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Abstract
Assessing the security status of maritime infrastructures is a key factor for maritime safety and security. Facilities such as ports
and harbors are highly active traffic zones with many different agents and infrastructures present, like containers, trucks or
vessels. Conveying security-related information in a concise and easily understandable format can support the decision-making
process of stakeholders, such as port authorities, law enforcement agencies and emergency services. In this work, we propose
a novel real-time 3D reconstruction framework for enhancing maritime situational awareness pictures by joining temporal
2D video data into a single consistent display. We introduce and verify a pipeline prototype for dynamic 3D reconstruction
of maritime objects using a static observer and stereoscopic cameras on an GPU-accelerated embedded device. A simulated
dataset of a harbor basin was created and used for real-time processing. Usage of a simulated setup allowed verification against
synthetic ground-truth data. The presented pipeline runs entirely on a remote, low-power embedded system with ∼6 Hz. A
Nvidia Jetson Xavier AGX module was used, featuring 512 CUDA-cores, 16 GB memory and an ARMv8 64-bit octa-core
CPU.
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1 Introduction

Maritime transport is a crucial element of global trad-
ing, helping to facilitate a close interdependency between
countries, manufacturers and markets [1]. Maritime infras-
tructures such as harbor areas and cargo terminals, are critical
for the successful functioning of the maritime transport
chains. Therefore, monitoring their security, integrity and
operational safety is of key importance. This work focuses
on the improvement of optical maritime infrastructure mon-
itoring by detecting and reconstructing dynamic maritime
objects for a consistent 3D display.
We present a novel system prototype that performs real-
time 3D reconstruction of dynamic maritime objects in static
scenes using stereoscopic cameras on an embedded system.
The use of a GPU-accelerated embedded system is a cost-
effective solution that allows our pipeline to run in situ at
remote locations. Our pipeline is able to generate consistent
3D point clouds from video data in real time, reducing the
required bandwidth for transmission and improving spatial
information. Real time in this context is defined with respect
to speed limits in ports in Germany as introduced by the Fed-
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eral Waterways and Shipping Agency (GDWS).1 A ship is
allowed to have amaximum speed of 10–15 kt which is a dis-
placement of ∼5 to 8m/s. To compensate for large shifts in
position and transformation the pipeline must therefore run
as fast as possible. With the current setup, we compensate
displacements of ∼0.85m to ∼1.28m at ∼6 Hz.
Maritime dynamic objects are targets of observation that nav-
igate through and interact with the maritime infrastructure.
In our work, we focus on ships though our system proto-
type can be readily expanded to include more categories like
cars, trucks or cargo. The term static scene describes the
non-moving, rigid-body structures and refers to the maritime
infrastructure itself.
A vast body of research exists for indoor, small-scale RGB-
D2 systems in the context of autonomous robotics [2] as well
as on LiDAR3 and stereoscopic outdoor 3D reconstruction
for autonomous driving [3,4]. Due to the sensor setups for
moving observers as shown in [5], a specific motion model is
implicitly assumed. In our use case, which deals with static
camera views, nomoving observer is present and large scenes
with moving water bodies are considered which limit the use
of these existing works.
The presented system is a modular pipeline for GPU-
accelerated embedded devices and stereo cameras. Using a
multistage approach, we first:

1. Detect ships in input images using AI methods
2. Segment them using the objects motion information
3. Perform depth matching using the stereo images
4. Register current depth information with previous infor-

mation to obtain a transformation matrix
5. Integrate the current depth data using the calculated trans-

formation into a dense volumetric representation

As a proof of concept, the pipeline presented in this workwas
tested and verified using a 3D simulation in a virtual, geo-
referenced environment for a single dynamic object only.We
achieve a runtime of ∼6 Hz while also producing a dense
point cloud that resembles the shape of the target ship and is
robust against outliers. Evenwith a significant amount of drift
in translation compared to the ground-truth, the system still
manages to obtain a complete and readable reconstruction of
the ship.

1 https://www.gdws.wsv.bund.de/SharedDocs/Pressemitteilungen/
DE/20190116_Geschwindigkeitsbegrenzung_Elbe_PM.html,
Accessed 18 January 2023.
2 RGB-D: RGB camera with short-range, active depth sensors.
3 LiDAR: Light detection and ranging.

2 Related work

Dynamic 3D reconstruction can be split into several sub-
problems with their respective research bodies associated
with them. Most of the related work stems from the domains
of autonomous driving and robotics where simultaneous
localization and mapping (SLAM) systems that employ 3D
reconstruction are the main focus of research. However, it is
outlined how these approaches are fundamentally different
from our proposed system. Therefore, this section will focus
on complete, state-of-the-art 3D reconstruction systems only.
Newcombe et al. [6] proposed a complete system that can
be considered a basis of real-time 3D reconstruction. Their
KinectFusion system can perform stereo-based 3D recon-
struction in static environments using RGB-D cameras in
real time (∼2Hz). Grinvald et al. [7] proposed improvements
to this work through the incorporation of auxiliary data like
multiple objects and color data. A core aspect of [6] is the use
of truncated signed distance fields (TSDF) and a volumetric
grid to fuse depth information into a consistent, implicit rep-
resentation. TSDFs can be generated through projective data
association [8]. Using a projection to associate depth data
makes the samples linearly independent and allows parallel
computing on a GPU device. Since the technique by [8] does
not create trueEuclideandistancefields, themethods requires
different viewing angles for robust convergence. This makes
the method suitable for applications which rely on motion
for 3D reconstruction like the framework presented here.
Whelan et al. [2] adopted the framework by Newcombe et al.
[6] and proposed a large-scale SLAM system in the context
of robotics. They improved on the computational perfor-
mance of object tracking, allowing for faster motions and
shorter update increments. Moreover, their system added
a streaming approach to support larger environments and
higher spatial resolution.Amajor contribution is the develop-
ment of a highly efficient variant of the iterative-closest point
algorithm (ICP) for GPU devices that allows real-time track-
ing of point clouds. This work, however, performs static 3D
reconstruction using handheld RGB-D cameras as ameans to
generate 3D static maps of indoor areas. Since RGB-D cam-
eras employ active illuminators in the near infrared spectrum
for increased depth resolution, they cannot be used in outdoor
environments with strong infrared lighting.
Therefore, a different system is required to infer good
depth estimates. This was addressed by [4] who proposed
a complete stereo-based hybrid real-time 3D reconstruction
system. Developed in the context of autonomous driving,
their system achieves ∼5 Hz on desktop hardware. The sys-
tem can perform 3D reconstruction of static environments
and dynamic objects. Still, the system does not use embed-
ded systems and aims to generate a 3D static map. Also, it
assumes a moving observer (camera) that is positioned at a
fixed height in the direction of travel. This assumption simpli-
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fies the motion model because the ego-motion of the camera
is smooth and always relative to the heading of the car (lim-
iting the degrees of freedom). Also, the system only works
in close range where the depth error is limited, approaching
and passing objects of interest throughout the test sequences
to smooth out noise. The work also addresses the concept
of noise filtering (voxel garbage collection) in the output of
the voxel volume based on [9]. This is an important factor to
consider when using reconstructed data for display.
Regarding the segmentation of dynamic agents, [10] evalu-
ated several techniques for tracking and masking. While not
being a direct 3D reconstruction system, their work outlines
instance-aware object tracking by using 3D reconstructed
data as input.While the system performs online, it is non-real
time, again with a focus on desktop hardware. The proposed
systemcan identify several classes of objects but is also tested
and verified in the context of autonomous driving. Thus, the
same restrictions as in [4] apply. Nevertheless, results have
low error showing how 3D reconstruction can help leverag-
ing object tracking.While the technique for depth estimation
is based on SfM (structure-from-motion), the basic principle
can be readily transferred to other algorithms.
A full dynamic 3D reconstruction system using instance-
aware tracking was presented by [11]. They propose a hybrid
3D reconstruction system that, similarly to Barsan et al.
[4], can work with static environments and dynamic agents.
Their main contribution is the inclusion of several TSDF
volumes for different dynamics agents and the static envi-
ronment. Instance segmentation to isolate dynamic objects
is performed using the well-known Mask R-CNN [12].
Their probabilistic framework allows for detailed integra-
tion results for small-scale indoor environments. However,
performance on a desktop GPU and a high-end CPU is lim-
ited to ∼4 to 9 Hz showing the high-performance demand.
The largest performance drop stems from the use of Mask
R-CNN@.
LiDAR technology is also researched in great detail. The spa-
tial sparsity of stationary LiDAR together with noisy water
surface interaction as addressed by [13] leads to distortions
and the necessity of extensive filtering. Therefore, techniques
that rely on LiDAR data for 3D reconstruction are not in the
scope of this work.
Our pipeline was developed as a modular multistage sys-
tem like [4], supportingmulti-object reconstruction similar to
[7,11] with a unique volume per object. Instead of using deep
learning for instance segmentation as [10,11], we use a state-
of-the-art object detector and segment its estimated bounding
box with an approximation based on motion to allow our
pipeline to run at a higher framerate on the embedded sys-
tems. Since a clean display is important for our use case, the
noise reduction techniques presented by [4,9] are extended,
implemented and verified in our presented pipeline.

3 Dataset creation

To validate our pipeline, we created a virtual dataset in
the open-source 3D software Blender3D [14]. The software
was chosen because it offers a complete set of tools from
3D modeling, virtual scene layout, animation and simula-
tion as well as photorealistic image synthesis (rendering). It
has been successfully used in other works to create simula-
tion frameworks for machine learning and computer vision
tasks [15–17]. Besides Blender 3D other work has shown
that a similar procedure can be realized in a game engine like
Unreal Engine [18].
Since we wanted to have ground-truth references for all
pipeline stages, we digitally re-created a physical harbor
basin to scale including physically based materials and ren-
dering. Figure1 shows a comparison between the real harbor
basin with different boats in frame and the digital copy with
the tugboat. Both images use the same calibrated camera
and an identical perspective. Note that due to the removal
of reference points the perspective looks slightly different.
However, the scene was created using a geo-referenced dig-
ital 3D map of the harbor area. Depth is between ∼25 and
∼60m, motivated by typical observation scenarios at port
basins and locks. To verify our dynamic 3D reconstruction
system, we used a virtual re-creation of a real tugboat to scale
(∼35m length). A tugboat is a common boat found at port
infrastructures. Also, its size allowed for a got fit into the 3D
scene we virtually re-created.
It is important to outline that the simulated sequence does not
take the physical interaction between vessel and water into
account. Since we are dealing with large-scale water bodies a
fluid simulation that allows for dynamicwake andwhitewater
in an image sequence is complex and was outside the scope
of this work. The static images that we used for training our
detection dataset (as outlined in Sect. 4.1) feature wake and
whitewater. We focused on producing highly realistic results
to minimize the bias when compared to real-world images.
In return, we found that the object detectors still detect ships
without wake and whitewater. Still, the technique used here
was not stable in image sequences and lacked temporal res-
olution.
The sequence is 25 s long (624 frames) and synthesizing
(rendering) the scene took several minutes per frame on an
Intel Xeon E5-2683 v4 CPU with 64 cores running at 2.1
GHz, 64 GB memory and a Nvidia Quadro GV100 with 32
GB and 5120 compute units (CUDA-cores). It was created
as a stereoscopic dataset with a distance of 4 m between
cameras. While this is a very large baseline with respect to
most stereo systems, Yang and Lu [19] propose in their work
a system for tsunami detection that uses a 27 m baseline.
Besides stereoscopic frames, the dataset contains ground-
truth values for every pipeline stage including 3D shape,
object transformation, camera geo-reference (UTM projec-
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Fig. 1 A comparison between the real harbor basin (left) and the digital re-creation (right). Notable are the accuracy of reflections on the water
surface and materials. Please note that both images have the same camera parameters and perspective

tion), depth information (1cm resolution), mask information
and a bounding box.

4 Dynamic embedded 3D reconstruction

Real-time dynamic 3D reconstruction is performed on a
GPU-accelerated embedded device, theNvidia JetsonXavier
AGX, including 512 compute units (CUDA-cores), 16 GB
memory and an ARMv8 64-bit octa-core CPU. It also has
a dedicated coprocessor for low-level vision tasks (refer to
Sect. 4.2).4 Processing is done by a pipeline comprised of
several successive stages. All computations are done on a per
frame basis except the last stage, which is point cloud extrac-
tion. This is only done on demand when a new representation
is requested. All computations including preprocessing are
done on the embedded device. Figure2 shows an overview
of the processing pipeline, from left to right:

1. Stereoscopic camera frames are preprocessed to prepare
a pipeline run. Resampling, color channel conversion and
copying are performed using GPU acceleration.

2. Object detection is performed using a CNN on the left
stereo frame to generate a 2D bounding box.

3. Dense optical flow vectors are computed for the left
frame, converted to a binary mask and multiplied by the
2D bounding box to segment the left frame.

4. A dense depthmap is created from stereo image pairs and
multiplied with the previously calculated binary mask to
filter out unwanted background information.

4 https://siliconhighway.com/wp-content/gallery/jetson-agx-xavier-
developer-kit-datasheet-us-811514-r5-web.pdf, Accessed 18 January
2023.

5. Using the masked depth map, object tracking is per-
formed to estimate the visual odometry (i.e., the motion
estimation) of the dynamic object.

6. Tracking information, depth map and left color frame are
fused into a consistent volumetric representation.

7. Output of the pipeline is a filtered 3D point cloud with
adaptive voxel garbage collection.

Each stage will be briefly described in the following sec-
tions to provide an overview of the algorithms and techniques
involved. The preprocessing stage uses common computer
vision techniques and is therefore not discussed.

4.1 Object detection

In order to extract the position of a maritime object, a robust
andnear real-timeobject detector is needed.Theobject detec-
tor used in this work must provide the bounding box of a ship
with minimum possible inference time. Object detection is
always performed on the left stereo image. For this work, the
YOLOv5method is selected [20]. It is a suitable algorithm for
real-time object detection trained on the MS COCO dataset
[21] that can perform efficiently on an embedded system.
The algorithm was deployed on embedded device using the
Pytorch framework [22]. For a robust ship detection model,
we rendered an additional training set of 114 images of a
tugboat in different sizes and perspectives that are used for
further training of YOLOv5. In Fig. 3, some samples of the
additional training set and an example of the tugboat detec-
tion on our virtual stereo dataset (see Sect. 3) are shown. If
no object was detected during this stage, the pipeline starts
over again.
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Fig. 2 A schematic view of the reconstruction pipeline with ground-truth examples for each stage. Note that for the object tracking stage the dots
are positions in time and the yellow arrow indicate the trajectory

Fig. 3 Object detection examples. a Four samples of the additional
rendered dataset for object detection training. b An example of tugboat
detection using YOLOv5 [20] on one of the left images of the virtual

stereo dataset. The detection is represented by the green bounding box
and the number represents the detection confidence

4.2 Image segmentation

Given a valid object detection, this stage continues to com-
pute the dense (meaning, pixel-wise) optical flow vectors of
the current and previous left stereo frames. Optical flow is the
amount of displacement between two frames and can be used
to describe motion of the 2D image plane. To make the com-
putation of a dense flow map possible in real time, this stage
uses specialized video-encoding hardware integrated into the
embeddeddevice.More specifically, this is a hardware imple-
mentation of the pyramidal Lucas–Kanade optical flow [23]

used for highly efficient video coding (HEVC) [24]. The
Lucas–Kanade method works by minimizing the differences
in image intensity over a local neighborhood using least-
squares. The result is a pixel displacement vector that relates
two points between the frames. The hardware implementa-
tion requires the image to be monochromatic and rescaled
to a resolution of (1920 × 1080). Optical flow is then com-
puted using a 4× 4 granularity, so that the output image has
a resolution of (480 × 270).
The flow magnitude is computed to create a binary image
based on an empirical fixed threshold and then constrained
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to the detected bounding box, yielding an instancemask. The
threshold was estimated by maximizing the intersection over
union between generated and ground-truth mask. This was
done once in an offline regression for the whole system. A
low threshold results in outliers from the water body while
a very high threshold results in holes across the mask. This
parameter needs to be further investigated in different sce-
narios to see if it is scene, object or speed dependent.

4.3 Depth estimation

Since the previous step can be offloaded to specialized hard-
ware, the depth estimation stage can run in parallel to the
image segmentation. Inference of depth from two stereo
frames is key for 3D reconstruction as it allows re-projection
of image points into a 3D point cloud. While several geo-
metric techniques exist to compute depth from 2D features,
this work uses semi-global matching (SGM) [25] to com-
pute a dense depth map for every pixel. The method finds the
disparity for every point between two stereo frames by min-
imizing both a local matching term and a wider (hence the
name, semi-global) regularization term. Disparity is the hor-
izontal distance between two pixels and can be converted to
depth using the physical distance between two cameras and
the focal lengths, respectively. SGM is linearly independent
for every pixel and can be efficiently computed on theGPU in
parallel. Since the depth error grows quadratically with this
method and the disparity is related to the image resolution,
only a limited field of view is supported. This work currently
aims at harbor basins and water locks where a physical range
from ∼25 to ∼65m is typical.

4.4 Object tracking

In order to integrate frame sequence over time into a consis-
tent 3D representation, we need to track the object’s motion.
The centroid of the first detected position is assumed to be
origin of a local object coordinate system. Currently only
one object at a time is considered. However, when extending
this formulation to multiple objects, each object will have its
own local coordinate system. All subsequent motion of the
detected object is relative to that reference frame. Since the
integration requires the voxel volume to be aligned with the
object’s position, we perform pose estimation for six degrees
of freedom using the iterative-closest point (ICP) algorithm
[26]. Bymasking out all static depth information,we can treat
the dynamic object as static and perform camera tracking.
The camera motion can be expressed as a matrix. The inverse
of that matrix keeps the camera fixed and thus describes the
objects motion (so-called ego-motion). We use the metric
summarized by [27] combined with parallel ICP implemen-
tations presented by [6,8]. However, we use an optimized
implementation presented by [2] that takes advantage of par-

tial matrix multiplications available on the GPU device. As
proposed by [6], we use a frame-to-model approach using
ray casting to improve the robustness of the system.
Furthermore, we include a distance constraint to the track-
ing system that is illustrated in Fig. 4. The figure shows the
ground-truth trajectory as seen from the camera in green
(lower curve). The upper curve (blue) is the projected cen-
troid as seen from the camera. This is used to constrain
motion. The associated points (dashed, zigzag lines) show the
correspondence between ground-truth and estimated posi-
tions.

We re-project the centroid of a masked depth map into
the camera frame to constrain object motion. Centroids are
smoothed using a simple running average. By limiting the
difference to the distance between the current and previous
observed centroids, we avoid sudden failure of the tracking
system. To compute the centroids, we project all depth pix-
els inside the generated mask (valid pixels) to 3D space and
compute the mean for the X - and Y -axis using GPU accel-
eration. For Z , a mean of zero is assumed. The difference
in centroids projected onto the XY -plane between a current
frame ft and a frame at ft−1 constraints the translation. A
downside of this algorithm is that partial occlusion or shifts
in shape also lead to shifts in the centroid, henceforth weak-
ening the constraint. This is shown in Fig. 4 when examining
the distribution of centroid estimates.

4.5 Volumetric integration

Estimated depth, object tracking information and the left
camera color frame are then fused into a consistent vol-
umetric display using projective truncated signed distance
fields (TSDF). For this, we developed our own implemen-
tation of [6], adapted to our target system. This was done
because the original work from [6] is not publicly avail-
able and the implementation by [28] is only suited for static
scenes. The general approach, however, is well suited for
the reconstruction of dynamic objects as shown in [7,11].
For better color display, we included a projection-based fil-
ter and constrained the truncation distance to a narrower band
around the iso-surface to avoid mismatches due to the overall
scale of maritime environments. An important detail is the
use of an adaptive weighting scheme. Each time a voxel is
successfully updated, its weight value is increased by one. At
the same time, a globalweight counter is increased every time
a volume integration happens. These two values are used in
the next stage for filtering. And finally, we currently limit the
maximum resolution to 10 cm for depth error compensation.
This is related to the properties of the TSDF volume: Since
every update to the voxel volume is weighted, the TSDF acts
as a running average filter over time. However, if the voxel
size is larger than the expected error of the observed depth,
the TSDF cannot converge to the true iso-surface as the vox-
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Fig. 4 An illustration of the
difference between centroid and
ground-truth translation of the
vessel. For visualization both
trajectories were projected into
the camera frame. First and last
image from the dataset are
overlayed for clarity

els enclose the error. Therefore, we set the resolution to a
smaller value that captures not only the observed value but
also allows for an uncertainty region to improve convergence
behavior. For more details, refer to the original paper by [6].
Special care must be taken when considering the size of the
volume since the memory requirements grow with O(N 3)

where N is the number of voxels along one dimension.

4.6 Point cloud generation

To provide a suitable model for 3D display for end users, we
extract and filter the voxel volume to gain a dense point cloud.
This step happens only on demand and not every frame.
Besides 3D positions, the point cloud also contains informa-
tion about the RGB color and the geometric surface normal
vector of every point as well as the distance to the estimated
iso-surface (given by the TSDF value). The surface normal is
calculated by evaluating the TSDF values around each point
as outlined in [6]. Our novel multistage filtering performs
voxel garbage collection similar to [4,9] but improving on
the speed and overall methods of filtering.
First, we propagate through the voxel volume to fill a label
buffer with binary values by filtering each TSDF value. We
test every voxel and assign 1 if the weight of this value is
above a certain threshold N and 0 otherwise. This means
that only voxels that have been updated at least N times are
kept under the assumption that those are inliers. We found
empirically that 10% is already enough to remove most of
the noise. An example of this will be discussed in Sect. 5.6.
Next, we apply a band-pass filter to extract only a narrow area
around the iso-surface. During integration, the possible range
is clipped to [−1, 1]. Through testing, we found that outside
of the range [−0.9, 0.9] only noise is present. We keep only
values within this band when extracting the points.

Using the label buffer containing binary values for every
voxel, we run a GPU-accelerated conditional select using
the Nvidia CUB library [29] that outputs a set of points with
label 1. Lastly, a comb filter is used to filter out points based
on their hue spectrum. Since water has a very distinct hue
range, we found that ships have a good contrast to allow fil-
tering. This filter can be used dynamically by the end user
depending on the scene.When displaying the point-cloud the
user can select a hue range that they wish to be removed and
the rendering algorithm will dynamically skip points whose
color falls within the hue range.

5 Results

Using the simulated dataset, we verified our pipeline. The
overall runtime of our pipeline is∼161.95ms (∼6.2 Hz). For
every stage, we generated the respective ground-truth data
and compared it to the estimated outputs. In the following
sections, we discuss the results of each stage.

5.1 Object detection

For this stage, we selected the lightest configuration of
YOLOv5, named YOLOv5-Nano. It provides a compromise
between memory footprint, inference time and precision.We
start training with pre-trained weights on the MS COCO
dataset [21]. We extended the model using a batch size of
8 and trained for 50 epochs using a single class boat . Input
size was 640 × 640. As training data, we used an additional
synthetic dataset containing multiple views of the tugboat
that we created ourselves (refer to Fig. 3a). This configura-
tion allows for an efficient inference within the embedded
system. We obtain an average precision (AP) of 0.907 and
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Fig. 5 Different outputs from successive pipeline stages. From left to right: Optical flow vectors (color encoded with flow as saturation and direction
as hue), binary instance mask, estimated disparity, physical depth map with mask applied

average inference time on the Jetson AGX Xavier of 74.436
ms per frame.
Our AP is higher in comparison with a recent work by [30]
focusing on instance segmentation of ships using Mask R-
CNN [12] (0.772) and DetectoRS [31] (0.78). Since we
regress the mask later in the pipeline using optical flow,
we used a simpler and faster bounding box estimation. The
increase in AP relates to the difference in complexity when
comparing bounding box estimation with instance segmen-
tation. The work performed by [32] shows a similar object
detection pipeline as used in this work. The core difference is
that [32] used YOLOv4 [33] while we used YOLOv5, allow-
ing us to achieve a better AP than in their work (0.7586).

5.2 Image segmentation

Instance segmentation runs on average in 29.54 ms includ-
ing optical flow estimation and mask creation. The AP is
0.68 showing a good overall match with the ground-truth
mask. Figure5 shows the optical flow vectors and the binary
mask (from left). Experiments showed no significant ben-
efit of using the average flow direction within the detected
bounding box when computing the binary mask. This is due
to the fact that direction of water flow and reflections on
the water surface can be similar to the target motion. Since
optical flow does not semantically differ between elements,
the optical flow direction is ambiguous. Optical flow magni-
tude is dependent on the scene intensity (i.e., the lighting
and surface of the observed target). To alleviate this, we
tested adaptive thresholding based on mean and mode of
observed flow magnitudes. Since those results were varying
greatly from frame to frame, we opted for a fixed thresh-
old of 1.7 to proof the general concept. This value, however,

is scene (especially lighting) dependent. Hard shadows as
encountered in direct sunlight create high-contrast regions
that spread out the magnitude within the detected bounding
box. Therefore, we continue to focus on adaptive threshold-
ing to yield more stable results in a wide variety of scenes. A
density-based clustering algorithm like DBSCAN [34] can
help to dynamically create magnitude clusters that effec-
tively reject outliers while respecting the overall shape of the
optical flow. While performance and precision are good, the
major disadvantage of this technique is currently the neces-
sity of object motion. However, this work is concerned with
dynamic reconstruction for situational awareness pictures.
Therefore, non-moving objects are only of limited interest
as other methods of observation exist.

5.3 Depth estimation

To support medium-scale environments, we chose a baseline
of 4mbetween cameras.Weused adisparity of 256pixels as a
tradeoff between speed and image resolution. The maximum
scene depth is constrained by the depth error which increases
quadratically with depth. Limiting this error to the desired
value sets the upper boundary for scene depth. The minimum
scene depth is restricted by the maximum disparity. Objects
closer to the camera will diverge more (i.e., the horizontal
pixel difference increases). The dataset used in this work was
set up to keep the harbor basinwithin those depth boundaries.
While the minimum scene depth was set to ∼10 m, the tug-
boat we used in dataset only moves between ∼ 25 and ∼ 65
m depth. We plotted the current disparity and depth error as
functions of depth in Fig. 6. The vertical orange bars refer
to the movement range of the object of interest (tugboat).
The curves start at the minimum scene depth (as outlined in
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Fig. 6 Disparity (dashed blue line, top) and depth error (dotted green line, bottom) as functions of depth. The horizontal red line (bottom) marks
the current mean average error for the evaluated scene setup. The vertical orange bars indice the set depth limits for the scene

the respective legends). Using this setup the mean absolute
error (MAE) is∼0.3022 m (horizontal red bar in Fig. 6) with
estimation taking 24.54 ms on average. Considering ∼40m
depth of the test scene, the error is only 0.75% which is low.
Given this setup, we want to show two ways of optimizing
for maximum disparity or camera baseline, respectively.

1. Due to the left vertical orange line intersecting the dis-
parity curve at a value of 102, the maximum disparity
can be reduced to improve overall performance without
sacrificing quality.

2. Theminimum scene depth (10.21m) can be shifted to the
right until it reaches the minimum scene depth (25 m).
This is achieved by extending the baseline between the
two cameras. While this would significantly reduce the
error, it also makes mounting the cameras more difficult
in a physical environment.

These constraints regarding optimal depth estimation are cur-
rently scene dependent. Theymust be set up as a compromise
between field of view and expected object size. In Sect. 7, we
discuss a third alternative to the above-mentioned optimiza-
tions for long-range depth estimation. For a visual reference
on the output of this pipeline stage, Fig. 5 shows the disparity
image in the blue column (third from left).

5.4 Object tracking

Since the object tracking stage uses ray casting to fit the cur-
rent depth map to the already integrated model, we provide
two timings. The ICP method itself runs in ∼2.66 ms and
the ray casting takes ∼27.67 ms. While the addition of ray
casting significantly increases the processing time, it also
stabilizes the integration stage.

The overall translational error of the object tracking stage
is∼8.64m and the rotational errors for all three Euler angles
α, β, γ for axis XY Z are α = 3.85, β = 5.31, and γ = 1.95
degrees, respectively. Although the error is high compared to
areas like autonomous robotics the scale here is also larger.
With a maximum scene depth of ∼65m, the error corre-
sponds to 13.3%. This error stems from translational drift
that occurs over time, meaning the offset between ground-
truth and observed trajectory increases. While this error is
currently large, our reconstruction system still manages to
output an approximation of the observed object with distinct
features and color. For geo-referencing and tracking of the
object, our error is still lower than the 10mgenerated through
homography as presented by [30] for closer than 400 m to
the observer.

5.5 Volumetric integration

Table 1 shows a comparison between different voxel reso-
lutions for the integration stage. For comparison, we run the
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Table 1 Results for volumetric integration stage

Voxel Volume Memory Time
resolution (m) dim usage (MB) (ms)

0.4 1283 25.2 1.01

0.2 2563 201.3 1.02

0.1 5123 1610.6 1.05

pipelinewith ground-truth inputs from the dataset to generate
an optimal result for every resolution. Despite all voxel res-
olutions requiring almost equal update time, their memory
usage differs significantly. This is an important considera-
tion on an embedded system. The timing similarities can
be explained by memory transfers and pipeline stalling in
the GPU@. For single-object 3D reconstruction a volume of
5123 is feasible for real-time processingwith improved accu-
racy and details. For multiple objects, a resolution of 0.2 m
and a volume dimension of 2563 yield a good compromise
between speed, details and memory consumption. While a
volume dimension of 10243 was tested, it caused the system
to run out of memory.

5.6 Point cloud generation

Figure 7 shows the output of the pipeline in comparison with
a frame from the dataset. While certain details are obscured
by noise, the overall shape, color and geometry are present.
Even finer details like the stairs on the back of the bridge are
seen in the reconstruction.

Figure 8 shows a visual comparison of the unfiltered
pipeline output (a) and with filtering applied (b). The voxel
garbage collection efficiently removes outlier noise while
improving the overall shapewith only high-confidence points
being kept. Also, the density and file size of the point-cloud,
was reduced from 2, 538, 535 points (337 MB uncom-
pressed) to 516, 464 points (68 MB uncompressed). Thus,
the garbage removal yields a ∼4.9 reduction factor while
improving readability.

6 Implications

In this section, the implications for the maritime field will
be discussed. The framework presented here aims to provide
a foundation to replace traditional 2D situational awareness
pictures. While the generation of static 3D maps and high-
resolution scans of outdoor environments can be considered
robust and readily available, a key aspect of 3D situational
awareness pictures is dynamic content. This work provides a
working framework to generate the required data to populate
3D situational awareness pictures with real-time information
about dynamic objects. It has operational implications for

how situational awareness is communicated and assessed by
stakeholders, may it be law enforcement or port authorities.
Thus, a new approach to the operation of maritime safety and
security evaluation is provided.
As the research shown here presents only a first proof of
concept, the next step will evaluate how integration of a
dynamically 3D reconstructed object into a 3D situational
awareness picture can be performed. This could provide
operators with a completely new way of interacting with
situational awareness pictures. A full 3D display consisting
of high-resolution static maps and dynamic objects updat-
ing in real time. Since all content is communicated in 3D,
the foundation for new technologies like mixed reality is
given. Interaction with situational awareness pictures can
be more immersive and semantically clearer while collab-
oration of different operators is simplified when evaluating
the security status of maritime infrastructures. Additionally,
the framework presented here is perceived as a tool to sim-
plify techniques such as 3D anomaly detection, autonomous
navigation and collision avoidance in harbor basins and
waterways.
To enhance safety and security in the maritime field, the
proposed work could act as a key technology that enables
unified monitoring of large ports areas. Multiple instances of
the proposedwork generating 3D representations of dynamic
objects in a port could provide end users with a dense rep-
resentation of their surrounding that would not have been
possible with traditional sensing alone. With the current
work as a proof of concept, research needs to focus on out-
door lighting and weather. This is especially important since
weather effects (fog, rain, sunglare) cangreatly effect the per-
ception of objects in amaritime environment. Harsh shadows
from direct sunlight and diffusion due tomist can also impact
the readability of an object and henceforth the errors asso-
ciated with 3D reconstruction. For robust outdoor use, the
system needs to be designed around such effects. Also, since
maritime traffic operates around the clock, the system even-
tually needs to be extended by a formulation for nighttime
observation. This includes research assessing the feasibility
of laser sensing and (near) infrared cameras. Therefore, this
work will be further researched to determine the feasibility
of above-mentioned ideas and verify the operational impli-
cations.

7 Conclusion and future work

This work presents a novel framework to generate 3Dmodels
from stationary camera systems for improving monitoring in
maritime infrastructures and for integration into situational
awareness systems. We describe and evaluate a dynamic 3D
reconstruction pipeline prototype that delivers valid results
for single maritime object detection and reconstruction. The
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Fig. 7 Left: Left frame taken from the stereo dataset, input for our pipeline. Right: 3D reconstructed tugboat using our presented pipeline prototype
for dynamic 3D reconstruction on an embedded system. A volume dimension of 5123 with a voxel resolution of 0.1 m was used

Fig. 8 3D reconstructed model with a volume dimension of 512 and a
voxel resolution of 0.2m. In a, voxel garbage collection is disabled, and
in b, it is enabled. The garbage collection removes Ghosting artifacts
and projection noise resulting in a well-defined silhouette. The confi-

dence threshold for inliers was set to 10%, meaning only samples with
a higher integration weight are taken into account. Clearly visible is the
removal of outlier noise and the well-defined silhouette

system runs in near real time with ∼6 Hz on an GPU-
accelerated embedded device. The system output is ready for
import into a high-resolution 3D static map to enhance static
situational awareness displays with consistent dynamic 3D
objects. However, integrating the reconstructed object into
the 3D static map requires the development of an automated
pipeline. Maritime infrastructures are currently monitored
with the help of stationary video cameras. Observing a large
area in detail requires human operators to investigate several
video feeds. Each video feed displays only its own field of
view (referred to as context). Our approach reduces the need
to switch between multiple video feeds (context-switching)
and instead aims to create a more unified approach to situa-
tional awareness.

While the overall pipeline provides valid results, the pose
prediction and instance segmentation require the object to
be in motion. As a next step we want to refine these stages
to support also semi-static objects that only move sporad-
ically. Furthermore, instance segmentation can be refined
using adaptive thresholding as outlined in Sect. 4.2. An adap-
tive threshold algorithmwould be especially beneficial when
multiple objects of different speeds or under varying light-
ing conditions are observed. Recent work shown by [35] also
demonstrates that the tasks of object detection, instance seg-

mentation and pose estimation can be jointly estimated using
a single neural network. With embedded systems becoming
more powerful, computationally efficient variants of more
demanding networks can be run in real time. Therefore, we
aim to unify stages outputting bounding box, mask and pose
in a single step without sacrificing the real-time constraint.

To improve large-scale depth estimation, an adaptive
framework can be used. By limiting the depth estimation
to areas around detected bounding boxes, larger image res-
olutions become feasible without penalizing performance.
Higher-resolution images offer more features per object and
thus increase the range over which a stereo system can oper-
ate. To further reduce the depth error over large scene depths,
statistical shape priors [3] and probabilistic fusion techniques
[11] can be used.
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