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Abstract
Many popularmodern image processing software packages implement a naïve formof histogram equalization. This implemen-
tation is known to produce histograms that are not truly uniform. While exact histogram equalization techniques exist, these
may produce undesirable artifacts in some scenarios. In this paper we consider the link between the established continuous
theory for global histogram equalization and its discrete implementation, and we formulate a novel histogram equalization
technique that builds upon and considerably improves the naïve approach. We show that we can linearly interpolate the
cumulative distribution of a low-bit image by approximately dequantizing its intensities using a selective box filter. This
helps to distribute the intensities more evenly. The proposed algorithm is subsequently evaluated and compared with existing
works in the literature. We find that the method is capable of producing an equalized histogram that has a high entropy,
while distances between similar intensities are preserved. The described approach has implications on several related image
processing problems, e.g., edge detection.

Keywords Image enhancement · Dequantization · Histogram equalization · Histogram matching

1 Introduction

Histogram modification techniques are commonly used to
enhance visual aspects of an image, such as contrast or
continuity. In computer imaging systems, global histogram
equalization may be applied to perceptually amplify high-
frequency spatial information (e.g., edges and corners), while
reducing the presence of low frequencies [1]. This is par-
ticularly useful in systems that require human–computer
interaction where a user must make a decision based on the
observed data.

The goal of histogram equalization is to modify the
pixel intensities of an image to produce a histogram that
is as uniform as possible. In information theory, this cor-
responds to the maximum achievable entropy. Popular
photo editing software, Adobe Photoshop and GIMP (see
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v2.10 gimpoperationequalize.c), implement rel-
atively naïve histogram equalization procedures that are
similar to the techniques describedby [2,3]. These implemen-
tations are understood to potentially form sparse histograms
[4,5]. This is illustrated in Fig. 1, where the proposed method
produces a histogram that closely resembles a fully-equalized
histogram.

Commonly, for global histogrammatching the cumulative
distribution function (CDF) is used as a transfer function.
The CDF of a digital image is piecewise constant (i.e., a step
function). In this paper, we consider a novel formulation for
the CDF in the discrete setting that produces a piecewise
linear function. We consider the resulting CDF to be more
faithful to the image before quantization,while increasing the
problemcomplexity negligibly.Alone, however, this does not
help address the problem of sparsity as quantized intensities
map to the same value.

To redistribute intensities appropriately, we consider
recovering upscaled intensities by slightly modifying a given
quantized pixel’s intensity by averaging neighbouring pixels
that have a similar intensity. If the neighbourhood and per-
mitted dissimilarity is sufficiently small, this leads to only a
subtle distortion of the pixelwise intensities. Through our
evaluation, we find that the described approach improves
the quality of the resulting histogram. Two parameters are
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(a) (b) (c)

Fig. 1 An example of histogram equalization on a a 4-bit image using b a conventional histogram equalization approach [2], and c the proposed
method

used to control the effect of this technique on the histogram,
and enable the preservation of relations between pixels of
the same quantized intensity. Applying the most restrictive
parameters causes the proposed method to achieve parity
with commonly used approaches [2,3].

In this paper, we suggest that through moderate local pix-
elwise modification of the original image artifacts, caused
by intensity quantization, in the histogram space may be
reduced.

The technical contributions of this work may be summa-
rized as follows:

• An adaptive kernel-based method that seeks to address
the issue of histogram sparsity for down-stream applica-
tions (e.g., histogram equalization and histogram match-
ing).

• A thorough evaluation of the proposed technique, includ-
ing practical parameter selection experiments and com-
parisons with various pertinent approaches.

2 Related work

Many approaches to contrast enhancement have been pro-
posed over the last half-century [6–8], leading to awide range
of histogram equalization techniques [9]. This section pro-
vides an overview of the relevant literature that addresses
aspects of this problem.

2.1 Histogram equalization

Histogram equalization is a commonly used enhancement
technique to increase the visual contrast of an image in
applications, such as medical imaging, robotics, and astron-
omy. This is particularly useful in systems that require
human–computer interaction where a user must make a
decision based on an image. In computer vision systems,
histogram equalization may be applied locally to enhance
high-frequency spatial information (e.g., edges and corners),
while reducing the presence of low frequencies [1]. The tech-
nique may also be used in image coding.

Given a greyscale image, the goal is to compute a transfor-
mation that, when applied to the gray values of the original
image, produces a uniform distribution of the intensity val-
ues.

The origins of the now pervasive global histogram equal-
ization procedure [3] are obscure; however, as with other
image processing algorithms [10], the techniques used for
histogram equalization are highly associated with techniques
from statistics [11]. In its simplest form, the method follows
the description by [2]. Ketcham et al. [12] propose a tech-
nique that uses a two-dimensional sliding window over an
image’s spatial domain. Histogram equalization is performed
within the small window to compute the equalized intensity
value of either the central pixel (or a group of central pixels).
Subsequently, variations of this technique known as ‘adap-
tive histogram equalization’ have been considered [1,13,14].
Adaptive histogram equalization techniques improve con-
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trast locally but cause the contrast enhancement to no
longer be a global transformation. Notably, [15] introduce
bi-histogram equalization. Unlike adaptive histogram equal-
ization, where multiple histograms are constructed based on
the spatial relationship of pixels, bi-histogram equalization
constructs multiple histograms based on the similarity of
intensities. An image is partitioned by its mean intensity,
then histogram equalization is independently applied to both
parts. This technique aims to preserve the mean brightness
of an image, but may not obtain the maximum entropy when
the number of pixels assigned to each partition differs. Wang
et al. [16] address this by partitioning the probability mass
function (PMF) of the image into equal areas (i.e., using
the median intensity). Many works have sought to enhance
the contrast in an image locally while imposing brightness
preserving constraints [17–19]. The use of piecewise-linear
representations for histogram modification are well-known
[5]. This representation has been applied to histogram equal-
ization, where it serves as an approximation of the CDF
[20,21]. However, current approaches in the literature do not
address the problem of sparsity in the resulting histogram.

Hall [4] identifies that digitized images do not produce a
uniform histogram when using the naïve histogram equal-
ization technique. Rather than constructing a typical CDF,
a family of techniques seek to address this problem by
determining a strict order for pixels based on their inten-
sities. Given an ordering, pixels are then divided into l
evenly spaced bins that correspond to a pixel intensity. These
techniques are capable of maximizing the entropy of the
resulting equalized histogram; however, the general approach
is not infallible. The principle challenge is deciding how to
appropriately handle ties—where two pixels have the same
intensity—without this, a strict ordering is not possible. A
series of works [22–24] apply a series of low-pass (blurring)
filters of varying neighbourhood sizes on an input image to
establish an order for pixels of the same intensity. While this
approach does rely on spatial information, it can cause unde-
sirable blurring along edges and at corners. An additional
problem is the enhancement of noise in an image. Nikolova
et al. [25] attempt to dequantize an image approximately
by using a variational-based optimization approach on the
image’s graph structure thatmay helpwith somequantization
noise. The intensity of pixels in the dequantized image tends
to be unique, so a strict ordering for histogram specification
may be applied. Similarly, the proposed method performs
dequantization as an intermediary step, and can therefore be
incorporated into a similar pixel ordering framework.

While strict ordering methods produce perfectly flat his-
tograms, such techniques degenerate in scenarios where the
original image contains sparse intensities.

2.2 Dequantization

Key to the proposed method is the conversion of integer-
based pixelwise intensities into a floating-point representa-
tion that approximates the original pixel’s intensity before
quantization. The problem of dequantization has been exam-
ined in works mostly related to bit-depth expansion [26–29]
and inverse tone mapping—or high dynamic range (HDR)
reconstruction—[30] both via optimization [31–33] and deep
learning [34–36] techniques. Broadly, the goal of thesemeth-
ods is to—given a quantized image—recover the original
(dequantized) image while suppressing perceptual artifacts
(e.g., noise, false contours, half-toning and edge preserva-
tion). Many notable works have investigated these problems:
false contours [26,37,38], half-toning [39,40], and preserv-
ing edges [41]. These solutions could theoretically help to
address our dequantization problem; however, they intro-
duce unnecessary assumptions about the content of an image
that may increase the dequantization error to reduce visual
artifacts, rather than necessarily ensuring the quality of the
histogram.

Other works consider the problem of recovering an HDR
image from a low dynamic range source. Recent techniques
in this area often employdeep learning frameworks to address
related problems, e.g., inverse half-toning [42,43], remov-
ing false contour artifacts [44], and exposure correction of
an image in challenging lighting scenarios [36,45]. In prac-
tice, these methods generally suffer from the problem of
data scarcity, which is not typically a problem for hand-
engineered approaches.

The closest related work to the proposed kernel is that of
[33]. The authors apply a sparse adaptive filtering technique
to remove artifacts caused by intensity quantization. To pre-
serve edges, the smoothing filter is only applied when the
intensities of the neighbouring pixels are within a sufficient
delta of the central pixel that is determined using [32]—a
technique for inverse tone mapping. A follow-up work for-
mulated a procedure for selecting optimal parameters [46].
We illustrate that this approach is very cautious about where
filtering is applied, greater locality could be achieved using
smoothing filters that preserve edges (e.g., [47]).

Chen et al. [32] construct a continuous representation by
fitting a polynomial equation to the intensity transformation
function. For greater accuracy, rather than using a high-order
polynomial, the authors propose to arbitrarily split the inten-
sity space and approximate piecewise polynomials.

3 Background

Without loss of generalization, a monochrome image can be
seen as a piecewise continuous bivariate function f : � → I
that assigns to any point (x, y) from the domain� = [0, 1]×
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[0, 1] an intensity f (x, y) in the range I = [0, 1]. A digital
image I is a discrete representation of f , with the domain
partitioned into m × n pixels and the intensity quantized to
the discrete range L = {0, 1, . . . , l−1}. Usually, I is given in
terms of a matrix of values Ii, j ∈ L , for i = 0, 1, . . . ,m − 1
and j = 0, 1, . . . , n − 1, where Ii, j is the discrete intensity
of the (i, j)-th pixel.

To convert a given image f into a digital image I, the pixel
intensities can be determined, for example, by sampling f at
the pixel centres,

fi, j = f
(
(i + 1

2 )�x , ( j + 1
2 )�y

)
,

where �x = 1/m and �y = 1/n, or by averaging f over
each pixel,

fi, j =
∫ ( j+1)�y

j�y

∫ (i+1)�x

i�x

f (x, y) dx dy,

and then quantizing fi, j by setting

Ii, j = round
(
(l − 1) fi, j

)
. (1)

In this paper, we consider the rounding operator with the
“round half up” tie-breaking rule and hence assume that
round(x) = �x + 1

2�.
Vice versa, a digital image I can be seen as a bivariate

image function f with constant intensity over the rectangles
covered by each pixel, that is,

f (x, y) = �l Ii, j ,

where �l = 1/(l − 1) and

i =
{

�mx�, x ∈ [0, 1),
m − 1, x = 1,

j =
{

�ny�, y ∈ [0, 1),
n − 1, y = 1.

3.1 Histogram equalization

Let us first consider the continuous setting. Denoting by
p f : I → [0, 1] the probability density function (PDF) of an
image f , it is well known [3] that transforming the intensities
of f with the CDF c f (t) = ∫ t

0 p f (s) ds gives an image
f ′ = c f ◦ f with uniform PDF p f ′ ≡ 1.
In essence, discrete methods seek to emulate this process.

For a digital image I, this histogram equalization procedure
is usually discretized as follows [2].

1. Construct a histogram of the pixelwise intensities of an
image. We first determine the probability of a pixel in I
to have a specific intensity,

p(k) = h(k)

mn
, k ∈ L, (2)

where h(k) = #{(i, j) : Ii, j = k} is the number of
pixels in I with discrete intensity k, forming the PMF
p : L → [0, 1] (shown in Fig. 2a).

2. Compute the cumulative distribution function. As illus-
trated in Fig. 2b, we then accumulate and quantize these
probabilities to produce the discrete CDF c : L → L ,

c(k) = round

(
(l − 1)

k∑

i=0

p(i)

)
, k ∈ L. (3)

By construction, c(l − 1) = l − 1. When, c(0) > 0, c
may be scaled such that c(0) = 0 [3].

3. Back project intensities using the cumulative distribution
function. Finally the pixel intensities of the processed
image I∗ are set to I ∗

i, j = c(Ii, j ), for i = 0, 1, . . . ,m−1
and j = 0, 1, . . . , n − 1. The resulting image has an
intensity histogram where the bins are approximately
equalized.

We consider this as a baseline approach to histogram
equalization. It may be noted that other descriptions [3,6,48]
scale the output of the CDF to ensure that the output value
range (e.g., for an 8-bit image) populates the first and last
histogram bins, at 0 and 255. The fundamental problem with
such approaches is that, after transformation, the resulting
PMF of the equalized image is often sparse [4] (see Fig. 1a).
This means that the available discrete intensity values are
not fully utilized. With the proposed method, this problem is
assuaged.

4 The newmethod

In order to improve the classical approach to histogramequal-
ization of digital images, we propose to adopt the continuous
setting more carefully. To this end, we assume that the given
digital image I is the discrete representation of some image
f . According to (1), each discrete intensity k ∈ L represents
some continuous intensity t ∈ I with

(k − 1
2 )�l ≤ t < (k + 1

2 )�l . (4)

Under the assumption that the PDF of f is uniform for all
intensities that get quantized to the same discrete intensity,
we conclude that p f : I → I is a piecewise constant function
with

p f (t) = p(k)

�l
·
{
1, k ∈ {1, 2, . . . , l − 2},
2, k ∈ {0, l − 1},

where k = round((l − 1)t) and p(k) as in (2), illustrated in
Fig. 2c.Note that the factor 2 owes to the fact that the intervals
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(a) (b) (c) (d)

Fig. 2 Histograms of the typical a PMF, and b (discrete) CDF computed for histogram equalization. The corresponding c PDF, d (continuous)
CDF produced by the new method without upscaling the intensities

[
0, 1

2�l
)
and

[
1 − 1

2�l , 1
]
of intensities that are quantized

to the discrete intensities k = 0 and k = l − 1, respectively,
are half as big as the other intervals. Consequently, the CDF
of f , c f : I → I , is a piecewise linear function over the
partition

[
0, 1

2�l ,
3
2�l , . . . ,

2l−3
2 �l , 1

]
of I with c f (0) = 0,

c f (1) = 1, and

c f
(
(k + 1

2 )�l
) =

k∑

i=0

p(i), k = 0, 1, . . . , l − 2,

as shown in Fig. 2d.
Using this model, any discrete intensity k ∈ L is first

converted to a continuous value, then transformed by c f ,
and finally quantized back to L , that is,

c̃(k) = round
(
(l − 1)c f (�l k)

)
. (5)

Since

c f (�l k) = c f
(
(k − 1

2 )�l
) + c f

(
(k + 1

2 )�l
)

2

=
k−1∑

i=0

p(i) + 1

2
p(k),

for k ∈ {1, 2, . . . , l − 2}, this turns out to be very similar
to the classical approach (cf. (3)), yielding almost identical
processed images.

4.1 Intensity upscaling

The crucial next step is to further reason about the intensity
t ∈ I that is representedby the discrete intensity k = Ii, j ∈ L
of the (i, j)-th pixel of I. So far, we assumed t to be the mid-
point t = �l k of the interval in (4), which is a reasonable
guess in the absence of further information, but we can do
better, if we take the intensities of neighbouring pixels into
account. To this end, recall that I is the discrete represen-
tation of some image f , which is assumed to be piecewise
continuous. In a first step, we therefore identify all those

Fig. 3 Given a portion of the image in Fig. 6a, we show the effect
of applying our proposed filtering without performing any upscaling
or equalization. In each row, the parameter w is varied, while in each
column δ is varied. Looking at δ in isolation, we notice that key noise
gradually disappears, while strong edges are preserved

neighbouring pixels with an intensity similar to Ii, j by defin-
ing the binary similarity mask

σi, j (u, v) =
{
1, if |Ii+u, j+v − Ii, j | ≤ δ,

0, otherwise,

for some similarity threshold δ and a square neighbourhood
window W of radius w, that is, for (u, v) ∈ W = {(x, y) ∈
Z
2 : |x |, |y| ≤ w}. Nearby pixels with σi, j (u, v) = 1 are

now assumed to correspond to the same continuous piece of
f and their intensities can be used to reconstruct this piece
locally. In the simplest setting, wemay fit a constant function
to these intensities in the least-squares sense and take its
value as a better estimate of t . A straightforward calculation
reveals that this amounts to applying a selective box filter,
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(a) (b) (c)

Fig. 4 An illustration of the key steps of the proposed algorithm. a
Given an image I, at each pixel location (i, j) a neighbourhood of
discrete pixel intensities in a window IW are sampled. Neighbouring
pixels of significantly dissimilar intensity are filtered by σi, j , and the

average of the remaining pixels is used to compute the dequantized pixel
intensity Îi, j . b an augmented cumulative distribution c f is used as a
continuous look-up table for equalization. c A discrete equalized image
is recovered, where I∗i, j = round( Î ∗

i, j )

which simply averages neighbouring similar intensities,

Îi, j = 1

#W ′
∑

(u,v)∈W ′
Ii+u, j+v,

where W ′ = {(x, y) ∈ W : σ(x, y) = 1}, and provides
the continuous intensity estimate t = �l Îi, j . It remains to
transform this value by c f and to quantize the result to L ,
so as to get the discrete intensity of the (i, j)-th pixel in
I∗, that is, to set I ∗

i, j = c̃( Îi, j ) for i = 0, 1, . . . ,m − 1
and j = 0, 1, . . . , n − 1, with c̃ defined as in (5), but more
generally for any real-valued argument in [0, l − 1].

The influence of the parameters w and δ used just to filter
an image is illustrated in Fig. 3.

4.2 Implementation

Figure 4 gives a visual overview of the proposed method,
which comprises of two key parts: (1) a dequantization pro-
cedure; and (2) a piecewise linear CDF.

Algorithm 1 describes how a pixel is dequantized with
respect to its neighbours programmatically. As we demon-
strate empirically, the proposed technique performs partic-
ularly well on images that have smooth intensity gradients;
however, this may be replaced with an application-specific
technique.

The pseudocode for histogram equalization is given in
Algorithm 2. By constructing the CDF using the original
discretized intensities, the proposed approach avoids increas-
ing the space complexity of the CDF, which a perturbed
real-value image would require. N.B.: lines 17 & 18 are a

necessary modification for the linear interpolation used on
line 24.

The proposed method has a complexity of O(w2mn). In
practice, we find that the optimal value for w is likely to be
small; therefore, w only has a small influence on the algo-
rithm’s speed.

5 Evaluation

Qualitative results of experiments involving the methods
described in the following section are discussed. Further
quantitative evaluation of the proposed method is included
in “Appendix A”.

Algorithm 1 Pseudocode for intensity dequantization.
Output: A – Dequantized image
1: function Dequantize(I, w, δ, i , j)
2: A := 0
3: z := 0
4: for i ′ := max{0, i − w} . . .min{i + w,m − 1} do
5: for j ′ := max{0, j − w} . . .min{ j + w, n − 1} do
6: d := ∣

∣I(i ′, j ′) − I(i, j)
∣
∣

7: if d ≤ δ then
8: A := A + I(i ′, j ′)
9: z := z + 1
10: end if
11: end for
12: end for
13: A := A/z � A = Îi, j
14: end function
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5.1 Benchmarkmethods

For the evaluation, a range of representative techniques that
may be used for histogram equalization were selected. Each
method was implemented in MATLAB. While execution
times are reported, it is expected that the runtime of each
method could be greatly reduced in a low-level language.

5.1.1 Naïve equalization (baseline)

Implements the discrete histogram equalization procedure as
described in Sect. 3.1.

5.1.2 Naïve scaling (baseline)

For intensity upscaling tasks, intensities are uniformly scaled
and then rounded.

5.1.3 Bi-linear interpolation

The spatial resolution of the image is increased by doubling
its dimensions using bi-linear interpolation. Naïve histogram
equalization is then applied to the interpolated image before
re-scaling the image back to its original dimensions.

Algorithm 2Algorithm for histogram equalization based on
the description in Sect. 4.
Input: I, l, w, δ –Digital image, no. of intensity levels, neighbourhood

radius, similarity threshold
Output: I∗ – Adjusted image
1: m, n := size (I) � image dimensions
2: for k := 0 . . . l − 1 do
3: h(k) := 0
4: end for
5: for i := 0 . . .m − 1 do
6: for j := 0 . . . n − 1 do
7: h(I(i, j)) := h(I(i, j)) + 1 � intensity histogram
8: end for
9: end for
10: for k := 0 . . . l − 1 do
11: p(k) := h(k)/(mn) � intensity probabilities as per (2)
12: end for
13: P(0) := 0
14: for i := 0 . . . l − 1 do
15: P(i + 1) := P(i) + p(i) � P(i + 1) = c f ((i + 1

2 )�l )

16: end for
17: P(0) := −p(0) � P(0) = c f (− 1

2�l )

18: P(l) := 1 + p(l − 1) � P(l) = c f (1 + 1
2�l )

19: for i := 0 . . .m − 1 do
20: for j := 0 . . . n − 1 do
21: A := Dequantize(I, w, δ, i , j) � A = Îi, j
22: k := round(A)

23: λ := A + 0.5 − k
24: A′ := (1 − λ)P(k) + λP(k + 1)
25: I∗(i, j) := round

(
(l − 1)A′)

26: end for
27: end for

(a) (b)

Fig. 5 An example of a a synthetic 31-by-31 pixel 4-bit image and b
after exact histogram equalization by a specification method [23]. Due
to the assumption that there exists an appropriate order, the method
produces undesirable results when intensities are sparse. The other
approaches, evaluated later, produce the same results as naïve histogram
equalization, which looks like (a)

5.1.4 Coltuc et al. [23]

Given an image, pixels are assigned an order based on their
intensity value. To determine an order between pixels with
the same intensity, the tied pixels are blurred with respect
to their neighbours. The ties are then sub-ordered by their
new intensity. This tiebreaker process may be repeated using
successively larger blur windows, until all ties are resolved.
While uncommon in real-world images, when intensities in
the quantized image are particularly sparse, this can lead to
significant artifacts. A synthetic example of this problem is
shown in Fig. 5.

5.1.5 Song et al. [33]

The method is designed for image dequantization. A sparse
kernel is used for efficiently smoothing false contours. For
histogram equalization tasks, we still follow Algorithm 2,
replacing the proposed dequantizationmethod (Algorithm 1)
with the authors’ described algorithm [33].

5.2 Benchmark datasets

Two sets of images were collected, one of noiseless synthetic
images, as well as a set of images captured by typical digital
cameras that contain natural noise. For quantitative experi-
ments (“Appendix A”), the original images were treated as
ground truths, while a quantized version of each image was
used as input.

5.2.1 Synthetic dataset

Synthetic 3D objects were rendered such that no noise
was captured by a virtual camera. The shapes were tex-
tureless and conform to the assumption that an image
comprises of piecewise-linear patches. These were primar-
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(a) (b) (c)

(d) (e) (f)

Fig. 6 Qualitative results of the benchmarked histogram equalization
methods on a a real 8-bit image. The intensity histograms given all share
the same limits. b Retains natural image noise, while the equalization
is sub-optimal. c Applies a slight blur to the entire image. d Perfectly

equalizes the histogram, while enhancing noise. e The performance of
[33] is the same as the naïve method in high contrast areas. f Softens
noise in the image, while preserving details such as the text and star on
the side of the plane (w = 1 & δ = 4)

ily used for intensity upscaling experiments, described in
“Appendix A.3”.

5.2.2 Real dataset

Illustrative images presented in this section were obtained
from the USC-SIPI Image Database (https://sipi.usc.edu/
database/).

For histogram equalization experiments, presented in
“Appendix A.4”, a moderately sized database of 1449 real
images was collected using the Flickr API. The following
keywords were used to collect a range of real images: car,
Cuba, pedestrian, tiles, and windmill.

5.3 Histogram equalization

Exemplar results that are representative of each method are
shown in Figs. 6 and 7. For each processed image, the entropy
is reported. Entropy can be viewed as a measure of unifor-
mity of the distribution of a PDF. An appropriate measure is

Shannon’s entropy, which is defined as

H(I∗) =
l∑

i=1

[
p(i) log2

1

p(i)

]
.

The bounds are 0 ≤ H(I∗) ≤ log2 l, where log2 l is the
maximum entropy, which represents a uniform PDF. Further
results are included in “Appendix A.4”.

In Figs. 6 and 7, we find that [23] obtains the greatest
entropy. However, in Fig. 7, [23] enhances the presence of
false contours. The bilinear interpolation method achieves
comparable results to the proposed technique; however, due
to the lack of edge-preservation, it smooths the entire image
slightly. We emphasize that the selectivity of the proposed
smoothing filter allows it to controllably preserve edges.

The extension to histogram matching for each method is
relatively trivial and therefore omitted. Qualitative results are
presented in Fig. 8.
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(a) (b) (c)

(d) (e) (f)

Fig. 7 Qualitative results of the benchmarked histogram equalization methods on a synthetic 6-bit image upscaled to 8 bits. [23] enhances artifacts
present in the image

(a) (b) (c)

(d) (e) (f)

Fig. 8 An example of histogram matching of the overexposed image in Fig. 6a and the histogram of (a). The MSE between the adjusted and target
histogram is given below each image (note that the MSE has been scaled by ×105). As in Fig. 6, similar perceptual artifacts are observed
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(a) (b) (c)

(d) (e) (f)

Fig. 9 An example of edge preservation. a The 4-bit image used as
input. Columns d–f show the result of applying the Canny edge detec-
tor. The result of performing edge detection on the quantized image is
shown in (d). b, c The result of dequantizing the image using Song et

al. [33] and our method before performing edge detection. d, e Contain
undesirable noise caused by artifacts from the initial quantization of
(a), which are suppressed in (f) by the proposed method

5.4 Edge preservation

Consider a surface that exhibits a piecewise linear signal x
with sharp discontinuities where edges are present (e.g., a
step function). Simply applying an averaging filter to a quan-
tized signal can smooth out quantization errorswith intervals,
but this will also smooth the boundaries between separate
intervals in x. This is undesirable. A simple yet effective
way to preserve the piecewise quality of x when filtering is
to exclude highly dissimilar neighbouring values, as these
are more likely to be part of a separate interval.

We demonstrate the ability of our method to correctly
preserve edges by applying Canny edge detection [49] to
an image that we dequantize in Fig. 9. While, to the naked
eye, the dequantized image (on the top row) of our method
(where w = 2 & δ = 1) appears to contain false contours,
the results demonstrate that these are sufficiently smoothed
for the purposes of edge detection. The proposed method
produces a binarized image with less noise than Song et
al. [33], which preserves false contours near edges, because
the method strictly does not apply dequantization in loca-
tions where the intensity of one or more neighbouring pixels
is greater than a determined threshold.

6 Discussion

While the focus of this paper has been histogram equal-
ization, the applications of the proposed technique extend
beyond this scope. Our method can be easily applied to his-
togram matching and adaptive histogram equalization. Also,
similar to [23], using the proposed upsampling procedure to
determine an order of the intensities could enhance the results
for exact histogram equalization.

The preceding discussion in Sect. 4 can also be adapted
for the problem of bi-histogram equalization. Many previous
works (e.g., [15–17,50,51]) select an intensity to partition an
image into two or more parts, let us call this boundary value
b. In the finite setting, image quantization introduces errors
that cause pixels to be assigned to the incorrect partition with
respect to b. Therefore, the dequantized image should be used
to accurately determine the partitioning. An upper PMF and
lower PMF can then be constructed as previously described.

A key limitation of this work is the procedure used for
image upscaling. In our experiments, Algorithm 1 helped to
accurately dequantize synthetic images. However, for real
images, it was only shown to improve the histogram qual-
ity. It is possible that Algorithm 1 may be further improved
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by applying a Gaussian weighting to the contribution of
neighbouring pixels, or by replacing this part entirely with a
data-driven technique.

A further consideration is that it is possible that a pixel
that is darker than another pixel in the original image could
be switched—such that the darker pixel is brighter than the
other pixel in the adjusted image. The occurrence of these
are bounded by δ, as δ becomes smaller, the impact of this
reduces.

7 Conclusions

In this paper, we consider the problem of recovering high-
quality histograms from low bit-depth images. Through
fundamental reasoning about what a pixel and its neighbours
represent, a simple yet effective technique is proposed to
transform discrete pixel intensities into continuous values.
Consequentially, the data better reflects the continuous the-
ory for histogram equalization that is commonly followed in
the discrete setting.

Only two parameters (w & δ) are used to finely balance
the level of intensity error and entropy, while [23] offers no
parameters, and [33] requires many that are complex to tune.
Parameter selection experiments conducted on our method
revealed that, for real images, the optimal parameters tend to
be small values. In specific applications replacing the tech-
nique used for dequantization with a bespoke algorithm may
further enhance the results.

Implementations for GIMP (in Python) and Paint.NET
(in C#) are available.
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A Additional experiments

A.1 Quantitative measures

Both root mean square error (RMSE) and peak signal
to noise ratio (PSNR) are used to quantify the difference
between each up-sampled image I∗ and the correspond-
ing ground truth image Igt. As [52] conclude, typical
measures like PSNR and structural similarity (SSIM) are—
relatively—insensitive to Gaussian blur.

Additional measures used to help determine the quality of
the histogram are detailed here.

A.1.1 Mean square error of p

The mean sum of squared errors between the PDF of the
original 8-bit image pgt and the PDF of the dequantized
(e.g., upscaled from 6-bit to 8-bit) image p∗, i.e.,

MSEp(Igt; I∗) = 1

lgt

lgt∑

i=1

[
pgt(i) − p∗(i)

]2
,

where pgt and p∗ are calculated as in (2).

A.1.2 Dequantization error

The mean sum of squared errors of the gradient between the
CDF of Igt and I∗, i.e.,

DE(Igt; I∗) = 1

lgt

lgt∑

i=1

([
cgt(i) − c∗(i)

]′)2
,

where cgt and c∗ are computed using (3) for all methods. This
error measure produces a larger error for methods that fail
to dequantize the input image—causing a jagged appearance
in the resulting CDF. Compared with the MSEp error, this
measure exhibits greater invariance to shifts in illumination,
provided the rate of change in illumination matches.

A.1.3 Histogram deviation

Ideally, an equalized histogram should be dense and flat.
Additionally, in the transformed image, one expects pixels
of the same intensity to be mapped to share the same new
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intensity—deviations may be considered to be errors. His-
togram deviation quantifies these deviations.

For each intensity k = 0, . . . , lgt−1, we find pixels of the
same intensity in the original image

Sk =
{
(i, j) ∈ M : Igti, j = k

}
,

where M = {0, . . . ,m − 1} × {0, . . . , n − 1}, compute the
mean after equalization

M(k) = 1

|Sk |
|Sk |∑

(i, j)∈Sk
I∗i, j ,

and then the variance is

var(k) = 1

|Sk |
|Sk |∑

(i, j)∈Sk

[
I∗i, j − M(k)

]2
.

Once computed for each 0 ≤ k < lgt, the mean intensity
error can be measured as

1

lgt

lgt−1∑

k=0

var(k),

and the maximum intensity error is maxk var(k).

A.2 Parameter selection for upscaling

The proposed method introduces two parameters that require
tuning, thewindowsizew and the intensity threshold δ. These
parameters are used for the estimationof the original intensity
value of a given pixel before quantization was applied. To
determine the optimal values, a range of parameters were
exhaustively tested. For this experiment, the set of real images
collected from Flickr was used.

Given an 8-bit image, a 6-bit version was produced. The
low bit-depth image was then dequantized by the proposed
method using the given parameters. The proposed dequanti-
zation procedure (Algorithm 1) is applied to each pixel, then
the intensity is requantized at the new scale, i.e., I∗(i, j) :=
A/z·(l2−1)/(l1−1). Finally, the errorwasmeasuredbetween
the dequantized image and the original 8-bit image in the
form of the RMSE of I∗ and the histogram error of p∗.

Figure 10 shows the RMSE between Igt and I∗. For this
database the optimal parameters were obtained when the w

was small (i.e., w = 1, meaning the window spanned 3 × 3
pixels). The optimal value of δ varies depending on what is
considered to be the priority for a given dataset—histogram
error or pixelwise error. Setting δ = 0 causes the method to
be almost equivalent to the naïve scaling method; therefore,
the optimal value is likely to be small (i.e., δ ≤ 5).

Fig. 10 The average pixelwise RMSE of a parameter selection exper-
iment in which w & δ were varied, for the task of image upscaling,
to determine the optimal parameters w = 1 & δ = 0. When δ = 0,
varying w has no effect, the resulting error was 701.8471

Fig. 11 The average histogram error (MSEp) of a parameter selection
experiment in whichw & δ were varied, for the task of image upscaling.
When δ = 0, varying w has no effect, the resulting error was 1.5090

Figure 11 shows the histogram error between pgt and p∗.
The accuracy was found to improve greatly when w > 1;
however, as Fig. 10 shows, this increases the RMSE score by
subtly blurring the image. As δ is increased the prominence
of this undesirable blur effect is also increased.

A.3 Intensity upscaling

For dense histogramequalization, the proposedmethod relies
upon recovering a floating point intensity value. Ideally, the
image is correctly dequantized, leading to a histogram that
accurately represents that of the original (continuous) image.

Results on synthetic images are given in Table 1. Under-
standably, the proposed method has a slower execution time
than simpler methods. However, in terms of the reported
accuracy measures, it was found to out-perform the other
examined methods at intensity upscaling over a range of
parameters. The error manifests in the form of a slight blur-
ring over areas with similar intensity, while the sharpness of
edges is sufficiently preserved when δ remains small.
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Table 1 Experiments on a small set of synthetic images in which number of intensities was increased from 14-bit to 16-bit

Method RMSE PSNR (dB) MSEp (avg. error ×103) Dequantization (avg. error ×104) Time (s)

Naïve scaling (baseline) 0.9646 48.8424 1.0430 2.6360 0.0328

Bi-linear interpolation 1.4906 44.8040 1.0078 2.5320 0.1760

Coltuc et al. [23] 94.0358 9.1643 1.3176 6.5920 5.2415

Song et al. [33] 0.8871 49.8583 1.2555 3.1425 37.6417

Our method (w = 1, δ = 0) 0.9646 48.8424 1.0430 2.6360 19.2229

Our method (w = 1, δ = 1) 0.9008 49.6043 1.0122 2.5440 18.9384

Our method (w = 1, δ = 2) 0.9693 48.9541 1.0092 2.5320 18.9429

Our method (w = 1, δ = 5) 1.1889 47.0812 1.0078 2.5280 19.1186

Our method (w = 2, δ = 1) 0.8849 49.7869 1.0094 2.5360 19.1533

Our method (w = 2, δ = 2) 0.9842 48.8386 1.0046 2.5260 19.2021

Our method (w = 2, δ = 5) 1.3387 46.0500 0.9992 2.5060 19.4689

Bold indicates the best performance in each column

Table 2 Results of experiments
measuring deviation of
intensities when performing
histogram equalization and the
average entropy of the equalized
histogram

Method Hist. deviation ×103 Entropy
Avg. mean Avg. max

Naïve equalization (baseline) 0.0000 0.0000 7.0045

Bi-linear interpolation 1.5134 9.5209 7.8493

Coltuc et al. [23] 0.0051 0.2930 7.9922

Song et al. [33] 0.4465 2.9281 7.7882

Our method (w = 1, δ = 0) 0.0000 0.0000 7.0117

Our method (w = 1, δ = 1) 0.0052 0.2160 7.8326

Our method (w = 1, δ = 2) 0.0120 0.3550 7.8465

Our method (w = 1, δ = 5) 0.0408 0.6525 7.8734

Our method (w = 2, δ = 1) 0.0060 0.2326 7.8996

Our method (w = 2, δ = 2) 0.0143 0.4110 7.9094

Our method (w = 2, δ = 5) 0.0482 0.7735 7.9147

Bold indicates the best performance in each column
The images evaluated were all 8-bit; therefore, the maximum achievable entropy is 8

A.4 Histogram equalization

The results of our histogram equalization experiments on
the Flickr dataset are given in Table 2. Both the histogram
deviation and entropy are reported in this experiment.

For this experiment, we measured the histogram devi-
ation of the equalized image. We shall first provide the
intuition behind this measure. Considering the goal of his-
togram equalization, using the naïve histogram equalization
technique, the histogram deviation will measure zero error;
however, the produced histogram is undesirably sparse. Con-
versely, [23] is capable of guaranteeing a near-perfectly flat
histogram; however, the equalized intensity of pixels that

originally shared the same value may now differ greatly.
It is therefore logical to consider the problem of histogram
equalization to be finding a suitable balance between these
properties.

The method in [23] achieves the greatest entropy and
demonstrates that it is possible to achieve a low mean inten-
sity error while achieving maximal entropy on real images.
The trade-off between entropy and intensity error is high-
lighted by the method’s maximum histogram deviation. The
proposed method achieves a similar mean intensity error,
while having a lower maximum deviation error.
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