in PlayNet
is applied to each agent. It receives the output vectors from
Sect. 5.3 as observations, i.e., the vectorswith agent positions
in ONTV space for the current frame, k. As output, the fil-
ter produces the core of our embeddings, estimated positions
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(updating/correcting the received measurements), and veloc-
ities (direction and speed) in ONTV space for each detected
agent in the current frame.

The carried-out process is based on the Kalman filter
equations explained in A.2, which describe a discrete-time
dynamic system in state-space model form. We consider a
state for each agent, consisting of its position and velocity.
Applying the Kalman equations, each timestep, k, pro-
duces first a new state prediction, x̂−k , purely based on the
dynamic physical process modeled in the filter on the previ-
ous timestep estimate; and finally, a new estimation, x̂k, after
considering the updated observations.

The output of the Agent Dynamics component is a vector
with current estimated states for all agents, âk. This vector
contains estimated agent positions in ONTV space, as well
as their velocity vectors.

6 Prediction engine

The prediction engine is the core stage of PlayNet and the
main contribution of this work: a low-dimensional represen-
tation of the current video frame based on agent movement
patterns, subsequently classified as one of the predefined
seven game state classes. This low dimensional representa-
tion is what we call Kalman embeddings. It is computed by
performing a dimensionality reduction operation on an array
(âk) containing the position and velocity for each agent. As
stated in Sect. 3, our hypothesis in this work is that Kalman
embeddings capture defining features of the different types of
plays in a handball game. Hence, we can use a simpler classi-
fier instead of depending on expensive convolutional features
or LSTM networks. The model flow diagram in Fig. 4 rep-
resents the two components that constitute this module: the
proposed neural network, to reduce data dimensionality, and
the classifier, that provides the final answer that PlayNet
returns for the current frame.

Fig. 4 The PlayNet prediction engine utilizes a neural network to
perform dimensionality reduction of the normalized game state rep-
resentation, âk . The resulting Kalman embeddings, ek , represented as
an n-D vector in the diagram, are then classified to obtain the game state
probability distribution

6.1 Dimensionality reduction

A fully connected neural network with four layers (as shown
in Fig. 4) was chosen to efficiently perform dimensionality
reduction of unseen vectors in PlayNet.

The Kalman filter provides estimated positions and veloc-
ities for every agent, yielding p values for each frame (vector
âk). We use variability analysis with PCA [42] for studying
the variance that is explained by each set of components (for
all sets of principal components, we add up their variances
and divide them by the total variance). Then, we choose the
output dimension n based on the explained variability dis-
tribution. For optimal parameters for handball classification
and more details, please refer to Sect. 7.

Once the optimal output dimension is chosen, looking for
effective ways to decrease the size of the data to be classified,
we analyzed UMAP and other alternative approaches. Uni-
form Manifold Approximation and Projection (UMAP) [25]
is a dimensionality reduction technique that can be used
for visualization and clustering similarly to t-SNE [24].
AlthoughUMAP is commonly used for unsupervised dimen-
sion reduction, it offers excellent flexibility and can be
extended to perform other tasks, such as using categori-
cal label information to conduct supervised dimensionality
reduction. We found that UMAP, similarly to other meth-
ods, is not a suitable technique for our use case due to the
increased processing overhead as the dataset gets bigger: the
complete dataset must be used by UMAP to embed unseen
data. Since PlayNet currently has more than 1 million input
frames in its dataset, which will grow over time, we need
a solution with better scalability with problem size to guar-
antee high-performance operation (refer to Table 1 for the
comprehensive results obtained from each tested method).

We chose an architecture inspired by Auto Encoders
(AEs), which have proven effective as a dimensionality
reduction technique and could be valuable for better cap-
turing latent structure in conjunction with UMAP. Our
implementation uses a fully connected neural networkwith p
units in its input layer (the input vector, âk, is p-dimensional),
o units in the first and second hidden layers, andm in the third
(being m > o), with the output layer containing n elements,
which represent the desired embedding output size (for more
implementation details, please refer to Sect. 7).

Our model was trained using supervised learning with a
training set generated by UMAP, searching for a result as
close as possible in terms of effectiveness but without the
UMAP performance penalty.Mean squared error (MSE)was
used to evaluate the correctness of the predicted embeddings.

The trained neural network computes the Kalman embed-
dings, ek, used as input by the last element in our system for
classifying handball plays.
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Table 1 Accuracy, precision, recall, F-Score, model parameter count,
and inference time for various combinations of embeddings and clas-
sifiers. To provide a clear overview for the reader, we have categorized

the approaches based on their suitability for online or offline processing
(we deem runtimes over 60ms unsuitable for real-time camera control)

Perf. Embed. Classifier Params. Acc. (%) Precision Recall F-Score Time (ms)

Weighted
(%)

Macro
(%)

Weighted
(%)

Macro
(%)

Weighted
(%)

Macro
(%)

Online Ours KNN [9] 1.35M 91.7 91.9 73.4 91.7 74.3 91.8 73.8 17.74

LightGBM [20] 91.6 91.7 72.9 91.6 72.1 91.6 72.5

RandomForest [15] 91.4 91.9 71.9 91.4 73.5 91.6 72.7

ExtraTress [13] 91.7 91.9 72.9 91.7 73.9 91.8 73.4

MLP [38] 91.6 92.0 72.1 91.6 74.8 91.8 73.4

Ensemble [43] 91.7 92.0 72.9 91.7 73.8 91.8 73.3

IVIS [37] KNN [9] 0.05M 90.5 90.1 73.8 90.5 69.1 90.2 71.1 18.13

LigthGBM [20] 90.7 90.4 78.1 90.7 66.8 90.0 70.9

RandomForest [15] 91.6 91.1 78.4 91.6 68.4 91.1 71.6

ExtraTrees [13] 89.3 89.3 85.4 89.3 58.4 88.1 61.9

MLP [38] 90.2 89.0 61.7 90.2 62.5 89.6 62.0

Ensemble [43] 91.2 90.7 76.5 91.2 69.0 90.8 71.7

None MLP [38] 1.53M 89.0 88.7 62.0 89.0 56.2 88.3 57.6 18.60

Offline UMAP [25] KNN [9] 89.1 88.4 70.8 89.1 61.4 88.8 65.8 > 1000.00

LightGBM [20] 89.2 88.6 71.5 89.3 61.3 89.0 66.0

RandomForest [15] 89.2 88.6 69.6 89.2 61.9 88.9 65.5

ExtraTrees [13] 89.1 88.6 69.9 89.2 61.5 88.9 65.4

MLP [38] 89.5 88.8 71.6 89.5 63.0 89.1 67.0

Ensemble [43] 89.2 88.6 69.8 89.2 61.5 88.9 65.4

openTSNE [31] KNN [9] 85.9 84.6 63.1 85.9 56.2 84.8 58.1 > 1000.00

LightGBM [20] 83.9 83.4 65.5 83.9 48.2 81.7 52.2

RandomForest [15] 85.9 85.0 71.0 85.9 53.1 84.5 55.8

ExtraTrees [13] 84.9 83.8 61.4 84.9 50.5 83.2 54.0

MLP [38] 84.6 83.2 59.9 84.6 50.8 83.1 53.9

Ensemble [43] 86.5 85.3 66.4 86.5 55.9 85.2 58.0

MDE [1] KNN [9] 89.0 88.2 71.4 89.0 62.4 88.4 65.4 > 1000.00

LigthGBM [20] 87.1 86.6 70.3 87.1 55.2 85.5 59.2

RandomForest [15] 88.7 87.9 73.6 88.7 58.5 87.6 60.2

ExtraTrees [13] 85.5 84.5 61.8 85.5 51.6 83.9 55.0

MLP [38] 87.8 86.2 60.2 87.8 58.6 86.9 59.2

Ensemble [43] 89.3 88.5 72.9 89.3 61.3 88.5 64.2

None CNN [44] 1.44M 85.8 90.2 64.8 85.8 57.0 87.5 59.2 60.09

LSTM [16] 1.39M 91.5 90.5 68.9 91.5 63.4 90.8 64.7 234.51

CNN+LSTM [19] 1.47M 92.0 91.6 80.2 92.0 70.5 91.6 73.5 104.36

Bold highlights the best results obtained in terms of time and metrics. It also highlights the best classifier and embedding methods
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6.2 Kalman embedding classification

The final component in the pipeline classifies the Kalman
embeddings, which we hypothesize to be a low-dimensional
movement pattern representing the ongoing events on the
handball court. Consequently, this classification step effec-
tively determines the game state for the current frame.

Our approach for this last step is treating it as a super-
vised classification problem: we have a dataset with several
hours of handball videos annotated that we can use to train
a machine learning model, i.e., a set of Kalman embeddings
with their corresponding ground truth classes (more infor-
mation about the dataset in Sect. 8). After testing multiple
alternatives for this classification task, we concluded that a
k-nearest neighbors classifier (KNN) [9] would be the most
suitable option, considering the trade-off between accuracy
and performance and the nature of our embeddings. Table 1
provides a comparison of accuracy and precision for the eval-
uated solutions.

The input to the classifier is the n-D vector of Kalman
embeddings (ek in Fig. 4), and the output is one of the pos-
sible game states: {Al , Ar , Tl , Tr , Pl , Pr , T }. A vector is
classified depending on the most common class among its
nearest neighbors (in the training set). In turn, this means
that to classify our plays; we need to find the K most similar
neighbors (k-nearest neighbors). Since due to the supervised
dimensionality reduction, our input space has data points that
have been pulled apart and separated per class, we presume
that a KNN classifier which relies on its nearest neighbors
to classify unseen data can perform well. The experimen-
tal results presented in Table 1, comparing the KNN and
other classification approaches, support our hypothesis and
demonstrate the effectiveness of the KNN classifier.

The brute force approach for finding k-nearest neighbors
involves examining every vector in the training set, result-
ing in a complexity of O(ns), where n is the number of
dimensions and s is the number of samples in the train-
ing set. To achieve real-time classification and accommodate
a growing dataset, we employ a Ball-tree [23] acceleration
structure, which significantly reduces both training and infer-
ence times. Compared to a brute force approach, the Ball-tree
offers improved efficiency with a query time complexity of
approximately O(n log s).

As a result of this stage, PlayNet classifies the current
frame into one of the seven game states under consideration.

7 Implementation details

This section provides an in-depth look into the low-level
implementation details of Playnet.

Pre-processing. The input video streams from the cameras,
two streams in our experimental setup (as shown in Figs. 2
and 3), are pre-processed entirely on the GPU. First, the
images from each h.264 stream are decoded using NVDEC,
leveraging hardware decoding. Next, the decoded images are
processed using NPP to perform batch pixel format conver-
sions (NV12 to RGB), cropping (area of interest), re-sizing
(4K crop to 832×832) and color remapping (from the range
[0, 255] to [0, 1]). All these operations are conducted on the
GPU without requiring data transfers between the CPU and
GPU.

Agent detection. For object detection in the pre-processed
images, our experiments with YOLOv4 revealed that uti-
lizing batches of 4 × 832 × 832 optimizes GPU resource
utilization and minimizes memory transfers. The area of
interest in each input video stream is cropped, divided in
half, and resized to generate a set of four images. The chosen
resolution and batch size consider VRAM limitations and
aim to maximize compute resource usage.

For optimal performance, we employed the tkdnn [41]
framework, which leverages TensorRT. At the time of our
experiments, this combination provided the fastest solution.
After optimizing and quantizing YOLOv4 with 1000 images
for calibration and using 8-bit integer precision for inference
(similar to [8]), we achieved a player detection precision of
94 mAP for players and 85 mAP for balls. mAP stands for
mean Average Precision, a commonly used evaluation met-
ric in computer vision and object detection. The use of 8-bit
integer precision at inference time resulted in a speedup com-
pared to floating-point precision using either 32 or 16 bits.

Agent tracking & dynamics. In terms of the tracking algo-
rithm, the parameters that produced the best results for our
setup were Jmin = 0.5, δmax = 0.02 and fmax = 5 (these
parameters are described in Sect. 5.2). Regarding theKalman
filter component, σpx = 10, nacc = 5 and μkin = 0.99 (all
detailed in A.2) proved to be the most effective choices, after
multiple experiments with our test setup.

Dimensionality reduction. Moving on to the prediction
engine, a frame is represented by a 68-D vector which con-
tains information concerning the 17 agents on the court
(p = 68). If there are more detected agents than this number,
we favor agents that are moving faster and are far away from
the court limits when selecting agents for higher robustness.
If less agents than needed are present, the vector is padded
with zeros.

After conducting a variability analysis with PCA, we con-
cluded that 30 components explain 92% of the variance. The
explained variance remained almost constant usingmore fea-
tures, so that was the chosen output dimension (n = 30).
Consequently, we have used UMAP with default parameters
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n_neighbors = 15 and metric = ‘euclidean’ while chang-
ing n_components = 30.

Regarding the neural network hidden layer size in Fig. 4,
we found that an o = 500 and an m = 2000 worked well
for this dataset. In all training tests, the Adam optimizer was
used with an initial learning rate η = 0.001, batch_si ze =
5000 and default parameters β1 = 0.9, β2 = 0.999, and
ε = 10−8 for 600 epochs. The modified parameters as well
as the architecture for the neural net were obtained with a
manually fine-tuned hyperparameter search.

Classification. Finally, delving into the parameters used
for the chosen classifier, the KNN, we conducted another
manual fine-tuning process following a hyperparameter
search, which led us to the following parameter values:
n_neighbors = 5, weights = ‘distance’, algori thm =
‘ball_tree’, lea f _si ze = 30, p = 2, and metric =
‘minkoswki’. These parameters were selected based on their
performance, resulting in the best outcome.

8 Results

To address the lack of public datasets for the proposed prob-
lem,we created a new dataset comprising approximately 11h
of footage fromfive handball games held in two different are-
nas. The dataset consists of onemillion frames captured using
a static two-camera setup (see Fig. 3), with video frames
synchronized between the two cameras to ensure coher-
ent results. Each frame was meticulously labeled with the
seven classes that define the game state. Figure 1 provides
illustrative examples for each of the seven classes and the
corresponding number of frames in the dataset.

In order to test our method, the dataset has been divided
into two parts: a training split, which comprises 70% of the
dataset, and a testing split, which constitutes the remain-
ing 30%. For the training split, we utilized three handball
matches in one arena, while the testing split involved
two unseen matches in a different arena. This allocation
aligns precisely with the chosen percentages. Testing unseen
matches and arenas provides a robust evaluation of both the
effectiveness of our camera setup and the validity of our agent
dynamics abstraction scheme.

All the experiments were performed using an i7-8700K
CPU, RTX 2070 GPU, 32 GB DDR4 RAM and a 256GB
SATA SSD.

8.1 Accuracy, precision, recall and F-Score

Four well-known metrics are used to assess the effectiveness
of PlayNet: accuracy, which represents the overall correct-
ness of predictions; precision, which quantifies the exactness
of PlayNet when predicting a specific game state; recall,

denoting the percentage of total occurrences of a class that
PlayNet can detect; and F-Score, which is the harmonicmean
of precision and recall. In addition, we provide both simple
(macro) and weighted averages for precision, recall, and F-
Score to account for class imbalance within a handball game,
as depicted in Fig. 1.

The results achieved for the selectedmetrics on the testing
split are presented in Table 1. The table includes outcomes
from various classifiers, including the KNN model that was
ultimately selected for PlayNet. Other models tested include
LightGBM [20], a gradient boosting library that leverages
tree-based learning algorithms. We chose LightGBM over
XGBoost [7] due to its superior compute and memory effi-
ciency. Additionally, classical tree decision methods such as
Random Forests [15] and Extra Trees [13] were evaluated.
Furthermore, a fully connected neural network architecture
was also tested to explore a different classification approach.
Finally an ensemble of all the aforementioned classifiers was
also assessed using stacking [43], which trains a model that
combines all of their predictions in an optimal manner.

In addition to showcasing the classification results obtained
using our embeddings, we also present the outcomes attained
by other state-of-the-art methods for embedding data into
a lower-dimensional space previously discussed in Sect. 2,
such as UMAP [25], IVIS [37], t-SNE [31], and MDE [1].
To explore all possible avenues, we also evaluated models
that do not rely on Kalman embeddings but instead leverage
the available temporal information by processing multiple
frames using a sliding window approach. For this purpose,
we selected a MLP [38], a 1D CNN [44], a LSTM [16], and
a hybrid architecture that uses both a 1D CNN and a LSTM
[19]. These models are specifically designed for time-series
classification, but they offer an alternative approach to tackle
our problem, which can also be framed within the context
of time-series analysis. We used default parameters for all
tested methods where developer recommendations tailored
to our dataset size were unavailable.

The table shows how the neural network embeddingmeth-
ods (‘Ours’ and ‘IVIS’) obtained an average accuracy of
around∼ 92% versus∼ 89%with the closest offline embed-
ding methods (‘UMAP’ and ‘MDE’). These results, coupled
with the performance advantage when using our neural net-
work embeddings, illustrate the benefits and effectiveness
of our method. Furthermore, delving deeper into the results,
we can see that UMAP, t-SNE and MDE embeddings under-
perform our embeddings and have particular trouble with
underrepresented classes in the training dataset, we can see
this in the macro F-Score (‘Ours’ ∼ 74% versus ‘UMAP’
∼ 67%), probably due to overfitting when using the offline
methods which process again all of the dataset for every new
data point, causing them to adapt their latent representation
to the new data which can skew the final result. Furthermore,
when considering neural network embeddings, our method

123



PlayNet: real-time handball play classification with Kalman embeddings and neural networks

Fig. 5 Confusion matrices normalized over true labels (rows) of the
top-performing representatives from online and offline dimensionality
reduction (evaluated using the KNN classifier) and no dimensionality

reduction. The seven game states considered in PlayNet are noted along
the axes: true class on the y-axis and predicted class on the x-axis

exhibits a slight advantage over IVIS in terms of F-Score
(‘Ours’ ∼ 74% compared to ‘IVIS’ ∼ 72%), further rein-
forcing our method as the preferred choice.

Lastly, we have not found any advantages regardingmeth-
ods that do not require Kalman embeddings. In terms of
accuracy, the best of them slightly outperforms our method
(‘Ours’ 91.7% versus ‘CNN+LSTM’ 92%) but has slightly
moreproblemswith underrepresented classes;we can see this
in the macro F-Score (‘Ours’ 73.8% versus ‘CNN+LSTM’
73.5%), please refer to Fig. 5 for a detailed analysis of these
results broken down by class. In summary, the obtained
F-Score, coupled with the performance penalty due to the
model overhead, presents our method as the right choice.
Not only did the best of these models not perform in real-
time, but they also failed to outperform our approach in terms
of the macro F-Score. Considering both factors, our chosen
approach demonstrated superior performance compared to
all of the tested alternatives.

Regarding the chosen evaluation metrics, we considered
the F-Score especially relevant for specific classes, such as
penalties. For instance, if the main difference between a
penalty and an attack in a handball match, from a produc-
tion point of view, is that a penalty can activate a closeup or
an extra camera shot covering only the penalty area, missing
some penalty detections can be acceptable (i.e., a relatively
low recall score for penalties) as the attack view will cover a
superset of the penalty area. In contrast, false penalty detec-
tions (i.e., a low precision score for penalties) can lead to
entirely wrong camera shots. They are two important classes
but far less frequent than others during a match, the macro-
average score deserves special attention as it exposes a more
representative picture of the system performance for these
scarce classes. Since striking a balance between precision
and recall is essential, we consider the macro F-Score as the
most relevant metric for our specific use case (the precision

metric loses its significance when the model fails to capture
the majority of penalties, as illustrated in Fig. 5). Both the
macro F-Score metric and the execution time were deter-
mining factors for the selection of the final model.

8.2 Runtime performance

The average processing time of one thousand runs using our
method is shown in Table 2. As observed in the breakdown
of timings, the primary bottleneck in the PlayNet pipeline is
the agent detection stage. Indeed, one of the main reasons
for choosing a lightweight version of YOLOv4 in PlayNet
is to optimize inference times as much as possible (for more
details please refer to Sect. 7).

Decoding is performed in parallel for each frame in a
batch to achieve maximum performance. These stages are
computed in the GPU (decoding, pixel format conversion,
cropping, resizing, and detection) without data transfers to
the CPU, which to our knowledge, is the fastest way to per-
form these operations (avoiding latency constraints). On the
other hand, the rest of the steps (Kalman filtering, ONTV
transforms, embeddings, and KNN classifier prediction) use
CPU processing since they are not well suited for the GPU.
It is worth noting that due to having only a single element for
inference at each timestep, we are unable to fully maximize
the utilization of CPUs or GPUs. In our testing, we did not
surpass 1 GFLOPs with any of the methods, even with the
more complex models such as CNNs or LSTMs. This indi-
cates that our performance is limited by latency rather than
computation, which particularly affects the GPU. However
it is important to mention that this limitation is specific to
our scenario, as in offline processing scenarios where batch
inference with thousands of elements can be leveraged, GPU
processing is likely to outperform CPU processing.
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Table 2 Pipeline execution time measurements

Stage Time (ms)

Input Pre-processing 7.50

Ingestion & Decoding [GPU] 4.94

Video pre-processing [GPU] 2.56

Normalized Game State Repr. 27.42

Agent detection [GPU] 26.69

Agent tracking [CPU] 0.21

ONTV space [CPU] 0.45

Agent dynamics [CPU] 0.07

Prediction Engine 17.74

Dimensionality reduction [CPU] 16.85

Kalman embed. classification [CPU] 0.89

Total 52.67

Bold represents the different stages of the pipeline and their cumulative
execution time

Finally, upon closer examination of the runtime perfor-
mance achieved by our prediction engine, it is evident that
our method surpasses all other approaches. As depicted in
Table 1, the fastest methods, including Ours, IVIS, and
the fully connected neural network, achieve a run-time of
∼ 18ms. Notably, our method achieves the fastest runtime
with 17.74ms. On the other hand, the more computationally
intensive models require a minimum of ∼ 60ms for execu-
tion, rendering them unsuitable for our purpose. The slowest
methods such as t-SNE, UMAP, and MDE, exceed a second
of execution time.

8.3 System limitations and future work

Upon examination of the confusion matrices in Fig. 5, it is
apparent that the classification of penalties (both left and
right) presents a notable challenge. This issue persists across
all the models evaluated in Table 1, as they consistently
confuse penalties with transitions and attacks. Notably, this
problem is more pronounced when utilizing UMAP embed-
dings, as indicated by the corresponding KNN classifier
confusion matrices. It demonstrates that penalties are only
correctly identified approximately ∼ 10% of the time when
usingUMAP embeddings, compared to around∼ 40%when
employing Kalman embeddings. Moreover, for models that
do not incorporate dimensionality reduction techniques, the
situation is a little better, with penalties being correctly iden-
tified around ∼ 26% of the time, but still not up to par with
our method.

Although the results for penalty classification are not ideal,
our method demonstrates a better ability to correctly identify
penalties and when it does not, the correct attack side, result-
ing in less confusion between the two sides of the court. This
mitigates the impact of the errors associated with penalty
classification. Regarding handball match production, these

errors imply that a more general view will occasionally be
chosen over a zoom shot when a penalty occurs. While this
is not ideal, it can still be considered an acceptable worst-
case scenario. However, the same cannot be said for the
CNN+LSTMorUMAPmodels. They tend to exhibit a higher
probability of incorrectly classifying penalties, often even
with plays on the opposite side of the court, which would
lead to suboptimal camera shots.

Currently, PlayNet requires a manual calibration process
to ensure proper operation. During this calibration, operators
manually select the area of interest in each camera, aligning
it with the boundaries of the court. Incorporating this step has
proven to be straightforward and highly beneficial for agent
tracking, as it effectively mitigates issues such as the erro-
neous detection of external individuals as players within the
game.While it may not eliminate sporadic invasions onto the
field, this calibration step minimizes their impact. Addition-
ally, PlayNet leverages these defined regions of interest to
focus on the correct agents to track and avoid double detec-
tions.

On the other hand, determining tracking parameters such
as Jmin , δmax and fmax ismore challenging and often requires
a trial-and-error approach. They have to be as rigid as possi-
ble but allowing for agentmatches to persist enough frames to
deal with occlusion and flickering in the detector. Nonethe-
less, based on our extensive testing, the used values have
demonstrated effectiveness across various arenas. Similarly,
the Kalman filter component parameters, namely σpx , nacc,
and μkin , are also determined through trial and error during
the calibration process. While they seem to work well across
different arenas, finding their optimal valuesmay pose a chal-
lenge. They also need to be conservative enough to allow the
Kalman filter to estimate more robust positions and veloci-
ties with the chosen dynamics model, but at the same time
rely sufficiently on the measured data. These parameters try
to account for errors in the detected positions, the balance
between the dynamicmodel andobservations and the fact that
players need to exert an effort to keep on moving. Operators
must conduct thorough testing to obtain the best parame-
ter values if the default settings do not yield satisfactory
results.

In terms of future developments, incorporating prior
knowledge of the game could significantly ease the learning
process of the neural network. For example, actively track-
ing pertinent zones within the game court where agents are
likely to be positioned in certain situations and integrating
this information into the game state representation. Addi-
tionally, exploring the use of data augmentation techniques
could prove beneficial in addressing class imbalance issues.
To further streamline operations, another potential improve-
mentwould be the automation of the calibration process, thus
eliminating one of the remaining manual tasks and the most
error prone part of the system. Lastly, accounting for lens
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distortion during calibration, which is presently overlooked
to simplify the process, could improve accuracy when esti-
mating agent positions in ONTV space.

9 Conclusions

We have presented PlayNet, a novel real-time handball play
classification approach capable of detecting game states on
commodity hardware and customized camera layouts. Fur-
thermore, the proposed system operates on raw video footage
without relying on specialized tracking hardware like IMUs,
filling the real-time game state classification gap for auto-
matic low-cost live broadcasting systems in sports. Our
approach represents the main agents in the playing field
within a single normalized coordinate space: the ONTV
space. This space decouples the inference engine from the
input video streaming configuration, allowing PlayNet to
work on a unified dataset space.

Our key contribution was transforming those high-
dimensional game state representations in ONTV space
into lower-dimensional instances tractable on commod-
ity hardware for real-time play classification purposes. To
accomplish this, we proposed Kalman embeddings, a lower-
dimensional representation of the game state obtained with
a neural network trained to reduce dimensionality. Using
the Kalman embeddings presented a twofold advantage, first
helping to reduce inference time and, secondly, reducing
training time and training data size requirements for the dif-
ferent classifiers. In this work, we suggested using a KNN
classifier and compared its performance with other com-
monly employed models.

Our experiments on production-ready environments sup-
ported our original idea: using movement patterns exclu-
sively to classify handball plays. For instance, using a
standard KNN classifier, we obtained over 91.7% accuracy
and an F-Score of around 73.8% (about 91.8% by using a
weighted average considering the existing class imbalance).
Furthermore, the proposed system demonstrated real-time
inference capabilities (below ∼ 55ms on commodity hard-
ware). Additionally, we released an open dataset for handball
play classification, which we used for training and testing
PlayNet.
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A Appendix

A.1 ONTV space formulation

A four-point perspective transformation is defined to con-
vert the coordinates of a camera’s four corner points
(ctl , ctr , cbl , cbr ) into our commonONTV space. As a result,
we can determine the following relationship among the
homography matrix for each camera, Hc, its corresponding
scaling factor, u, and the coordinates of both spaces:

⎡
⎣
uζx
uζy
u

⎤
⎦ = Hc ·

⎡
⎣
cx
cy
1

⎤
⎦ , (3)

where (cx , cy) represents the coordinates in the camera image
space of one of the four corner points defining the region of
interest, and (ζx , ζy) are the coordinates of the same corner
point represented in our target ONTV space. Thus, to obtain
Hc for a given camera sourcewe just need to solve the system
of linear equations defined by four equations like Eq. 3, one
for each corner point:

⎡
⎣
uζx
uζy
u

⎤
⎦=Hc ·

⎡
⎣
cx
cy
1

⎤
⎦ ⇒

⎡
⎣
uζx
uζy
u

⎤
⎦=

⎡
⎣
h11 h12 h13
h21 h22 h23
h31 h32 h33

⎤
⎦·

⎡
⎣
cx
cy
1

⎤
⎦ (4)

Next, we just need to transform one of the four corner
points usingHc and leverage the calibration data to dehomog-
enize the result and obtain the scaling factor u. By solving
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the corresponding system of linear equations for each cam-
era source present in the system, and following the previously
described dehomogenization process, we can obtain bothHc

and u for all the cameras in our system, allowing us to trans-
form any given point in the field from the image space of one
camera into ONTV space.

After computing Hc and u for each camera source, given
an agent located at px , py coordinates in the corresponding
image-space of its camera source, the final coordinates ox , oy
in ONTV space are computed as follows:

[
ox
oy

]
= 1

u
·
⎡
⎣

h11 px+h12 py+h13
h31 px+h32 py+h33
h21 px+h22 py+h23
h31 px+h32 py+h33

⎤
⎦ (5)

A.2 Kalman filter formulation

The following two equations, that describe a discrete-time
dynamic system in state-space model form, are the base for
our Kalman filter: the process equation (Eq. 6), that takes the
state vector x from time k−1 to time k, and themeasurement
equation (Eq. 7), that associates a vector of observations zk
with a specific state xk :

xk = Fkxk−1 + wk (6)

zk = Hxk + vk (7)

Fk is the state transition matrix used to update the system
state from timestep k − 1 to k, wk is the process noise, H is
the measurement matrix, whose purpose is to convert system
state into outputs, and vk is the measurement noise. Bothwk

and vk are zero-mean, uncorrelated gaussian noise, and have
known covariance matrices Q and R, respectively.

From those two equations, Kalman obtains the five equa-
tions that are applied each iteration. First, in the prediction
stage, the state estimate and the error covariance are propa-
gated from the previous to the current state by the transition
equation (Eq. 8) and the predictor covariance equation
(Eq. 9):

x̂−
k = Fk x̂k−1 + wk (8)

P−
k = FkPk−1Fk


 + Q (9)

The state transition matrix, Fk, is used to predict the sys-
tem state in the current frame (timestep k) by updating the
state in the previously processed frame (timestep k − 1).
In our simplified physics model, this matrix depends on the
time between both frames, Δt , and the kinetic friction, μkin ,
obtained through experimentation:

Fk =

⎡
⎢⎢⎣
1 0 Δt(1 − μkinΔt/2) 0
0 1 0 Δt(1 − μkinΔt/2)
0 0 1 − μkinΔt 0
0 0 0 1 − μkinΔt

⎤
⎥⎥⎦ (10)

Table 3 Main variables considered in our Kalman filter model

Notation Description

xk State vector: agent state for timestep k, xk = [x, y, ẋ, ẏ]T , being x, y the position and ẋ, ẏ the velocity

x̂k Estimated state vector: Kalman estimated agent state for timestep k

x̂−k Predicted state vector: agent state predicted by the physical model for timestep k (a priori state estimation,
without considering observations for timestep k)

zk Observation vector: agent position from the object detector in timestep k, plus velocity computed considering the

previously estimated position, zk =
[
oxk oyk

oxk − oxk−1

Δt

oyk − oyk−1

Δt

]T

Fk Transition matrix: predicts the current frame state from the previous one

wk Process noise: expected error in the prediction process

vk Measurement noise: expected error in the measurement

H Measurement matrix: converts between measurement and state

Pk State covariance matrix: state variance-covariance matrix for frame k

P−
k Predicted state covariance matrix: predicted state variance-covariance matrix for frame k

Q Process noise covariance matrix: variance-covariance matrix that models process error

R Measurement noise covariance matrix: variance-covariance matrix that models measurement error

Kk Kalman gain: weight distribution between predicted state and measured observations

Δt Frame time: time interval between previous and current frame

σpx Pixel Standard Deviation: estimated error of a bounding box position observation

nacc Acceleration Noise: balance of trust in the dynamical model and observations

μkin Kinetic Friction: friction proportional to velocity
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Note that in our case the transition matrix may be different
every step because Δt is not a fixed time interval, but depen-
dent on the video streaming real-time response (Table 3).

Regarding the covariance matrix, Q, we considered an
acceleration noise, nacc, to model the process noise and
uncertainty:

n =
[
Δt2nacc

2

Δt2nacc
2

Δtnacc Δtnacc

]
(11)

Q = nᵀn (12)

In the state update stage, the Kalman filter corrects the
prediction for the current frame, x̂−

k , with the observed val-
ues, zk , applying the state update equation (Eq. 13) to obtain
the estimated state for the current frame, x̂k , and updating
the process covariance matrix (Eq. 14):

x̂k = x̂−
k + Kk(zk − Hx̂−

k ) (13)

Pk = (I − KkH)P−
k (14)

Kk is the Kalman gain, basically the importance we give
to observations, zk , i.e. (1−Kk)would be the weight we give
to the previously predicted state, x̂−

k . Of course, the Kalman
gain is updated before applying Eq. 13 and Eq. 14:

Kk = P−
k H




HP−
k H


 + R
(15)

Sinceweuse agent position andvelocity in both the system
state and observations, our measurement matrix,H, is a 4×4
identity matrix: H = I.

Finally, the covariance matrix we use to model the mea-
surement error is this:

R =

⎡
⎢⎢⎣
2σpx 0 0 0
0 σpx 0 0
0 0 2σpx 0
0 0 0 σpx

⎤
⎥⎥⎦ (16)

where σpx is a parameter that accounts for the expected stan-
dard deviation in the measurement of the agent position by
the object detector.
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