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Abstract
With the worldwide spread of the COVID-19 pandemic, the demand for medical syringes has increased dramatically. Scale
defect, one of the most common defects on syringes, has become a major barrier to boosting syringe production. Existing
methods for scale defect detection suffer from large volumes of data requirements and the inability to handle diverse and
uncertain defects. In this paper, we propose a robust scale defects detection method with only negative samples and favorable
detection performance to solve this problem. Different from conventional methods that work in a batch-mode defects detection
manner, we propose to locate the defects on syringes with a two-stage framework, which consists of two components, that is,
the scale extraction network and the scale defect discriminator. Concretely, the SeNet is first built to utilize the convolutional
neural network to extract the main structure of the scale. After that, the scale defect discriminator is designed to detect and
label the scale defects. To evaluate the performance of our method, we conduct experiments on one real-world syringe dataset.
The competitive results, that is, 99.7% on F1, prove the effectiveness of our method.

Keywords Deep learning · Defect detection · Image processing · Image segmentation

1 Introduction

With the COVID-19 pandemic rampaging the world, mil-
lions of people need medical care desperately. Syringes, as
the most critical medical devices, are being manufactured in
huge quantities. With the acceleration of syringe production,
defects inevitably occur during manufacture. As one of the
majority marks of the syringe, scale defects are no excep-
tion. These defects undoubtedly affect the usage of health
care professionals and even are fatal to patients.

In the syringe scale defect detection, the diversity and
uncertainty of scale defects is the first matter that should be
considered. For the convenience of description, we divide the
defects of syringe scales into six classes, that is, “Broken”
(BK), “length abnormal” (LA), “excessive” (EX), “width
abnormal” (WA), “missing” (MIS), and “other” (OT). To
be more specific, the OT refers to the defects that are not
belong to the other five categories. These defects are shown
in Fig. 1 clearly. Diverse and uncertain defect types make
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it difficult for conventional methods (e.g., classical machine
vision-based methods) to encode or extract accurate features
for each special defect type.

The second matter that should be considered is the lack of
scale defect data. To collect and label the defective samples in
vast syringe products is time-consuming and laborious. The
problem becomes even worse when collecting rare defect
samples, which seldom appear on syringe scales. The lack
of data makes it hard for the machine learning-based method
(e.g., CNN) to learn the feature of defects and easy to fall
into overfitting. In summary, due to the abovementioned two
matters, how to design a robust and discriminative detec-
tion method for syringe products is becoming an impending
demand.

Currently, the existing methods to detect scales defects
are mainly classified into three types, manual detection,
classical machine vision-based (CMV) methods, and deep
learning (DL) methods. Empirically, all of these methods
can be applied to scale defect detection. However, given the
pandemic’s environment, the above method faces more lim-
itations. For instance, manual detection methods are easily
influenced by the subjective opinions of the detecting person-
nel, making it hard to achieve a balance of high efficiency
and high accuracy [1,2]. Making up for the manual detection
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Fig. 1 The demonstration of scale defects. We divide the scale defects
into six classes. Sub-image a indicates the broken (BK) defect, which
may be caused by scale incomplete printing. Sub-image b shows the
length abnormal (LA) defect, in which the length is not in the range
of the standard scale length (i.e., too long or too short). The excessive
(EX) defect is shown in sub-image (c), meaning excessive scale or spots
appear near the normal scales. Similar to LA defects, width abnormal

(WA) defects are defined as the width of scales out of the standard width
range. Sub-image d shows the WA defects clear. Sub-image e presents
a sample of the missing (MIS) defect, meaning that some scales are
absent. The defects which do not belong to the five category defects
mentioned above are classified as other defects shown in sub-image (f)

method, the CMVmethod [3,4] can detect defects automati-
cally. It has higher accuracy of detection and is more suitable
for large-scale detection. However, most of them depend on
handcrafted features, meaning it is challenging to handle
the detection task with uncertain defects [5]. With the self-
learningmechanism, deep learning detectionmethods [6–10]
aremore suitable for the detection of uncertain defects. How-
ever, their performance overemphasizes the collection of vast
training samples [11,12], which is not suitable for the pan-
demic’s environment.

To solve the above problems, we propose a scale defect
detection method without positive samples that can robustly
handle uncertain scale defects and requires only small num-
bers of negative samples. Our method mainly consists of two
components:

(i). Scales extraction network (SeNet), a lightweight
semantic segmentation network based on the convolution
neural network. SeNet is utilized to extract the scale, which
can effectively shield the interference of background and
noise, and can facilitate the subsequent defect detection.

(ii). Scale defects discriminator (SDD), a scale defect clas-
sifier using the scale grouping strategy. Detecting defects on
the extracted scale, SDD shows favorable defect detection
performance and is suitable for diverse and uncertain detects.

Correctly, our method transforms the defect detection task
into two steps, scale structure extraction (i.e., SeNet) and
scale defects classification (i.e., SDD). The SeNet employs
deep learning technology and training with non-defective
samples. This strategy results in the SeNet extracting the non-
defective scales and the common scale defects as foreground,
while the scales with rare or obvious defects are predicted as
background. Utilizing the normal samples for training, our
method avoids the difficulty of collecting defect samples as
well as the detection accuracy is less affected by defect types.
In addition, the SeNet regards each pixel as a training sample,

making it require fewer training images (syringe) for training
and reducing the risk of model overfitting.

After scale extraction by SeNet, the SDD, which works
in the classical machine vision-based manner, is deployed
to detect and label the scale defects. Benefitting from
SeNet’s favorable extraction accuracy, the defect detection on
extracted scales requires fewer classification capabilities and
computational resources for classifying scales. Therefore,
SDDcan be designed towork in the classicalmachine vision-
based manner, which accurately classifies defects without
positive (defective) samples.

To sum up, the combination of deep learning and clas-
sical machine vision-based technologies allows us to detect
diverse and uncertain defects without using defect samples.
In this paper, we collect and build one real-world dataset
including 1205 samples of syringes to evaluate our method.
Practical results (i.e., 99.7% on F1) show that our method
can meet defect detection requirements of the syringe pro-
duction.

2 Related work

In the early stage of automatic defect detection, the classical
machine vision-based (CMV) methods have made an excel-
lent contribution to themanufacturing industry. In this period,
surface defects are generally described as local anomalies
inhomogeneous textures [13], in which hand-craft features,
such as Local Binary Pattern (LBP), are utilized to deter-
mine the existence of defects [3]. Later, traditional machine
learning-based methods, such as SVM [14] and fuzzy logic
[15], are introduced to the domain of defect detection.
Presenting well generalization performance and complex
nonlinear boundaries modeling performance, the traditional
machine learning-based methods have proven to be pow-
erful for classification tasks. However, it requires complex
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optimization of the regularization to control the risk of over-
fitting [16] and shows poor performance on the defects with
complex texture characteristics [17].

In 2012, the proposal of AlexNet [18] triggers a newwave
of artificial intelligence. Since then,more andmore deep neu-
ral networks have been applied to defect detection. Ciregan et
al. [19] apply deep neural network technology on image clas-
sification and achieve near-human performance on MNIST
handwriting benchmark firstly. In the same year, Masci et al.
[20] start to apply convolutional neural network (CNN) to
defect detection and prove that CNN technology is superior
to the CMV method. They build up a five-layer CNN net-
work to classify several types of defects on steel. However,
the small network capacity limits its application to complex
scenarios. In order to obtain more robust defect detection
performance, Weimer et al. [21] build a deep convolutional
neural network for defect detection, including the CNN por-
tion and fully connected neural network (FCNN) portion.
The CNN portion consists of nine convolutional layers and
three max-pooling layers response for generating features,
while the FCNN portion consists of three fully-connection
layer responses for classification. The method of Weimer et
al. enhances the accuracy of defect detection, but the heavy
computation burden caused by a large number of parameters
and the need for large amounts of training data become new
challenges. Based on the idea that different parts of the net-
work are responsible for different tasks, Tabernik et al. [6]
propose a two-stage network. The network includes two sub-
networks, namely, the segmentation network is responsible
for segmenting defects from the raw sample, and the decision
network is responsible for decidingwhether the defect exists.
This method divides the task of defect detection into two
parts, which reduces the complexity of each sub-network,
alleviating the risk of model over-fitting.

The supervised learning methods have achieved much
success in many domains. Nevertheless, their performance
overemphasizes the collection of vast training samples [22],
particularly defective samples. In this case, they may show
poor defect detection performancewith few training samples.
To relieve the difficulty of collecting and labeling defec-
tive samples, some unsupervised defect detection methods
based on image reconstruction [23,24] or image repara-
tion [25,26] are proposed. One of the most representative
approaches is Autoencoder (AE) [7]. AE builds an encoder-
decoder network, in which the encoder structure is in charge
of segmentingmeaningful information from the input image,
namely encoded feature. The decoder structure reconstructs
the input image from the encoded features [27]. According
to the theory of deep neural network learning via memoriza-
tion [28], AE will show high reconstruction error between
raw data and the reconstruction for defective sample. This
framework is of better practical application value due to its
needless of defective samples or manual labels [17]

However, the unsupervised defect detection approaches,
such as AE, are easy to fall into the false detection of
the defects with complex backgrounds [24]. This drawback
weakens the defect detection performance of unsupervised
methods and limits their application in industry, where the
background of the product is usually complex. In addition,
unsupervised methods require training on a vast of non-
defective samples [24,29], which is time-consuming and
computing-intensive. These two drawbacks above limit the
application of unsupervised deep learning methods.

In recent years, the combination of the deep learning
(DL)methodwith the classicalmachine vision-based (CMV)
method has gained increasing attention, which can properly
balance the prediction accuracy and the data requirement in
industrial applications [30]. In this paper, we work on com-
bining theDLmethod and CMVmethod to propose a syringe
scale defect detection approach. Our approach obtains excel-
lent performance and requires few negative samples for
training. Our approach consists of two components, that is,
the scale extraction network (SeNet) and the scale defect dis-
criminator (SDD).

3 Scale extraction network (SeNet)

Facing the limitations and requirements above, the intuition
of SeNet is that although the defects are diverse and uncer-
tain, the main structure of scales is relatively unchangeable.
Therefore, we can extract the normal scales, based on which
scale defects can be further detected. To be more specific,
we identify the normal scale pixels as the positive pixels,
while the other pixels are classified as negative pixels. By
applying this extraction strategy, we can achieve the follow-
ing two advantages: firstly, SeNet treats each pixel on the
scale as the training sample, which reduces the requirement
of training images collection [6]. Secondly, it helps to detect
various and uncertain defects, less affected by the category
of defects. This section first introduces the preprocessing
techniques used in this paper, that is, syringe location and
rectification, followed by our network architecture and loss
function.

3.1 Syringe location and rectification

For the computation reduction and external noise avoidance,
we introduce the syringe location and syringe rectification
as data preprocessing techniques for our SeNet. The syringe
location is responsible for locating the syringe of interest
(the topmost syringe) in the raw image, shown in Fig. 3. The
syringe rectification corrects the tilted angle of the syringe
and makes it horizontal. The flowchart of syringe location
and rectification is shown in Fig. 2.
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Fig. 2 The flowchart of syringe location and rectification. We first utilize the average gray value changes to locate and extract the syringe. Then, we
extract the upper edge of the top syringe to obtain the syringe’s tilt angle. Finally, we rectify the extracted syringe horizontally for the subsequent
scale extraction task

Syringe location As shown in Fig. 3a, the syringe (green
dotted box) has a high pixel value, while the background is
represented by relatively lowpixel values. Utilizing this char-
acteristic, we can simply construct a slidingwindow to locate
the syringe. For convenience, we denote the input image as I ,
where I (x, y) indicates the pixel value at the location (x, y)
of the raw input image.WI and L I refer to the width and the
height of the raw image, respectively. Suppose Sw is the slid-
ing window. We use WS and LS to represent the width and
height of Sw, respectively. To locate the syringe, we initially
set the slidingwindowon the top of the input image. Then,we
move it down at a step of ten pixels. For each step, we com-
pute the average pixel value Sw(k) for the sliding windows
usingEq. 1,where k (k ∈ [1, L I−LS]) is the offset relative to
the top of the input image. During the moving process of the
slidingwindow, Sw(k)will stay in relatively low values if the
sliding window only covers the background pixels. However,
when the sliding window begins to cross the syringe, Sw(k)
will gradually increase and reach its largest value when the
syringe is entirely covered by the sliding window. Further-
more, after the slidingwindow leaves the syringe step by step,
the Sw(k) also drops. This changing rule of Sw(k) could help
us locate the position of the syringe. For better visualization,
we illustrate the line chart between Sw(k) and k in Fig. 3b.
The corresponding syringe location algorithm is presented in
Algorithm 1. It is worth noting that the sliding window only
needs to position the topmost syringe and uses a large step
size, thus, the sliding window requires a few moving steps
and computational resources to locate the syringe.

Sw(k) = 1

WsLs

Ws∑

x=1

Ls∑

y=1

I (x, y + k) (1)

Syringe rectification Owing to the external interference,
for example, the vibration of the production equipment, the
syringes are frequently out-of-level, like the top syringe in
Fig. 3a. To keep extracted scale vertical, for detection con-
venience, rectifying the syringe is necessary. After obtaining
the syringe’s location, we clip the syringe from the input

Algorithm 1: Syringe Location
Input: The input image I , where I (x, y) refers to the pixel value

of I at the location (x, y)
The width WI and height L I of the input image
The width Ws and height Ls of the sliding window Sw

Output: The optimal location of syringe k̂
1 Sw(0) = 0 // Initialize the average value in

Sw to 0
2 for k = 1 to L I − LS do
3 Sw(k) = 1

Ws Ls

∑Ws
x=1

∑Ls
y=1 I (x, y + k) // Calculate

average pixel value of current sliding
window

4 if Sw(k) < Sw(k − 1) then // When the value of
Sw(k) begins to drop

5 k̂ = k
6 break
7 end
8 end
9 return k̂

image, namely the syringe image. Next, we utilize the Sobel
operator to detect the edge of the syringe and then employ
Hough transform [31] to obtain the line of the syringe’s upper
edge. By measuring this line, we can obtain the tilted angle
of the syringe. Finally, we rotate the syringe image with the
tilted angle and finish the syringe rectification. The result of
syringe location and rectification is shown in Fig. 3c, d.

3.2 Our network architecture

As shown in Fig. 1, the shape of the syringe scale is rel-
atively slender as well as the defective scale is similar to
the normal one. Therefore, to better detect scale defects, pre-
cisely extracting the scale is necessary. To be specific, precise
extraction of scale can be divided into two aspects, scale
recognition and scale edge extraction. Take a broken scale as
an example, scale recognition helps to correctly judge mul-
tiple fragments from one scale, while scale edge extraction
makes the defects more obvious.

After syringe location and rectification,webuild theSeNet
to extract the main structure of the scale from the syringe
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Fig. 3 The input image and the extracted syringe after location and rec-
tification. In subfigure (b), we can find the optimal offset k by locating
the largest value of Sw(k), where the sliding window entirely covers the

syringe. Then, we can accurately extract the syringe shown in subfigure
(c). After we extract the syringe, we rectify it horizontally to correct the
tilted angle, shown in subfigure (d)

image shown in Fig. 3d. Enlighten by Tabernik et al. [6]
and Xie et al. [32], the network includes two main com-
positions, backbone structure and skip connection structure.
The network architecture is presented in Fig. 4. The back-
bone is in charge of extracting the multi-level features from
the input image, while the skip connection is responsible for
fusing these features. The combination of backbone and skip
connection structure ensures the extracted scale contains the
structural information from the deep layer of the backbone
as well as the details information from the shallow layer of
the backbone.

The backbone structure consists of nine convolutional lay-
ers with the 3×3 kernel, and twomax-pooling layers with the
kernel and stride both of 2. Each convolutional layer follows
a batch normalization and a ReLU activation function. The
batch normalization normalizes each channel to a zero-mean
distribution with unit variance, while the ReLU activation
function is a nonlinear activation function helping the net-
work learn complex patterns in the data. The join of the
convolutional layer, batch normalization, and a ReLU activa-
tion function, constitutes a convolutional unit. Totally, there
are nine convolutional units in our network, which can be

divided into three convolutional groups. Besides, one max-
pooling layer is inserted between every two convolutional
groups. By selecting the max value in the kernel, the max-
pooling layer extracts the noteworthy feature and reduces
the feature map resolution at the same time. The segmenta-
tion network proposed by Tabernik et al. [6] enlightens the
designof our backbone structure, but our backbonewithmore
concise network architecture, less convolutional layers, and
fewer numbers of parameters.

The skip connection structures are marked with the red
lines and the brown cuboids in Fig. 4. There are three decon-
volutional layers plugged in after each convolutional group,
and then each result of deconvolutional layers is concatenated
to a three-channels feature map. Finally, the three-channel
feature map is fused by a convolutional layer with the 1 × 1
kernel as well as a binarization operation, and outputs a
single-channel extracted scale. This special structure enables
SeNet to take advantage of both abstract and specialized
semantic features from the deep layer and fine-grained fea-
tures from the shallow layer. These features from each layer
are integrated, and various information from different recep-
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Fig. 4 The structure of SeNet. The red lines and brown cuboids indicate the skip connection structure. Through this structure, we can integrate
various features from different receptive fields

tive fields are merged, which helps SeNet to generate an
accurate extraction result.

3.3 Loss function

In semantic segmentation, the class imbalance is a common
problem [33], where the number of negative (background)
pixels is extremely larger than that of positive (foreground)
pixels. In this situation, the predictions of pixels are eas-
ily biased towards the background and tend to give a false
prediction. To address this problem, we adopt the Balanced
Cross Entropy (BCE) loss function. By introducing aweight-
ing factor α ∈ [0, 1] for positive class and 1−α for negative
class, the BCE loss function balances the contributions of
positive pixels and negative pixels for network training. For-
mally, BCE is defined as Eq. 2.

BCE(P(x, y),Gt(x, y)) =
{

−α log(P(x, y)) if Gt(x, y) = 1

−(1 − α) log(1 − P(x, y)) otherwise

(2)

In the Eq. 2, Gt and P specify the ground-truth label
and model’s prediction, respectively. Gt(x, y) ∈ {0, 1} and
P(x, y) ∈ [0, 1] indicate the pixel value at the location (x, y)
of Gt and P , respectively. In this paper, we use BCE with
α = 0.6 as the loss function.We analyze the parameter selec-
tion on α in detail in Sect. 5.

4 Scale defect discriminator (SDD)

Basedon themain structure of the scales (white pixels) shown
in Fig. 5, the scale defect discriminator (SDD) is responsi-
ble for detecting the defects. Firstly, the extracted scales are
grouped to reduce the influence of noise and broken scales.
Then, SDD discriminates the defective scale on the scale
grouping results.

NotationsAfter extracting themain structure of scales, we
select each scale block and use the center coordinates on the
x-axis of the scale block to represent its position. Then the
scale blocks are sorted in ascending order according to their
positions. We use s0 to represent the scale block with the
smallest position value, s1 to represent the scale block with
the second smallest position value, and so on. The set of scale
blocks is denoted as S = {s0, s1, · · · , sm}, where m refers to
the number of scale blocks. Besides, Cs(si ) is defined as the
position of the scale block si . Ds(i, j) refers to the distance
between two scale blocks si and s j , which is formulated as
Eq. 3. In addition, we define the average distance of all the
scale blocks as Ds.

Ds(i, j) = |Cs(si ) − Cs(s j )|. (3)

4.1 Scale grouping

In practice, theDs(i, j) in Eq. 3 is easy to be affected by noise
and broken scales. For example, the broken defect causes the
extracted scale to be divided into several parts, making the
measurement of the distance biased from the truth values. To
solve this problem, we propose a scale grouping strategy to
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Fig. 5 The scale extraction result of our SeNet. In this figure, we add x-axis (horizontal axis) and y-axis(vertical axis) for better visualization

group the scale blocks, where the scale blocks are put into
the same group if they are close to each other.

Similar to scale blocks, we use the center coordinates on
the x-axis of the scale group to represent its position. The
position of the scale group gp is set as the center of scale
blocks within the scale group. The calculating formula of the
scale group position is provided as follows

Cg(gp) = 1

Ng(gp)

∑

s∈gp
Cs(s), (4)

where Ng(gp) is the number of scale blocks in the scale
group gp. Dgs(gp, si ) refers to the distance between a scale
group gp and a scale block si , formulated as Eq. 5.

Dgs(gp, si ) = |Cg(gp) − Cs(si )|. (5)

To group the scale blocks, we first construct an empty
scale group g0 and put the nearest (numbered smallest) non-
grouped scale block s0 to g0. At that time the position of
g0 same as s0. Then we measure the distance between the
scale group g0 and the next non-grouped scale block s1. If
Dgs(g0, s1) < β D̂s,we add the s1 to g0,where D̂s is the stan-
dard distance between two adjacent scale blocks. Next, we
update the position of g0 using Eq. 4 and add another nearest
non-grouped scale block to g0 until there are no scale blocks
close to g0 (i.e., with distances less than β D̂s). Similar to g0,
we construct and fill the next scale group g1. This grouping
process ends till all the scale blocks are grouped. Accord-
ing to this grouping rule, the procedure of scale grouping is
summarized in Algorithm 2.

4.2 Scale defect discriminator

Based on the result of scale grouping,we design a scale defect
discriminator to perform the defect inspection. Our discrim-
inator aims at distinguishing six defects discussed in Sect. 1.
In the subsequent defect detection, we need to compare the
input scale group set with a standard scale group set, which
is defined as GT for description convenience. GT contains

Algorithm 2: Scales Grouping
Input: The set of scale blocks S = {s0, s1 · · · sm}

The standard distance D̂s
A hyper-parameter β

Output: The set of scale group G
1 p = 0 // Initialize the index of scale group

as 0
2 gp = {} // Initialize the scale group as an

empty group
3 G = {} // Initialize the set of scale group

as an empty set
4 for si ∈ S do // Iterate each scale blocks
5 if si is s0 then // If it is processing the

first scale block
6 gp = gp ∪ {si } // Add the first scale block

to the first scale group
7 G = G ∪ {gp} // Add the first scale group

to the set of the scale group
8 else
9 Dgs(p, i) = |Cg(gp) − Cs(si )| // Calculate the

distance between the scale group
with the next scale block

10 if Dgs(p, i) > β D̂s then
11 gp+1 = {si } // Create a new scale group

to save the scale blocks
12 G = G ∪ {gp+1} // Add the new scale

group to the scale group set
13 p = p + 1 // Update p
14 else
15 gp = gp ∪ {si } // Add to the last scale

group

16 Cg(gp) = 1
Ng(gp)

∑
s∈gp Cs(s) // Update the

position of gp
17 end
18 end
19 end
20 return G // Return the scale group set

NT standard scale groups which can be divided as c classes
according to the scale group length. We denote the standard
length of different classes scale group as L(t)

T (t ∈ [1, c]),
where t means the class of scale group. In a non-defective
syringe, the width of each scale group and the separation
between each two scale groups should be basically the same.
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Wedenote the standardwidth of the scale group asWT , while
DT refers to the standard distance between two adjacent
scale groups. Suppose we obtain a setG = {g1, g2, · · · , gm}
containing m scale groups from an input image. Here, our
discriminator individually separates each kind of defect as
follows.

Firstly, to identify the excessive (EX) defect, missing
(MIS) defect, we can simply compare the number of scale
groups to that of the standard scale group set. If the num-
ber of scale groups NG is larger than that of the standard
scale group set (i.e., NG > NT ), there is an EX defect in
the input image. In contrast, NG < NT indicates the MIS
defect. Further, to detect the broken (BK) defect, we deeply
analyze the number of scale blocks in each scale group of G.
If there exist some scale groups each containing more than
one block, then, the number of scale blocks in G is larger

than m, namely,
m∑
p=1

Ng(gp) > m. In this case, we assume

that the input image can be classified as the BK defect.
Secondly, we inspect the separation based on the grouping

result. For a non-defective sample, the separation between
any two adjacent scale groups should be approximately the
same. If the separation between two adjacent scale groups
is out of the normal range, we assume that the input image
exists OT defects. To be more specific, we define the separa-
tion between any two adjacent scale groups gp and gp+1 as
Dg(p, p + 1). Besides, the standard separation between gp
and gp+1 is defined as DT and the average separation of all
adjacent scales groups is defined as D̄g . WhenDg(p, p+ 1)
is larger than δDT and θ D̄g or Dg(p, p + 1) is smaller than
γ DT and ηD̄g , SDD assumes the separation between two
adjacent scale groups gp and gp+1 are out of the normal
scope. DT keeps consistent for each test sample, while D̄g

may change with the different syringe images. Utilizing D̄g

as one of the criteria to determine abnormal separation is
equivalent to providing an implicit calibration algorithm for
syringes, in which the reasonable range of scale separation
change follows with the different test syringes. Using DT

and D̄g promotes SDD to achieve amore robust performance
to the small position shift of the injector. Many defects can
cause scale group separation abnormal, such as rare scale
defects between two scale groups (e.g., Fig. 1f). In practice,
it is difficult to specify all kinds of these defects. Therefore,
we classify the defect, leading to the scale group separation
abnormal, as other (OT) defect. Besides, the detection abnor-
mality which is not belong to the other five categories, such
as failure to detect syringe in the input image or the inexis-
tence of scale (e.g., Fig. 6g), are also classified as other (OT)

defect. For description convenience, we define a mapping
function S(gp, gp+1) as follows

S(gp , gp+1) =
{
1 if Max(γ DT , ηD̄g) < Dg(p, p + 1) < Min(δDT , θ D̄g)

0 otherwise
.

(6)

where γ, δ, η, and θ are the coefficients that determine
whether the separation is abnormal, which depend on
the syringe type. It should be noticed, if some separa-
tions are out of the normal range, the total number of
S(gp, gp+1) with non-zero values is larger than zero, that is,
m∑
p=1

S(gp, gp+1) > 0. In this case, we assume that there are

uncertain or other (OT) defects between the adjacent scales.
Thirdly, length abnormal (LA) defect and width abnormal

(WA) defect are common defects in the syringe. To capture
these defects, we compare the length and width of the scale
group to that of the standard scale group. In practice, there
are multiple scale group lengths in a syringe, similar to the
standard scale group lengths L(t)

T (t ∈ [1, c]), we denote

the average scale group lengths as L
(t)
g (t ∈ [1, c]), where t

refers to the type of scale group length. To evaluate if the scale
group lengths are in the normal range, we use the standard
length ratioRls(p) = Lg(gp)/L

(t)
T and average length ratio

Rla(p) = Lg(gp)/L
(t)
g as the evaluation indicators. Obvi-

ously,Rls(p) is the ratio between the scale group length and
the corresponding standard scale group length, whileRla(p)
is the ratio between the scale group length and the average
scale group length. Similarly, we define the standard width
ratio asRws(p) = Wg(gp)/WT and the average width ratio

is defined as Rwa(p) = Wg(gp)/W
(t)
g .

In practice, the Rls(p) and Rws(p) should be within the
range ofM, while theRla(p) andRwa(p) should be within
the scope of N; otherwise, we assume the ratio is out of
scope, that is, there are defective scales with LA defects or
WA defects.

Finally, the scale defect discriminator is defined as Eq. 7.

SDD(G) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

EX, if NG > NT

MIS, if NG < NT

BK, if
∑m

p=1Ng(gp) > m

OT, if
∑m

p=1 S(gp, gp+1) > 0 or

other detection abnormality

LA, ifRls orRla is out of the normal range

WA, ifRws orRwa is out of the normal range

Non-defective, otherwise

(7)
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5 Experiments

5.1 Dataset

In order to verify the performance of our approach, we build
a dataset of syringe images, which are captured in a real
production environment. We illustrate one sample image in
Fig. 3. The resolution of raw input images is 1292 × 964.
There are 1205 images in this dataset. Since it is hard to
collect the defective samples, we randomly select 590 images
from this dataset to artificially generate defective samples.
These defective samples can be classified into six categories,
shown in Fig. 1. In total, we get 615 non-defective samples
and 590 defective samples. In this experiment, we utilize 20
non-defective images for training, five defective samples and
five non-defective samples for validation, and the remaining
samples (i.e., 585 defective samples and 590 non-defective
samples) for testing.

5.2 Experimental setting

The experiment is implemented using the Pytorch frame-
work which is run the hardware of CPU Intel Xeon E5-2680
v3 @ 2.50GHz and GPU Nvidia GTX TITAN X. Two data
augmentation strategies, namely, horizontally flipping and
vertically flipping, are used in this experiment [34]. The
scale extraction network is trained 300 epochs with the
mini-batch size of 2. During the training, the learning rate
is initialized as 0.01 and decreased by 1/5 at the epoch
50, 110, 180, and 260, respectively. Adam algorithm [35] is
utilized to optimize the parameters.

In the part of SDD, based on the size of the standard
syringe, we set the size of sliding windows, namely, Ws and
Ls to 1280 and 320, respectively. According to the distance
between two standard adjacent scale blocks, we set the ratio
β, used to determine whether group the scales blocks, to
1/3. Similarly, γ, δ, η, and θ , the coefficients to judge sepa-
ration abnormal, are set as 0.6, 1.7, 0.5, and 2, respectively.
Besides, based on the standard scales length and width, the
normal range of scale length and width M and N is set as
[0.8, 1.2] and [0.9, 1.1]. The parameters are shown in Table
1 intuitively.

5.3 Evaluationmetrics

To evaluate the performance of our method, four different
metrics are considered, that is, Precision, Recall, F1, and
Intersection over Union (IOU). Precision, also called pos-
itive predictive value, is the fraction of correctly predicted
positive samples among all predicted positive samples. The
Recall is the ratio between correctly predicted positive sam-
ples and ground-truth positive samples. Both Precision and
Recall can reflect the defect detection performance of our

method. They are defined as Eqs. 8 and 9, respectively. What
is more, we also introduce F1, the harmonic mean of Pre-
cision and Recall, to take both the precision and recall into
account. The special form of F1 is shown in Eq. 10.

Precision = TP

TP + FP
(8)

Recall = TP

TP + FN
(9)

F1 = 2 · Precision · Recall
Precision + Recall

(10)

TP and FN are defined as the number of correctly predicted
positive samples, incorrectly predicted negative samples,
respectively. FP is the number of incorrectly classified sam-
ples.

IOU is the ratio of intersection and union of prediction
and ground truth. It is employed to measure the performance
of SeNet, which special form is shown as Eq. 11. In Eq. 11
we treat a pixel as a sample for TP, FP, and FN.

IOU = TP

TP + FP + FN
. (11)

5.4 Defect detection results

Our method contains two components, namely, SeNet and
SDD. SeNet extracts the main structure of scale from the
raw input image, while SDD detects and labels defects by
analyzing the extraction result, that is, the output of SeNet.
In this section, we show the defect detection results of our
method. The results are shown in Table 2, where the first
six rows show the performance of our approach for different
defects, while the overall performance is placed at the bottom
row.

As shown in the Table 2, our method obtains the over-
all F1 of 99.7%, which misclassifies four samples out of
585 samples. It should be noticed that we achieve zero mis-
classification for OT defect, demonstrating the favorable
performance of our method for uncertain defects. Besides,
the F1 scores of our method on all types of defects are over
99%, showing that our method is robust for syringe defect
detection. The overall precision achieved by our approach is
99.5%,while theRecall is 99.8%.This balanced performance
in terms of precision and recall demonstrates that our method
takes both “find-correct-defects” and “find-all-defects” into
account. We show the intuitive result in Sect. 5.6.

5.5 Experiment on SeNet

SeNet is the key to detecting uncertain defects. The concise
network structure allows us to use a small number of sam-
ples for training model. The introduction of BCE enables us
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Table 1 The parameters of
training

Item Value

The standard number of scales 41

The width of sliding window Ws 1280

The length of sliding window Ls 320

The ratio of determine group β 1/3

The coefficients determining separation abnormal γ, δ, η, and theta 0.6, 1.7, 0.5, 2

The coefficients judging length abnormal η, θ, λ, μ 0.8, 1.2, 0.9, 1.1

Table 2 The result of defect
detection on syringe

Defects Numbers TP FN FP Precision (%) Recall (%) F1 (%)

BK 100 99 1 1 99.0 99.0 99.0

LA 91 90 1 0 100.0 98.9 99.4

WA 85 85 0 0 100.0 100.0 100.0

EX 88 87 1 0 100.0 98.9 99.4

MIS 94 94 0 0 100.0 100.0 100.0

OT 127 127 0 0 100.0 100.0 100.0

Overall 585 582 3 1 99.8 99.5 99.7

to achieve powerful extraction effects in case of the class
imbalance. In this section, we first show the performance of
the SeNet and compare it with four state-of-the-art segmen-
tation methods. The compared methods include the U-Net
[36], SN [6], SCUNet [37], and FSDNet [38]. Secondly, we
explore the number of samples needed for training the net-
work. Finally, by adjusting the α on BCE and replacing BCE
with other loss functions, we further analyze the effect of
different loss functions on the SeNet.

5.5.1 Scale extraction result

In this section we first present the extracted result of our
SeNet in Fig. 6. To clearly compare the extraction results,
we artificially generate two representative defects (indicated
by the red box and yellow box) for each special defect type
on the normal syringe. According to whether the defective
scale is similar to the normal one, the defect can be divided
into similar scale defects and distinct scale defects. For the
former, the extracted results of SeNet are also similar to the
normal scales, for example, the results in Fig. 6c, which need
to be further processed by subsequent SDD. For the latter,
the SeNet extracts the defective scales as background, which
can be easily detected, for example, the results in Fig. 6d,
g. From the results can see that SeNet can shield the influ-
ence of background and noise, and highlights the differences
between non-defective and defective scales, thus reducing
the difficulty of subsequent detection.

5.5.2 Comparison with other segmentation network

Segmentation performance comparison of different networks
To evaluate SeNet objectively, we compare SeNet with four
commonly used segmentation networks as follows. U-Net
[36], which has been widely applied in various fields. SN
[6], which enlightens us to propose SeNet according to
the characteristics of the scale. SCUNet [37], a U-Net like
segmentation network with depthwise convolution, which
slashes the complexity and the size ofU-Net sharply. FDSNet
[38], which is a novel segmentation network based on a two-
stage defect detection framework. The experimental settings
of each segmentation network are shown in Table 3. We
utilize IOU as the primary evaluation metric, and then we
discuss the complexity and size of each network. We run the
experiment three times and report the average results. The
comparison of extraction accuracy is shown in the first row
of Table 4, while the comparison of model complexity and
size of all networks are illustrated in the second and third
rows of Table 4 respectively.

As shown in the first row of Table 4, SeNet obtains the
best IOU of 88.0%, which is significantly superior to SN
by 21.2 percentage points and also has a slight advantage
(i.e., 1.1 percentage points) over U-Net. From another per-
spective, the advantages of SeNet are more obvious. Along
with better segmentation performance, the network complex-
ity and the size of SeNet are only 1/5 and 1/25 of SCUNet,
respectively. SCUNet can be regarded as a variation of U-Net
by replacing the convolutional layers with depthwise convo-
lutional layers, which slashes the complexity and the size
of U-Net sharply. SCUNet can be divided into two parts:
encoder and decoder. SCUNet first encodes the input image
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Fig. 6 Extracted result of
SeNet. For sub-image (a), the
normal original syringe, the
corresponding extraction results
of our method, and the manual
label results are arranged from
left to right. For sub-image
(b–f), the first row of each
sub-image shows the defective
origin syringe, and the second
row presents the scale extraction
results. The enlarged defective
parts are put in the third and
fourth rows, where the origin
syringe is on the left, the
extraction results of our method
are placed in the middle, and the
rightmost column is the ground
truth mask. Sub-image g shows
the extraction result for “other”
or “uncertain” defect samples.
From top to bottom, there are
origin syringe, extraction result
of our method, and manual label
result, respectively

Table 3 The experimental
settings of different
segmentation methods

Network Loss Optimizer Learning rate Batch size Epochs

SN [6] Cross Entropy Adam 0.001 2 300

U-Net [36] Cross Entropy Adam 0.001 2 300

SCUNet [37] IOU Loss Adam 0.01 2 300

FSDNet [38] Cross Entropy Adam 0.001 2 300

Ours BCE Adam 0.001 2 300

Table 4 The comparison of
different segmentation methods

Metrics SN [6] SCUNet [37] FDSNet [38] U-Net [36] Ours

IOU 66.8% 82.2% 83.6% 86.9% 88.0%

GFLOPs 142.07 90.40 1284.34 408.70 17.26

Parameters (M) 15.44 6.36 17.54 34.53 0.25

into a small-size feature map through 14 convolutional lay-
ers and then decodes the feature map to segmentation result
with the same size of the input image through nine convolu-
tional layers and four deconvolutional layers. This symmetric
encoder and decoder framework generates a large number
of parameters and raises the computational requirements. In
contrast, SeNet utilizes an asymmetric encoder and decoder

framework, which first encodes the input image into multi-
scale feature maps through ten convolutional layers, and then
decodes these feature maps through one convolutional layer
and three deconvolutional layers. This architecture of SeNet
contributes to better segmentation accuracy with lower net-
work complexity. The result demonstrates that SeNet is a
more excellent method for scale extraction.
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Table 5 The detection accuracy comparison of different segmentation
networks combined with SDD

Method IOU (%) Precison (%) Recall (%) F1 (%)

U-Net+SDD 86.9 96.1 96.6 96.3

SeNet+SDD 88.0 99.8 99.5 99.7

Impact of different segmentation networks on SDD In this
section, we further discuss the impact of different segmenta-
tion networks on SDD. First, we compare the defect detection
accuracy of ourmethod (SeNet +SDD)withU-Net [36] com-
binedwith SDD (U-Net + SDD). Thenwe discuss the reasons
for the comparison results by showing the extracted scales
segment by different networks. The comparison results are
shown in Table 5.

As shown in Table 5, higher extraction precision promotes
higher detection accuracy, our method exceeds “U-Net +
SDD” by 3.4 percentage points in F1. A more intuitive result
is shown in Fig. 7.

As shown in Fig. 7a, U-Net can not recognize the small
scratches whose results in the SDD identifying the broken
scale as the normal one. In contrast, SeNet shows excellent
extraction performance for small scratches in Fig. 7b, avoid-
ing the misclassification of SDD. The intuitive results also
demonstrate that SeNet is more suitable for scale extraction.

5.5.3 Sensitivity to the number of training samples

In the industrial environment, small training sample size
requirements are conducive to reducing the cost of data
collection and beneficial for improving the model extensi-
bility for industrial products. In this section, we evaluate
our method for scenarios with small-size training sets. Con-
cretely, we randomly select 5, 10, 15 negative samples from
our training set in Sect. 5.1 to construct three new training
sets TR-5, TR-10, and TR-15, respectively, while the test set
and validation set remain unchanged. For clarity, we name
our original training set TR-20. The experiment adopts the
same training setting as the previous experiment and repeats
three times. The average IOU is reported to evaluate the per-
formance of the SeNet. The results are presented in Table
6.

As Table 6 shows, it is no doubt that using the training
set with more samples brings better extraction results, that
is, SeNet obtains 88.0% IOU when using the training set of
TR-20. However, a deserve-attention tendency is that, as the
number of training samples decreases, the extraction results
still maintain a favorable IOU. For example, when reducing
half of the training samples (TR-10), the IOU only decreases
by 2.2 percentage points. Even in the extreme case, namely,
using five training samples (TR-5), SeNet only decreases
3.3 percentage points on IOU. In summary, the experiment

Table 6 The comparison of the extraction results with different sizes
of the training sets

Training set Number of training samples IOU (%)

TR-5 5 84.7

TR-10 10 85.8

TR-15 15 86.7

TR-20 (Origin) 20 88.0

We randomly select 5, 10, 15negative samples from theoriginal training
set to construct training set TR-5, TR-10, TR-15. Especially, for clear
demonstration, we denote the original training set as TR-20

results present that the SeNet maintains superior and stable
performance evenwhen a small-scale training set is available.
We attribute this favorable characteristic to the non-defective
extraction strategy of SeNet, which identifies the defects
by extracting the normal scale instead of directly detect-
ing defects. Under this detection framework of SeNet, for
any syringe sample containing multiple scales, each of these
scales is treated as a training sample. Therefore, SeNet could
obtain sufficient training data and accurately explore themain
structure of the scale.

5.5.4 The influence of different loss function

To solve the class imbalance problem in scale extraction,
we utilize the Balanced Cross Entropy (BCE) loss function
to balance the contributions of positive pixels and negative
pixels for network optimization and prevent the model from
tending to produce the biased predictions toward the major-
ity class in the training set. In this section, we first discuss
the effect of different α on scale extraction accuracy. Then,
different loss functions are adopted to compare with BCE.

Effect of different α on extraction accuracy Conventional
BCE loss function uses a weighting factor α ∈ [0, 1] to
balance the contributions of negative pixels and positive pix-
els. An unsuitable α may lead to an overemphasis on one
particular class of pixel and degraded model performance.
For example, when α is set to 1, the model will completely
ignore the loss from the negative pixels and tend to predict
all pixels as positive. In contrast, when α is set to 0, the
model tends to predict all pixels as background. To find an
appropriate α for the BCE loss function, we tune it from
{0.6, 0.7, 0.8, 0.9, 0.95} on the training set and validation
set. Following the previous experiment, we repeat the exper-
iment three times and report the average IOU. The results are
shown in Fig. 8a.

Shown in Fig. 8a, SeNet obtains the best IOU of 88.0%
when α = 0.6. This demonstrates that slightly increasing
the weight of positive pixel loss is beneficial to enhance the
accuracy of the SeNet. However, overemphasis on the loss
from positive pixels will weaken the model. For example,
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Fig. 7 Defect detection results
of different segmentation
networks combined with SDD.
In each subfigure, we show the
defect detection results of SDD
on the first row, while the
extracted scales are shown in the
second row. In the first row, the
red boxes are marked by the
algorithm, and we mark the
defect manually with yellow
boxes in the second row

Fig. 8 Performance comparison of different α and loss functions

whenα is gradually increased from0.6 to 0.95, SeNet shows a
degradation tendency. This result indicates thatα is important
to SeNet, and an appropriate α could properly improve the
accuracy of SeNet.

Performance comparison of different loss function To
address the class imbalance problem, BCE is adopted to
balance the positive and negative pixels. In this section, to
verify the effect of BCE, we replace loss function with Cross
Entropy loss function (CE), Mean Square Error loss function
(MSE), andDice loss function (Dice) for the experiment. The
comparison results of different loss functions are shown in
Fig. 8b.

From Fig. 8b, BCE loss could improve the extraction
accuracy of the SeNet indeed. Comparedwith the imbalance-
ignorant loss function, for example, MSE loss, our approach
obtains an elevation of 3.4 percentage points. In compar-
ison with MSE loss, the imbalance-aware loss functions,
for example, Dice loss and BCE, are less affected by the
class imbalance problem [39], achieving superior perfor-
mance. Furthermore, when compared with the Dice loss,
our approach has an enhancement of nearly 1.1 percentage
points. The reason may lie in that Dice loss suffers from the
gradient unstable problem, which may cause difficulty for
model training [40]. These results demonstrate that using a
loss function that can refine the class imbalance problem is

Table 7 The detection accuracy comparison of different methods

Method Precison (%) Recall (%) F1 (%)

SCCAE [41] 69.90 62.70 166.1

MSCDAE [25] 94.1 65.1 77.0

SDD 99.8 99.5 99.7

meaningful to the syringe defect detection task, and BCE is
more effective than the other compared loss functions.

5.6 Experiment on SDD

Defect discriminator is responsible for detecting and labeling
defects on the extracted scale. In this section,wefirst show the
labeled result of the defect discriminator. Then, an ablation
experiment is implemented to quantify the effect of scale
grouping on the accuracy of defect detection.

5.6.1 Comparison with other defect detection methods

Syringe scale defect detection is a special task in machine
vision applications. First, there are vastly diverse and uncer-
tain defect types of scale defects (“other defect”), such as
Fig. 1f. Secondly, the defective scale is similar to the nor-
mal one as well as position relevant. For example, in Fig. 1b
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the defective scale (surrounded by the red box) is almost the
same as the non-defective one on the left. Therefore, it is
difficult for us to find a suitable classical machine vision-
based method to compare with our method. In addition,
limited by the small training set, which contains only 20
non-defective samples, a lot of machine learning methods
are unsuitable for detecting scale defects. In this section, we
compare our method with MSCDAE proposed by Mei et
al. [25] and SCCAE proposed by Xu et al. [41]. MSCDAE
utilizes a denoising autoencoder and the Gaussian pyramid
to reconstruct image patches, considering images with poor
reconstruction as defects.With a similar architecture toMSC-
DAE, SCCAE constructs a convolutional auto-encoder with
skip connections to rebuild the input image and considers the
incorrect rebuilding regions as defects. We utilize the MSC-
DAE and SCCAE to reconstruct and detect defects on the
extracted scale,which reduces the difficulty of reconstruction
and releases interferences from the background. Benefiting
from the Gaussian pyramid, MSCDAE is an unsupervised
method suitable for the small training set [25]. However, due
to the limitation of training samples, SCCAE obtains an infe-
rior result. The results are shown in Table 7.

As shown in the third column of Table 7, our method
achieves F1 of 99.7%, far ahead of MSCDAE and SCCAE
by 12.7 and 33.6 percentage points. This result illustrates that
our method is more suitable for defect detection on syringe
scales.

5.6.2 The visual result of SDD

After the process of SeNet, the distinct scale defects, such as
the first row of Fig. 9f, are predicted as background, while
the similar scale defects, such as the first row of Fig. 9b, are
extracted as foreground. Scale defect discriminator (SDD) is
responsible for further processing of the extracted result and
detecting the scales defect. We show diverse kinds of scale
defects (the first row) and the detected result (the last row )of
our method in Fig. 9.

Shown in Fig. 9, SDD presents a favorable ability to detect
both distinct scale defects and similar scale defects. Con-
cretely, for the distinct scale defect, such as the OT defect,
shown in Fig. 9f, our method canmark the defect target accu-
rately and is less affected by the category of defects. For the
similar scale defect, like the broken defect, shown in Fig. 9a,
SDD can identify all the parts of defected scales by scale
grouping. These results demonstrate that ourmethod not only
presents robust to diverse and uncertain defects but also has
the ability to accurately mark defect.

5.6.3 The effect of scale grouping

Scale grouping is used to group scale blocks and detect bro-
ken defects. To verify the effectiveness of scale grouping, we
implement the ablation experiment on it. The result is shown
in Table 8. Clearly shown in the third and fourth rows of
the table when we adopt scale grouping in SDD, our method
obtains a better F1, that is, 6.7 percentage points improve-
ment over the result without scale grouping (the fifth and

Fig. 9 The detecting results by
our method. In the first row, the
yellow box indicates the defect
on the original images, while the
blue box in the middle row
marks the corresponding
extracted defects or
segmentation results. The red
box, in the bottom row, shows
the mark detected by our SDD

Table 8 Result of scale
grouping ablation experiment.
To verify the effect of scale
grouping in SDD, we implement
an ablation experiment on the
test set with 585 defective
samples

Grouping Error items Recall (%) Precision (%) F1 (%)

BK LA WA EX MIS OT

� FN 1 1 1 0 0 0 99.5 99.8 99.7

FP 1 0 0 0 0 0

× FN 71 1 0 2 3 0 100 86.8 93.0

FP 0 0 0 0 0 0
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sixth rows). Concretely, adopting scale grouping drastically
reduces the number of broken defect error items from 71 to
2. Besides, scale grouping also promotes the detection accu-
racy for EX and MIS defects. These improvements illustrate
the importance of scale grouping for SDD.

6 Conclusion

In this paper, we propose a scale extraction neural network
with the BCE loss function (SeNet) and a scale defect dis-
criminator (SDD) to detect the defects for syringes. Utilizing
a small number of negative samples to train the model, our
SeNet can extract the main structure of scales effectively.
After dividing the extracted scales into groups, SDD inspects
these scale groups by analyzing the correlations among dif-
ferent groups to identify the defects. To verify our method,
we build a real-world syringe scale dataset with 1205 sam-
ples and apply our method to it. We reach the F1 of 99.7%
for image-level prediction, while the IOU of 88.0% for
pixel-level prediction. In summary, our method shows the
combination of deep learning (our deep neural network, i.e.,
SeNet) and the conventional machine vision-based method
(our scale defect discriminator, i.e., SDD) is important for
syringe defects detection, especially in the scenarios with
many defect uncertainty and limited negative samples.
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