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Abstract
Lung nodules are abnormal growths and lesions may exist. Both lungs may have nodules. Most lung nodules are harmless (not
cancerous/malignant). Pulmonary nodules are rare in lung cancer. X-rays and CT scans identify the lung nodules. Doctors
may term the growth a lung spot, coin lesion, or shadow. It is necessary to obtain properly computed tomography (CT) scans
of the lungs to get an accurate diagnosis and a good estimate of the severity of lung cancer. This study aims to design and
evaluate a deep learning (DL) algorithm for identifying pulmonary nodules (PNs) using the LUNA-16 dataset and examine
the prevalence of PNs using DB-Net. The paper states that a new, resource-efficient deep learning architecture is called for,
and it has been given the name of DB-NET. When a physician orders a CT scan, they need to employ an accurate and efficient
lung nodule segmentation method because they need to detect lung cancer at an early stage. However, segmentation of lung
nodules is a difficult task because of the nodules’ characteristics on the CT image as well as the nodules’ concealed shape,
visual quality, and context. The DB-NET model architecture is presented as a resource-efficient deep learning solution for
handling the challenge at hand in this paper. Furthermore, it incorporates the Mish nonlinearity function and the mask class
weights to improve segmentation effectiveness. In addition to the LUNA-16 dataset, which contained 1200 lung nodules
collected during the LUNA-16 test, the LUNA-16 dataset was extensively used to train and assess the proposed model. The
DB-NET architecture surpasses the existing U-NETmodel by a dice coefficient index of 88.89%, and it also achieves a similar
level of accuracy to that of human experts.

Keywords Lung cancer · Deep learning · Computer-aided diagnosis · Bidirectional feature extraction · Convolutional neural
network
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1 Introduction

The mortality rate associated with lung cancer is the highest
of all cancer types, making it the most dangerous form of the
illness [1]. A timely diagnosis has the potential to save many
lives.After breast cancer and prostate cancer, the incidence of
lung cancer is the third most prevalent kind of disease seen in
both men and women [2]. The International Association for
the Study of Cancer (IACS) has issued the following forecast
on the total number of new cases of lung cancer that will be
diagnosed in the USA in the year 2020 [3]:

• In the USA, 235,760 new lung cancer cases are diagnosed
each year (119,100 in men and 116,660 in women).

• Lung cancer was the cause of death for about 131,880
persons (69,410 in men and 62,470 in women)
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Pulmonary glands, which are small, spherical lung tumors
[4], can potentially develop into lung cancer if they are not
detected early enough. For example, a CT scan [5] cannot
detect lung cancer in its early stages because the tumors are
too tiny and located in the glands. It is not until the illness has
progressed to a later stage that symptoms become apparent.

Both CT and magnetic resonance imaging (MRI) [6] are
well-known diagnostic tools that assist medical profession-
als in detecting potential issues at an earlier stage, hence
increasing their ability to avert potentially fatal outcomes [7].
In the past, intelligent methods relied on manually designed
feature extraction techniques, such as sequential flood fea-
ture selection algorithms (SFFSA) [8] or genetic algorithms
(GA) [9], which may provide the most accessible features
[10]. Deep learning has recently been used in CAD [11] sys-
tems to automatically extract image characteristics [12]. As a
direct consequence of this, several approaches to processing
medical images have been shown to be effective [13].

Small cell lung cancer (SCLC) and non-small cell lung
cancer (NSCLC) [14] are the two forms of lung cancer
that are diagnosed most often. Various factors, including
the following, have been linked to the development of lung
cancer: Smoking creates hazardous particles that may enter
the air and can be inhaled [15]. Other factors, including
sex, genes, age, and exposure to second-hand smoke, also
have a role. People who smoke for extended periods are
the most likely to get lung cancer. Signs of lung cancer
include yellow fingers, anxiety, long-term illness, tiredness,
allergies, wheezing, rumbling, coughing up blood, even in
small amounts, hoarseness, shortness of breath, bone pain,
headache, trouble swallowing, and chest pain. Lung cancer
can be found by looking for signs like these.

Many models have been developed to diagnose early-
stage lung cancer, including the improved profuse clustering
technique of deep learning with instantaneously trained neu-
ral networks (IPCT-DLITNN) and the adaptive hierarchical
heuristic mathematical model [16]. There are three different
kinds of neural networks: a deep convolutional neural net-
work (DCNN), an artificial neural network (ANN), and an
ah-ha hidden Markov model (AHHMM) [17]. The authors
[18] discussed this in a piece of writing. The degree of pre-
cision and sensitivity that each model has is unique.

To counteract the challenges of effective feature min-
ing and the adaption of such information to the collection
of lung nodes, a U-NET model has been proposed [19] in
which a weighted bidirectional feature network is utilized.
This system applies to a variety of different types of lung
nodes. The workflow is with deep learning classifiers with
the classification of COVID-19 screening of the pulmonary
CT scan infection [20]. The author modified the CT scans
to segmented images with the support of CNN architecture
[21]. Image segmentation with the computer-aided diagno-
sis (CADx) on the MRI and CT scans with deep U-NET

segmentation was proposed [22] and worked on the inci-
dence and morbidity of the patients. The authors worked on
the 5 K images of the CT scans, collected the samples of
5684 CT scans, and proposed a CNN architecture for access-
ing the patients’ reports [23]. Authors worked on the CT
scans of lungs and applied deep learning strategies like CNN
and U-NET for the image enhancements and successfully
segmented the images. From the studies [20–23], we can
observe significant drawbacks that the segmentation of the
images was not performed with better dice coefficient due to
heavyweight architectures and higher resolution of the CT
scans. We tried to outperform this in our proposed DB-NET.

The major contributions of the paper are as follows.

– Nodule volume, determining the position, is essential for
lung nodule segmentation.

– Mish activation demonstrated high accuracy when com-
pared with the activation function ReLu.

– Debnath Bhattacharyya-Network (DB-NET) segmenta-
tion mask has provided dice coefficient more precisely
when compared with traditional U-NET segmentation.

– DB-NET segmentation architecture outperformed when
compared with all other segmentation neural networks.

The paper is organized as follows. In Sect. 2, we discuss
the background and related works. In Sect. 3, we discuss the
proposed methods and architectures. In Sect. 4, we discuss
the data and experiments. In Sect. 5, results and discussions
are provided. The conclusions and future work are described
in Sect. 6.

2 Related works

Convolutional neural networks are used to make U-NET.
Even though this network only has 23 layers, it is not bad
at all. It is not as complicated as networks that have hundreds
of layers. When you have a unified network, down-sampling
and up-sampling are important parts of it. Use convolutional
and pooling layers to get features from the input image during
the down-sampling step.

To improve the resolution of the feature map, a method
called deconvolution is used. Depending on where you live,
this structure is called a decoder (contraction path)–encoder
(expansion path). In different ways, convolutional and pool-
ing layers make feature maps with varying amounts of
information from the images used, depending on which layer
is used. Each of these featuremaps is different in howdetailed
it is. Deconvolution is used to keep the featuremap size grow-
ing after up-sampling. Then, the down-sampled feature map
is merged with the original to get back the less abstract infor-
mation that was lost and to improve network segmentation.

123



A bi-directional deep learning architecture for lung nodule semantic segmentation 5247

If we look at a lung CT image, you can see that the U-NET
networkuses two-dimensional convolution andpooling toget
information about nodules. This means that a lot of spatial
information has been lost. Down-sampling means that a lot
of important information about where things are going is
lost. When you up-sample an image, the output is fuzzier
and less sensitive to the picture’s attributes than the original
image output. If you think about all of the problems above, it
is important to use an improvised U-NET network to make
things even better. Table 1 explains the research gap in the
identification of the lung cancer segmentation nodules.

The authors from [24–37] have proposed their work with
the same potential of data; as a result, the robustness of the
model was missing. If the U-NET was applied to a different
variety of data, U-NET was ultimately missing the intersec-
tion over union (IOU) and dice coefficient index accuracy.
The U-NET architecture enhances the performance of both
fully connected and multi-scale converting systems in terms
of test results. But the major issues with the earlier models
were discussed below:

• The middle strata models learn at a slower rate than the
upper strata models; the network may choose to ignore the
abstract layers altogether.

• In general, gradients become less noticeable as one moves
away from the error calculation and training data output
of a network.

• When the object of interest is in a non-standard shape or is
located at a specific distance from the image, the U-NET
architecture is unable to extract image-derived informa-
tion.

The advantages of the proposed DB-NETmodel may also
be able tomitigate the negative effects of decreasinggradients
in themiddle layers of DB-NETmodels, stated. According to
these comparisons, DB-NETs outperform other architectures
when it comes to picking up fine details in pictures. Putting
together models that have nothing in common or implement-
ing cutting-edge technologies without fully comprehending
the effort required can be made quickly and easily.

When making technical decisions about model archi-
tectures, we must exercise caution and give equal weight
to all model variants, especially when optimizing or dis-
rupting models. Beyond identifying structural details such
as heterochromatin concentrations and neuronal synapses,
biomedical imaging has a wide range of applications in the
field of medicine.

A specific error may need to be detected repeatedly on
a small scale to properly configure lighting, orientation,
and component sparsity for computer vision algorithms.
Convolutional nets, on the other hand, can learn these char-
acteristics without sacrificing information. However, the
proposed model DB-NET was applied to a variety of data

and shows impressive results when compared with other
benchmark models. Finally, we have tested our model on
the diversity of data in the LUNA16 benchmark dataset.

3 Materials andmethods

3.1 Proposedmodel architecture

3.1.1 U-NET architecture

Additional layers of pooling, including max pooling, ReLU
activation, concatenation, and up-sampling, are part of the
U-NET model [38]. This passage is about the various ways
business is affected by the slow economy. Each section con-
tains four distinct contraction blocks. Before performing a
2×2 max pooling, every contraction block takes in an input
and applies two 3×3 ReLu convolution layers before pro-
ducing an output. As the pooling layers are stacked, the
number of feature maps increases by two. The layer pre-
ceding the bottleneck [39] comprises two 3×3 convolution
layers and two2×2 convolution layers.Avast expanse of cir-
cuitry, each block providing input to multiple convolutional
layers before sending their combined signals onto two 3×3
convolutional layers and a 2×2 sampling layer, constitutes
the entirety of the expansion section [40, 41]. In addition,
the pipeline concatenates the contracting path’s feature map
with the expanded path’s feature map shown in Fig. 1.

3.1.2 Debnath Bhattacharyya-Network (DB-NET)
for bidirectional features network

In the realm ofmedical imaging segmentation, deep learn-
ing approaches are showing capable outcomes. U-NET [42],
one of the most well-known architectural designs in the
world, could be used as a Nodule Candidate Point Gener-
ation target for us. Annotated datasets are used to train these
networks in this setting. No training data are required for
the methods for generating candidate points utilized in the
image processing. When we train our DB-NET model, we
use the LUNA16 dataset. The presence of nodule sites and
their radius, as well as the CT scan value used to generate
the binary mask for each scan in the dataset, is all included
in LUNA16. For the first topic, we would want to discuss the
LUNA16 dataset’s pre-processing [43]. CT scans are saved
in ’.mhd’ files, and SimpleITK is used to import the scan
image into memory. We have defined three functions for me:
Each CT image in the LUNA16 dataset is labeled with nod-
ule spots and the radius of the nodule, which are used in the
binary mask generation procedure. To get things started, let
us speak about how the LUNA16 dataset was pre-processed.
SimpleITK is used to read the CT scans, which are saved in
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Fig. 1 The basic U-NET architecture [31]

‘.mhd’ files. The following functions are defined and used in
this study.

load_itk—Used to read a CT_Scan for the ’.mhd’ file.
world_2_voxel—Convertworld coordinates to voxel coor-
dinates.
voxel_2_world—Convert voxel coordinates toworld coor-
dinates.

3.1.3 Mish activation function

Although neural networks can take advantage of the nonlin-
earities [44] that neurons use, neurons can use the activation
function built into neural networks. Deep neural networks are
effectively trained and evaluated using the capabilities they
provide. The strategy implemented by this firm involves uti-
lizing a state-of-the-art activation function known as Mish to
assist in their business activities. ReLU and Swish are con-
sidered the best activation functions for datasets that are hard,
even for the most challenging datasets, but this one is even
better. A network based on the Mish programming language
is easy to implement in neural networks, making it a partic-
ularly good network for neural networks. Figure 2 shows the
nonlinearity of the Mish activation.

The self-gate has a mechanism that ensures the gate’s out-
put will be zero if the input falls below a certain threshold.
The role of self-gating in helping to prevent the overuse of
ReLU-based activation functions (point-wise functions). In
this instance, the gating function does not need to change the
network parameters because the input to the gate is a scalar
value. Mish is similar to the properties of ReLu and Swish,
with a range from (0.31 to ∞).

Fig. 2 The graphical representation of Mish activation

Mish activation function is smooth and non-monotonic
that can be well defined as:

f (X ) � X . tanh(∂(x)). (1)

∂(x) � (1 + ex ). (2)

f (x) � X .sigmoid(x). (3)

It combines identity, hyperbolic tangent, and softplus. We
should remember the tanh and softplus functions at this point.

y � x . tanh(softplus(x)), (4)

where tanh(x) � (ex − e−x )/(ex + e−x ), and softplus(x) �
I n(1 + ex ).

Combining the above two functions, the following equa-
tion can be derived.

mish(x) � x .(eIn(1+e
x ) − e−In(1+ex ))/(eIn(1+e

x ) − e−In(1+ex )).
(5)
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Fig. 3 The proposed architecture for lung cancer segmentation, where the down-sampling and up-sampling were stopped between the convolutional
neural network

Themain advantage ofMish over swish and ReLuwas the
self-stopping mechanism. With GPU (graphics processing
unit) inference, Mish will allow significant time savings dur-
ing the forward and backward passes,whileComputeUnified
Device Architecture is allowed, and will help improve the
model’s effectiveness.

3.1.4 The DB-NET architecture

We went to the segmented lung classification approach at
first, but we quickly abandoned it because the results were
disappointing. This is significant because it is likely that the
entire image was affected. After all, the search space for the
image was too large. To reach this goal, we must determine
a way to provide ROIs in 3D image segmentation that is no
larger than 3D image segmentation rather than the full seg-
mented 3D image. The highest success rate can be obtained
using boxes to identify small cancerous nodules.

The use of the LUNA16 data combined with the use of
advanced technology has aided in conducting a preliminary
investigation on the nodule candidates we seek. The U-NET
is one of the most popular CNN architectures because it

is frequently used in biomedical image segmentation. We
developed a stripped-down version of the U-NET, using a
limited amount of memory to keep memory costs to a min-
imum. Figure 4 and Table 3 illustrate the full DB-NET
architecture. To put it another way, our DB-NET training
pipeline receives 256×256-pixel 2D CT slices as input, and
the results (i.e., the pixel values being 1 for nodule pixels and
0 for non-nodule pixels) are fed into it. For the model, the
shape 256×256 pixels, where each pixel has a value between
0 and 1, has a greater chance of being a nodule because the
probability that a pixel is a nodule is encoded in each pixel’s
value.

To find the slice of the SoftMax element in the final DB-
NET layer, label 1, you would need to look at the slice of
the SoftMax nonlinear element in the ending U-NET layer.
These results are applied to a patient. Some nodules tend to
be smaller, and that SoftMax cross-entropy loss is calculated
for each pixel, which results in a label of 0.

The U-NET will be utilized for the Kaggle CT nodule
candidate segmentation after the DB-NET has been trained
on the Kaggle CT slice segmentation. Figure 3 shows the
flowchart of the proposed algorithm.
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Figure 3 shows the proposed architecture for lung cancer
segmentation. Each section of the table is separated into four
columns. In the first column, you can see the number of lay-
ers; in the second, you can see the parameters; in the third,
you can see the activation; and in the last, you can see the
output of the layers. During the investigation, U-NET iden-
tified many additional mistrustful areas than definite nodes,
and so we positioned the top 8 node intrants (32×32×32
volume) by descending a gap completing information and
saving the positions of the eight most triggered (largest L2
norm) segments. Therefore, to thwart the brighter areas in the
image from exclusively serving as an area for the wealthiest
business interests, we decided to divide the eight sectors we
identified into two non-overlapping subregion groups. When
we first divided the 64×64×64 image into two distinct seg-
ments,we did so into two sections: The first section contained
all relevant data, which was necessary to train our classifier;
the second section contained all superfluous data, which was
necessary to serve as the raw input for our classifier (cancer
or not cancer). While in theory, the results of U-NET should
return the precise locations of all nodules, thus enabling us
to say that images that contain nodules distinguished by U-
NET are optimistic for lung tumors, and images that do not
contain any nodes spotted by U-NET are negative for lung
malignancy, these results should not be interpreted this way
in practice because for the results to be accurate, we must
ensure that we perform another step between the U-NET
analysis and image processing. Table 2 shows the various
parameters of the proposed algorithm.

3.2 Data augmentation

The data augmentation process consists of three stages.

Stage 1: We started with a concept that did not have any
augmented images.
Stage 2:We applied a simple color normalization augmen-
tation.
Stage 3: We rotated 30% of the CT scan images.

The proposed model uses CT images with a size of 512×
512 pixels; a data augmentation technique was used in the
place of a sample strategy to improve the proposed model’s
generality possible and sturdiness, size, turn, move, rotate,
and elastic deformations are data augmentation methods
used in the proposed network. We built a model using com-
plex augmentations such as zooming, rotating, and cropping
images. An adequate amount of training data must be avail-
able to train a DB-NET. Overfitting will occur if only a
limited amount of training information is used [45]. Due
to the small number of metaphors, the training data were
supplemented with image editing to avoid overfitting. The
images generated by the microscope are direction invariant

Table 2 The proposed architecture layers and their respective parame-
ters, activations, and output

Layers Parameters Activation Output

Convolution 1A 3×3×3 Mish 256×256×1

Convolution 1B 3×3×3 Mish 256×256×32

Max Pool 2×2, stride 3 256×256×32

Convolution 2A 3×3×3 Mish 128×128×32

Convolution 2B 3×3×3 Mish 128×128×80

Max Pool 2×2, stride 3 64×64×80

Convolution 3A 3×3×3 Mish 64×64×160

Convolution 3B 3×3×3 Mish 64×64×160

Max Pool 2×2, stride 3 32×32×160

Bi-direction 2D×5 ReLu 1.25×105

Convolution 4A 3×3×3 ReLu 32×32×320

Convolution 4B 3×3×3 ReLu 32×32×320

Up Convolution
4B

2×2 64×64×320

Concat Conv4b,
Conv3b

64×64×480

Convolution 5A 3×3×3 ReLu 64×64×160

Conv5B 3×3×3 ReLu 64×64×160

Up Convolution
5B

2×2 128×128×
160

Concat Conv5b,Conv2b 128×128×
240

Convolution 6A 3×3×3 Mish 128×128×80

Convolution 6B 3×3×3 Mish 128×128×80

Up Convolution
6B

2×2 256×256×80

Concat Conv6B,
Conv1B

256×256×
112

Convolution 6A 3×3×3 Mish 256×256×32

Convolution 6B 3×3×3 Mish 256×256×32

Convolution 7 3×3×3 256×256×2

and the perceptiveness of the marked cell in each image dif-
fers depending on the conditions. Figure 4 depicts an example
of image augmentation after flipping and rotating.

3.3 Training and post-processing

The training methods we utilized were the tenfold cross-
validation to attain theprecisemeasure capability simplifying
the proposed DB-NET model. To deal with the increased
training computer, tomography images generator has been
employed for image augmentation of the input images and
simplifying the capability of the true ground tables. Dur-
ing the model training and optimization, binary-weighted
cross-entropy handles the imbalanced data problem where
the positive classes were weighted by the negative class in
the semantic segmentation training and validation. Finally
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(a) Original image without rotating (b) Image after rotating

(c) Original image without flipping (d) Image after flipping 

Fig. 4 An example of image augmentation after flipping and rotating

Fig. 5 Training accuracy vs. validation accuracy on LUNA16 trail set

shown in Fig. 5, in the projected model, we have employed
an optimization algorithm—“Adam”—which was used for
the following restrictions: The preliminary rate of learning
is 0.001, Beta1 � 0.98, Beta2 � 0.988, and the rate of decay
is 1e−7. Moreover, two separate batch samples were used
to train the present proposed model. Additionally, a unique
strategy called the early stopping strategy mechanism was

used to prevent the model from overfitting during the model
training.

In the final phase, the post-processing of the proposedDB-
NET model has been done. The masks were obtained after
every task in raw segmentation metal format (.MHD), which
is the best way to store the velocity of data such as CT scans
in the system. The testing has been designed to show the best
possible images, showing the segmentation results on the
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Fig. 6 Flowchart of the proposed DB-NET model

input CT scan images for the ground truth. Figure 6 depicts
the detailed processes of the research progress carried out
during the DB-NET model. In the starting phase, we divided
the LUNA-16 dataset into 60:40 percentages and allotted
60% for training and 40% for testing the DB-NET. In the
next phase, we employed the data augmentation technique
to rotate and flip the CT images for better training accuracy.
Oncewe are donewith the process, the training set is given as
input to our classifiers. We deployed with the tenfold cross-
validation.

4 Data and experiments

4.1 Dataset

For the experiments testing of the DB-NET proposed model,
the approach we utilized is the benchmark dataset available
on LUNA16 (Lung Nodule Analysis 2016) [46] grand chal-
lenge. LUNA16 is resulting from the “Lung Image Database
Consortiums Images Collection (LIDC/IDRI).” Input fold-
ers have three main things; one is for the sample CT scan
images with sample_1_images. The stage_labels folder con-
tains the ground truth of the satge1 training set of images,
and stage_submission shows the format of the submission
for stage_1.

Table 3 The features of the LUNA16 dataset in the standard deviation
format

Characteristics Training set Testing set

Malignancy 2.96±0.96 3.04±1.02

Speculation 1.61±0.80 1.66±0.88

Subtlety 3.92±0.84 4.08±0.79

Lobulation 1.74±0.74 1.83±0.81

Diameter in mm 8.14±4.59 9.08±5.25

Margin 4.04±0.84 4.07±0.78

Table 3 shows the various feature extraction values from
the LUNA16 database. Malignancy shows the range of pres-
ence of characteristics within the node. Speculation specifies
the coordinates outline of the node. Subtlety is the region
around the nodule. Lobulation is the shape and its character-
istics of the nodule. The length of the nodule is calculated
by the diameter and it is in mm. Margin indicates the area of
the nodule region that is clear. Histograms of the LUNA16
dataset are shown in Fig. 7.

The benchmark dataset, the database resource initiative
containing aCTscanwith a slice thickness of 2.6mm,wasnot
included in the dataset.A total of 888 imageswere considered
for the experimentation purpose. The images of LIDC/IDRI
[47] were annotated by four experienced radiologists, and a
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Fig. 7 Histogram of the
LUNA16 dataset and nodule
sizes

two-phase annotation process was used for the process and it
is a benchmark. The nodules of size above 3 mm were con-
sidered by all four radiologists. In total, 1186 annotations
were present in the annotations file in the LUNA16 dataset
and a property file that is enhanced which indicates the prop-
erties of the nodules. After post-dispensation, a total of 1167
CT scan metaphors consistent truth minced masks were por-
tioned into two separate testing and training sets separately
as 244 and 922 correspondingly. As represented in Table 4,
the two sets are indistinguishable statistics distributions and
their features. Table 4 shows the illustrations of various lung
nodules on the LUNA16 dataset.

4.2 Estimation performance

The dice similarity index coefficient score is the main limi-
tation performance matrix for the evaluation of the proposed
DB-NET segmentation model. To calculate the outcome of
the two segmentation, the most common performance metric
was the dice similarity coefficient (DSC). And positive pre-
dictive value Pq and sensitivity were used as supplementary
assessment parameters. The assessment performance system
of measurement is articulated below:

DC � 2 ∗ V (Pq ∩ Qr )

V (pq) + V (QR
. (6)

Sens � V (Pq ∩ Qr

V (Pq)
. (7)

PP � V (Pq ∩ Qr )

V (Qr )
. (8)

Here “Pq” is used to represent “ground truth label,” “Qr”
is for the results of segmentation of images, and “V” is used
for the voxels units measured in terms of volume size.

4.3 Execution details

In the simulations, Mish activation was utilized for effi-
cient model training, and data augmentation was done on

the LUNA16 benchmark dataset to improve the proposed
model’s performance and resilience. To avoid overfitting
using the model, we implemented a new technique that
involves ending strategy training early if the model’s per-
formance does not increase. Model training will be stopped
after every 20 epochs. Adam’s optimizer was utilized to get
themost out of the system.All this researchwas donewith the
PyTorch 1.8 stable version of the Deep Learning Framework
GPU version, Python 3.8 programming language for devel-
opment, and a CUDA capable NVIDIA GPU for increased
training and performance. Experiments were conducted on a
Microsoft Azure infrastructure with four CPUs and a 1 TB
SSD, and the training process took about nine hours to com-
plete.

We mention techniques in the kernel to aid in a deeper
understanding of the problem statement and data visual-
ization. Matplotlib, NumPy, skimage, and pydicom are the
libraries that will be used to interpret, process, and visualize
data in the model. The images are (z, 512, 512) pixels in size,
with z representing the number of slices in the CT scan that
varies depending on the scanner’s resolution. Because of the
high computational constraints, such large images cannot be
directly fed into convolution network architectures. We need
to figure out which areas are more likely to develop cancer.
We narrow down our search area by segmenting the lungs
first and then eliminating the low-intensity areas. Because
there is no homogeneity in the lung area, similar densities in
the lung structures, and different scanners and scanning pro-
tocols, segmenting lung structures is a complicated subject.
The segmented lungs can also be used to identify lung nodule
candidates and regions of relevance that could aid in better
CT scan classification. Since there are nodules attached to
blood vessels or present at the lung region’s border, locating
the lung nodule regions is a difficult task. Cutting 3D voxels
around lung nodule candidates and moving them through a
3D CNN trained on the LUNA16 dataset can be used to fur-
ther classify them. The position of the nodules in each CT
scan is included in the LUNA16 dataset, which can be used
to train the classifier.
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Table 4 Illustration of the various lung nodules present in the LUNA16
dataset

S. no Nodule type Nodule image

1 Small node

2 GGO node

3 Calcific node

4 Cavitary

5 Juxta-vascular

6 Juxta-pleural

7 Isolated

5 Results and discussion

5.1 Ablation study

The ablation study experiment was based on the U-NET
semantic segmentation architecture that had been planned.
The ablation experiment checks whether each component of
the DB-NET architecture is for the effective performance of
the proposed algorithm. The experiment results of the abla-
tion study are tabulated in Table 5.

5.1.1 The outcome of mish activation function

Mishactivation functionswere comparedwith theReLUacti-
vation functions of the original U-NET architecture instead
of the ReLU activation functions of the U-NET architecture.
U-NET indicates the Mish activation function in conjunc-
tion with other U-NET Mish indications. The original dice
similarity index score of the U-NET segmentation model is
77.84%. Subsequently, adding theMish activation to theDB-
NET architecture model achieved the dice similarity index
score of 88.89%; the implementation of the solution was a
success. Although the increase in performance gained when
the Mish activation function was introduced to the proposed
architecture was slightly mediocre, it can be seen that when
these functions were employed, the performance increase
was considerably better. Therefore, we have to consider the
likelihood that theMishmodel activation lags in theDB-NET
experiment.

5.1.2 Outcome of ReLU activation function

ReLU activation functions were implemented with the pro-
posed DB-NET segmentation architecture, which performed
slightly lesser to theMish Activation. Thus, with the addition
of the ReLU activation function to the DB-NET architecture,
a dice coefficient of 88.89% was achieved. When we com-
pared the ReLU with Mish activation functions, a difference
of 4.38% variation can be observed. Thus, it can be observed
that Mish outperformed the ReLU activation function.

5.1.3 Outcome of BiFPN with ReLU activation function

From Table 2, by replacing the basic backbone of the U-
NET semantic segmentation with the bi-directional feature
network with ReLU activation function, the situation can
be experimental that the architecture shows good develop-
ment of 79.22%. Thus, we can observe that the Mish with a
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Fig. 8 Lung CT scan ratio of each image on the LUNA16 dataset

bi-direction feature network outperforms the remaining two
methods. The major disadvantages of BiFPN with ReLU are
computationally challenging and high overhead performance
with marginally inferior dice coefficient percentage.

5.1.4 Deduction of the ablation study

In Table 2, with the reflection of the dice coefficient index of
theDB-NETmodel (81.83%), it ismanifest that the proposed
DB-NET has shown the noteworthy development over U-
NET +ReLU, U-NET +ReLU+BIFPN, andU-NET +Mish
Activation. The sensitivity, positive predictive value, and dice
coefficient of the proposedmodel were proved complete with
the ablation study. Figure 8 shows the ‘histogram’ of the
dice coefficient value index values. As shown in Fig. 8, the
‘histogram’ of the dice coefficient value index values and
the whole quantity of nodes, each of which was counted and
centered on every trial in the test set, was designed for easier
assessment of the production of the DB-NET model on the
test set.

5.2 Overall performance

In Fig. 9, we deducted the (a) clustered image after the image
pre-processing. The detection results of lung nodules. (b)
Results of lung nodule detection. (c) The overall effect of
lung nodule segmentation. (d) The detection results of a lung
nodule. (e) Local effect diagram of lung nodule segmenta-
tion. (f) Image of lung nodules whose segmentation effect is
very accurate.

The majority of nodules, as shown in Fig. 9, have a DSC
value of at least 0.8, which may be claimed with high confi-
dence.

The dice index results were related to the novel perfor-
mance of the U-NET architecture to validate the U-NET +

ReLU + BFPN results. With a DSC of 77.84%, the U-NET
model achieved outstanding results. But the proposed model
can get even better results with a DSC of 82.82%, which
is proving to be impressive in the segmentation challenge.
Due to the DB-NET model’s decreased number of parame-
ters when compared to the original U-NET design, the model
has proved its capacity for competent feature abstraction and
segmentation. Table 6 shows the results of the proposed algo-
rithm.

In addition, it was also evaluated whether or not the results
obtained in isolating difficult cases such as attached nodes
(juxta-pleural and juxta-vascular) and nodes with a small
size, such as smaller than 2 cm, could be helpful. Table 3 is
the page with the standard deviation for DSC results. From
the data presented in Table 5, it can be concluded that the
DB-NET model’s abilities to correctly segment nodules of
all different sizes are not reliant on the type of node, and it
achieves remarkably well on nodes of small dimensions.

5.3 Visualization of results

When testing the outcomes, they found a relationship
between the success of the proposed method and the effec-
tiveness of other methods to depict that feature as shown in
Table 7. Regarding the segmentation effectiveness of the five
radiotherapists who worked on the LUNA16 trail dataset, the
three radiologists have a radiologist segmentation effective-
ness score of 81.26% and it can be seen that the DB-NET
model outperforms human experts. A comparison of the
proposed DB-NET model was also made with the U-NET
and various additional convolution network models that have
been developed recently, including the latest ResNet152V2.

The LUNA16 dataset contains stimulating study cases
such as small nodules, cavitary nodes, juxta vascular, and
juxta pleural nodes, and thus the performance of the DB-
NET model is demonstrated in this case. As a result, it can
be inferred that the anticipated prototypes for the DB-NET,
the organization’s plans for it, appear well executed across
various classifications of nodes, including nodes with diam-
eters less than 6 mm.

5.4 Feature analysis for DB-NET architecture

This section details the filters, wraps, and embeds of these 34
features thatwere extracted after the semantic image segmen-
tation. TheLUNA16datasetwas chosen based on its features.
The performance of the feature subsets was assessed using
data from the LUNA16 testing and validation process. There
was a total of 35 feature subsets evaluated. Both the MFCCs
that were used and the results are included in the dataset. The
entire feature set is indexed between ten and twenty times
throughout the application (of 34 features). More informa-
tion on the MFCC can be found in Table 8. There is a role
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Table 5 Ablation study on the
LUNA16 testing set using the
U-NET model

S. no Method Dice coefficient (%) Sensitivity (%) Positive predictive value
(%)

1 U-NET 77.84±21.79 78.98±25.53 83.54±22.55

2 U-NET + BFPN 81.22±23.02 79.89±25.85 84.89±22.89

3 U-NET + ReLU 78.84±12.52 84.45±13.56 77.32±14.45

4 U-NET + ReLU + BFPN 79.22±12.36 91.69±13.78 77.94±14.35

5 DB-NET 88.89±11.71 90.24±13.15 77.92±17.89

Table 6 The segmentation
results of the proposed
architecture

Performance Benchmark LUNA16 dataset

When N � 60
images attached

When N � 200
images
non-attached

Greater than 6 mm
images

Less than 6 mm
images

Dice coefficient 88.89±11.71 90.24±13.15 77.92±17.89 75.63±16.98

Table 7 The measurable
segmentation outcomes of the
proposed model compared to
other comparative models

Authors Architectures Dice coefficient
(%)

Sensitivity (%) Positive predictive
value (%)

Zhitao Xiao et al.
(2020)

3D-Res2U-NET 81.22±22.02 79.89±24.85 84.89±22.89

Raghavendra
Selvan et al.
(2019)

U-NET-GNN 78.84±12.52 84.45±13.56 77.32±14.45

Pius Kwao
Gadosey et al.
(2020)

Stripped-Down
U-NET
(SD-UNET)

79.22±12.36 91.69±13.78 77.94±14.35

Sirojbek Safarov
et al. (2021)

A-DenseUNet 80.23±23.02 77.88±24.85 79.89±22.89

S Niranjan Kumar
et al. (2021)

U-NET 77.84±21.79 78.98±24.53 82.54±21.55

Kadia, Dhaval
Dilip et al. (2021)

Advanced U-NET 79.22±22.02 79.89±24.85 81.89±22.89

Dina M. Ibrahim
et al. (2021)

ResNet152V2 +
Gated Recurrent
Unit (GRU)

78.22±22.02 79.89±24.85 82.89±22.89

Proposed work Proposed DB-NET
Architecture

88.89±11.71 90.24±13.15 77.92±17.89

Table 8 Features selected by
PySckit Library concerning
performance with the proposed
architecture

Model Indices of selected
features

Features Dice coefficient Mel frequency cepstral
coefficient

3D-Res2UNET [3,10,13,28,29,32] [12,13,14] 81.22±22.02 5

UNET-GNN [1,3,6,9,17,19,30] [12,13,14] 78.84±12.52 7

Stripped Down UNET
(SD-UNET)

[2,5,9,5,8,9,16,19] [12,13,14] 79.22±12.36 11

A Dense U-NET [1,3,5,8,23,27,28] [12,13,14] 80.23±23.02 6

U-NET [3,10,13,28,29,32] [12,13,14] 77.84±21.79 5

Advanced U-NET [3,10,13,28,29,32] [12,13,14] 79.22±22.02 5

ResNet15V2_Gated
Recurrent Unit
(GRU)

[1,3,6,9,17,19,30] [12,13,14] 78.22±22.02 7

Proposed DB-NET
Architecture

[3,10,13,28,29,32] [12,13,14] 88.89±11.71 6
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Fig. 9 The visual segmentation of the proposed algorithm on various heterogeneities of lung nodules

for MFCC in nearly every biomedical classification system
[48–50]. It also includes a summary of the fundamental con-
cepts of medical imaging sampling.

It was possible to implement a recursive function elimi-
nation algorithm using the RFE class of the PySckit image
library. The estimator and the number of source functions
that it can use are defined by two independent parameters
each. The estimator is supervised, and the coef_ attribute
indicates how important a feature is to the estimator. The use
of U-NET-GNN, Stripped-Down-U-NET, A Dense U-NET,
andU-NET estimators are all examples of this. U-NET-GNN
and 3D-res2U-NET are not suitable for use as estimators due
to their significant characteristics.N is the number of features
on which a user would like to stop and rest that is known as
the "stopover parameter." We only considered the features
that were the most effective to determine the best 12, 13, and
14 features for each model. The performance of the models
is summarized in Table 7. The features of the RFE class are
selected with RFE class support, which retrieves the feature
indices that have been selected as the best. Table 7 shows the
MFCCs selected for each model, as well as the indices of the
14 best features selected (via RFE) for each model.

6 Conclusions and future work

This work describes a simplified DB-NET architecture for
lung nodule segmentation. The aim of the paper was to show
how a weighted bidirectional feature network can be used to
make amodifiedU-NET architecture thatworkswell for lung
nodule segmentation (DB-NET). The U-Net architecture is
the backbone of the model, which collects and decodes fea-
ture maps. The Bi-FPN is a feature enricher that combines
features from different scales. With a dice similarity coef-
ficient of 88.89% for the LUNA16 dataset, the suggested
method did a good job segmenting lung nodules after the
results were looked at and shown. For example, the DB-NET
model separates cavitary nodules, GGO nodules, small nod-
ules, and juxta-pleural nodules well. Future work will focus
on making a 3D capsule network based on DB-NET compo-
nents for fully automated classification of lung cancer that is
malignant.
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