
The Visual Computer (2023) 39:4555–4571
https://doi.org/10.1007/s00371-022-02609-9

ORIG INAL ART ICLE

Single image defocus map estimation through patch blurriness
classification and its applications

Fernando Galetto1 · Guang Deng1

Accepted: 24 June 2022 / Published online: 25 July 2022
© The Author(s) 2022, corrected publication 2022

Abstract
Depth information is useful in many image processing applications. However, since taking a picture is a process of projection
of a 3D scene onto a 2D imaging sensor, the depth information is embedded in the image. Extracting the depth information
from the image is a challenging task. A guiding principle is that the level of blurriness due to defocus is related to the distance
between the object and the focal plane. Based on this principle and the widely used assumption that Gaussian blur is a good
model for defocus blur, we formulate the problem of estimating the spatially varying defocus blurriness as a Gaussian blur
classification problem. We solve the problem by training a deep neural network to classify image patches into one of the 20
levels of blurriness. We have created a dataset of more than 500,000 image patches of size 32 × 32 which does not require
human labelling. The dataset is used to train and test several well-known network models. We find that MobileNetV2 is
suitable for this application due to its low memory requirement and high accuracy. The trained model is used to determine the
patch blurriness which is then refined by applying an iterative weighted guided filter. The result is a defocus map that carries
the information of the degree of blurriness for each pixel. We compare the proposed method with state-of-the-art techniques
and we demonstrate its successful applications in adaptive image enhancement and defocus magnification limited to images
that present a clear distinction between defocus levels.

Keywords Defocus blur estimation · CNN · Adaptive image enhancement · Shallow depth of field

1 Introduction

An image captured by a camera is the projection of a 3-
D scene onto a 2-D plane. When an object in a scene is
outside the focal plane, it is blurred due to defocus. A larger
distance from the focal plane leads to a higher level of defocus
resulting in more blurriness of the object [1]. The defocus
blur is one of the simplest and efficient depth cues used in
photography. It allows the viewer to have a rich appreciation
of the 3D space [2]. In computer vision, the defocus blur is
used in a wide range of applications, such as deblurring [3–
5], blur magnification [6], image quality assessment [7,8],
image sharpening [9,10] and depth estimation [11–15].
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Defocus blur estimation has been actively studied in the
literature. Some estimation methods used multiple images
[15,16] or special hardware [17–20] while others methods
rely on a single image. In this paper, we focus on single image
defocus blur estimation methods. A common approach is to
model the defocus blur in the spatial domain as a linear fil-
ter with the impulse response of a Gaussian function. The
defocus estimation problem becomes finding the standard
deviationσ of theGaussian kernel for each pixel in the image.
The gradient information is usually employed to estimate σ .
Tai et al. [21] uses the relationship between the gradient and
the local contrast to estimate an initial defocus map which is
refined by using a Markov Random Field. Other researchers
generate a coarse map using a ratio of gradient magnitudes
at the edges [22–26]. The map is refined by using a matting
algorithm [27,28], guided filter [29] or segmentation-based
algorithms [26,30]. Although these methods have demon-
strated successful applications for some images, they cannot
differentiate between close edges [23]. In [3], a statistical
method is proposed to overcome such limitation by for-
mulating the filter kernel estimation problem as a SURE
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minimization problem. This method does not rely on edge
information. Yi et all. [31] proposed a sharpnessmetric based
on the distribution of uniform local binary patterns in focus
and out-of-focus regions for defocus segmentation.

Another common approach is to determine the defocus
map by analyzing the image in the frequency domain [32,33].
The idea is to calculate the likelihood of a group of pixels
being blurred with a certain kernel. Shi et al. [13,34] pro-
posed two methods to estimate the just noticeable blur level
present in natural images by using dictionaries. However,
these methods cannot handle high degrees of spatially vary-
ing defocus blur. In [35] the defocus is measured by applying
discrete cosine transform (DCT) to the original image and
its re-blurred version to finally calculating the ratio of their
norms. Based on such information, the image is then seg-
mented into in-focus and out-of-focus regions.

In recent years, we have witnessed more and more suc-
cessful applications of deep neural networks (DNN) such as
image classification [36,37], object detection [38], seman-
tic segmentation [39], image restoration [40,41] and image
super-resolution [42] to just name a few. The use of DNNs
for defocus blur estimation or detection has also been stud-
ied. In [9], a convolutional neural network (CNN) is used to
estimate the optimum values for the grid wrapping algorithm
(GWIS) [43] for image sharpening. TheCNN is trained using
blurred patches to estimate the optimum parameter based on
blurriness to achieve the best sharpening result. In [44–49] a
CNN architecture is proposed for an end-to-end binary defo-
cus map estimation. These networks are trained using either
natural or synthetic images labelled at pixel-level to segment
focused regions from blurred regions. But they do not distin-
guish different levels of defocus. In [50] Park et al. use hand
crafted features and a CNN to extract deep features from
multi-scale patches to estimate the spatially varying defocus
blur on a single image. The features are concatenated and
classified through a fully connected layer.

Li et al. [51] also propose a single image CNN-based
method for spatially varying defocus blur by using synthetic
data to train the network. They also use domain transfer
to bridge the gap between real and synthetic data. In two
recently published methods [52,53], a patch-based quality
map is generated. The quality map is similar to the blur map
when the distortion on the image is defocus blur only.

Inspired by these works, the motivation of this study is to
explore the application of deep neural networks in solving
the challenging problem of estimating the defocus map from
a single image. The main contribution of this work is that
unlike previous works [44–49], we treat the blurriness esti-
mation as amulti-class classification problemwhich is solved
by training a CNN to classify a patch of the input image into
one of the 20 levels of blurriness. The dataset used to train
themodel does not require human labelling since the defocus
levels are synthetically generated from natural sharp images.

The output of the CNN is a patch-based estimation of blurri-
ness. To obtain an estimate of a pixel-based blurriness,we use
an iterative weighted guided filter to perform the refinement
which generates the defocus map.

Anothermain contribution of thiswork is the development
of two algorithms based on the defocusmapwhich carries the
blurriness information for each pixel. Since the blurriness is
related to the distance between an object and the focal plane,
the blur map provides useful information about the depth
which is used in the following applications:

• Adaptive image enhancement The defocusmap is used to
control the level of enhancement in the image to reduce
halos and artifacts due to over enhancement of high con-
trast regions and the enhancement of heavily blur regions.

• Defocus magnification or shallow depth of field The
defocus map is nonlinearly transformed to estimate the
weights for the combination of the sharpened and blurred
images to create a shallow depth of field effect.

The organization of this paper is summarized as follows.
In Sect. 2 we briefly review the modelling of defocus blur
as a Gaussian blur process. We then formulate the problem
of defocus estimation as a classification of spatially varying
Gaussian blur. In Sect. 3 we present the details of the pro-
posed method including dataset creation, model testing and
selection, the training process to classify the blurriness of
a patch, a sliding window algorithm for transferring patch-
based blurriness information to the pixel-based format, and
a refinement process that produces final pixel-based defocus
map. In Sect. 4, we present a comparison of the proposed
method with 7 other methods for defocus estimation. In
Sect. 5 we present 2 algorithms to demonstrate the usefulness
of the defocus map on 2 typical computational photography
applications: adaptive image enhancement and generating
effect of shallow depth of field. We present experimental
results and comparisons for qualitative and quantitative anal-
ysis. We summarize the main ideas and contributions of this
work in Sect. 6.

2 Modelling of defocus and problem
formulation

In this section, we briefly review the optical model of out-of-
focus and show how it can be approximated by a Gaussian
filter [21,54–56]. Although a practical optical system usually
has more than one moving lens element to correct and fix the
focal plane, Fig. 1 allows us to understand the two main rea-
sons for the presence of defocus blur in the observed image:
(1) limited depth of field and (2) lens aberrations [21]. To
model the defocus by a Gaussian filter, we limit our discus-
sion on the limited depth of field property. As shown in Fig. 1,
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Fig. 1 Optical model for
defocus blur. A is the diameter
of the aperture. f is the focal
length and f1 is the distance
between the sensor plane and
the lens plane. S1 and S2 are the
distances from the lens plane to
the point p and q, respectively.
C is the diameter of the circle of
confusion for the point q

the point p is in perfect focus because it is placed right in
the focal plane. The projection of p on the sensor plane is a
single point.

According to the thin lens law, the relationship between
the distances is given by:

1

S1
+ 1

f1
= 1

f
(1)

where f is the focal length and f1 is the distance between
the sensor plane and the lens plane. We can see that since
the point q is placed in a different plane than the focal plane
at a distance S2 from the lens plane, the projection of point
q in the sensor plane is not a single point but a region (or a
blurred spot) called circle of confusion. The diameter of the
circle of confusion for the point q can be calculated as:

d = A
f |S2 − S1|
S2|S1 − f | (2)

where A is the diameter of the aperture. The diameter d is
directly proportional to A and increases when the difference
|S2 − S1| increases. From a system point of view, we can
approximate the lens as a linear shift-invariant system. The
point source can be regarded as the impulse input signal and
the resulting blurred spot due to defocus blur is thus the
impulse response. The shape of the impulse response (the
blurred spot) can be modelled as a 2D Gaussian

k(x, y; σ) ∝ exp

(
− x2 + y2

2σ 2

)
(3)

where σ is the scale parameter proportional to d, and x, y
are spatial variables. Because a scene usually has many
objects placed at different distances from the focal plane,
these objects will appear to have different degrees of blurri-
ness. Using the linear system model, we can thus model the
observed image as

J (x, y) = k(x, y; σx,y) ∗ I (x, y) + Z(x, y) (4)

where I (x, y) is the desired image where all objects are
in focus, k(x, y; σx,y) is a spatially varying Gaussian ker-
nel, “*” represents the convolution operations, and Z(x, y)
models the possible sensor noise [21,54–56]. The spatial
varying-parameter σx,y is theoretically determined by the
distance between the object at location (x, y) and the focal
plane.

From the above brief discussion of the Gaussian model
for the defocus blur, we can see that (1) the blurriness is
caused by the distance of an object from the focal plane,
(2) the defocus blur can be modelled as applying a spatial
varying Gaussian filter to an image, and (3) the degree of
blurriness can be implicitly measure by the scale parameter
σx,y of the Gaussian smoothing kernel. In other words, if we
know the parameter σx,y for an image patch, we can infer
its blurriness and reveal its relative distance from the focal
plane. Thus, the problem of inferring depth information or
the spatially varying blurriness from a single image reduces
to determining the parameter σx,y of the Gaussian smoothing
kernel. The patch-based blurriness map is refined to obtain a
pixel-based blurriness map.

3 Defocus map estimation via CNN-based
blurriness classification

The block diagram in Fig. 2 shows the proposed method for
defocusmap estimation. The first block is a CNN-based clas-
sifier which takes a patch of 32 × 32 pixels as input and
outputs the blur level of the patch. The classifier is applied
to pixels in an image using the sliding window algorithm.
The result is an image of patch blurriness. Then a refinement
block processes the image obtained to produce an image of
pixel blurriness. An additional threshold operation can be
applied to produce a binary map for applications that require
it.
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Fig. 2 Block diagram of the proposed defocus map estimation algorithm

In this section, we first present the details of the dataset
creation, the training of a CNN, and how to use the CNN to
estimate the blurriness at a patch level. We then describe the
refinement method for producing the pixel-level blur map.

3.1 Blurriness classification

As mentioned earlier, out-of-focus blur is usually modelled
as the result of applying a Gaussian low pass filter on an
image. The problem of blur estimation is reduced to finding
the kernel of the filter [24] which is parameterized by the
standard deviation σ of the Gaussian function. In this work,
we follow thismodel.We take a different approach by casting
the estimation problem as a classification problem that can
be efficiently solved by a CNN.

More specifically, we aim to train a CNN which can clas-
sify 20 different levels of blurriness. To train the model, we
need to prepare the dataset. The dataset consists of image
patches of different levels of blurriness. A blurred patch is
produced by filtering a sharp/unblurred image patch by a
Gaussian filter with a specific σ . Different levels of blur-
riness are generated by using different values of σ . For an
image patch, we generate 19 blurred patches of different blur
levels resulting in 20 classes (including the unblurred patch).
The 19 levels of blurriness are generated by Gaussian filters
of σ = 1, 2, . . . , 19. The unblurred patch can be regarded
as being filtered by the filter with σ = 0 whose impulse
response is a unit sample sequence. An example of patches
of 20 levels of blurriness can be seen in Fig. 3, from top to
bottom and left to right the standard deviation σ ranges from
0 to 19. We use the value of σ as a label for the patch. The
justification of why 20 levels of blurriness are selected can be
seen in Fig. 3, the difference in blurriness for patches where
σ > 15 is almost imperceptible for the human eye so 20
levels of blurriness is the optimal equilibrium between effi-

Fig. 3 Sample of a training patch with different levels of blurriness.
Top left shows the least blurred while the bottom right shows the most
blurred

ciency and complexity. The linear scale is also arguable but
it was here chosen for the sake of simplicity.

The size of the dataset depends on the number of
unblurred/sharp patches. To find as many as possible sharp
patches to generate the dataset for training the CNN, we
use the entire DIV2K [57] database which has 800 high-
resolution images of diverse contents in the training set and
100 high resolution images in the validation set. To find sharp
image patches from the database, we convert each image in
the database to gray-scale and divide them into patches of
32 × 32 pixels, denoted Ip. We first filter each patch Ip by a
3 × 3 Gaussian kernel to produce a slightly smoothed patch
Bp. The Gaussian filter is used to remove noise in the patch
which could lead to a wrong measurement of the sharpness.
We use the variance of the Laplacian of a patch [58] as amea-
sure of the sharpness for the pth patch, which is calculated
as
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Table 1 Number of image
patches in the data set

Data set Patches

Training 392, 240

Validation 98, 040

Testing 49, 920

φp = 1

N

∑
q

(∇Bp(q) − ∇Bp)
2 (5)

where ∇ is the Laplacian operator, ∇Bp is the mean value of
∇Bp(q) over the all pixels in the patch, q is the pixel index,
and N is the number of pixels in the patch. Patches satisfying
φp > 1000 have a high level of sharpness and are regarded
as in sharp focus and are assigned the blur level 0. Using
the above procedure for patch selection and generation, we
create a gray-scale image dataset with more than 5 × 105

patches of 20 classes. 80% of the patches obtained from the
DIV2K training set were used to create the training set while
the remaining 20% are used for the validation set. Patches
from the DIV2k Validation set are used as the testing set.
Table 1 details the number of patches of each set.

Using this dataset, we train a neural network to classify
the blurriness of a 32 × 32 gray-scale image patch into one
of the 20 classes. As such, the trained network has an input
array of size (32 × 32) and the network output is an integer
ranging from 0 to 19 indicating the level of blurriness. The
development framework is TensorFlow Keras. Because our
goal is to train a classifier for blurriness estimation, we do

not attempt to develop new neural network models. Instead,
we test some well-known models such as MobileNetV2,
EfficientNetB0, NASNetMobile, DenseNet121, and Shuf-
flenetV2 [37,59–62] to find amodelwhich has good accuracy
and is of small size.We have trained thesemodels and present
results in Table 2. We can see that the MobileNetV2 [37]
has a relatively higher accuracy for the test data (0.97) and
is computationally more efficient with low complexity and
low memory requirements (the model size is 28MB). This
indicates that it is a more efficient and accurate tool for the
estimation of the defocus map. ShufflenetV2 [62] presented
theworst performance among themodels, even afterwe tuned
the hyper-parameters. The sub-optimal performance can be
attributed to the small patch size for which the ShufflenetV2
is not designed to work. It is expected that using a larger
patch size will lead to an improvement in the accuracy. How-
ever, this is at the increase of the computational complexity
in the refinement process of the proposed algorithm because
of excessive overlaps of pixels in neighbouring patches.

We train MobileNetV2 using the following parameters.
The batch size is 128. The sparse categorical cross-entropy
function is used to calculate the loss. Adam optimization
method is usedwith a learning rate ofα = 0.001, exponential
decay rates for the 1st and 2nd moment estimates are β1 =
0.9 and β2 = 0.999 and a stability constant ε̂ = 10−8 [63].
After 100 epochs, the classification accuracy is 97.04%on the
test set. The accuracy and loss for the validation and training
set after each training epoch is shown in Fig. 4.

Table 2 Results of accuracy and loss of training, validation, and test after running 100 epochs for different models

MobileNetV2 [37] EfficientNetB0 [59] NASNetMobile [60] DenseNet121 [61] ShufflenetV2 [62]

Train loss 0.0117 0.0075 0.0073 0.0124 0.114

Train accuracy 0.9958 0.9975 0.9976 0.9957 0.9563

val loss 0.1201 0.0944 0.2717 0.6755 1.9462

val accuracy 0.9699 0.9793 0.9585 0.8996 0.6818

Test loss 0.161 0.0794 0.2243 0.5359 1.8099

Test accuracy 0.9704 0.9798 0.9582 0.905 0.6902

Model Size 28MB 49MB 55MB 86MB 33MB

Fig. 4 Accuracy and loss over
epochs using MobileNetV2 on
training and validation set
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Table 3 Model evaluation of MobileNetV2

Class Precision Recall F1-score Support

0 1.00 0.99 1.00 2496

1 0.99 1.00 0.99 2496

2 1.00 0.98 0.99 2496

3 0.98 0.98 0.98 2496

4 0.98 0.98 0.98 2496

5 0.97 0.99 0.98 2496

6 0.99 0.96 0.98 2496

7 0.96 0.99 0.97 2496

8 0.95 0.98 0.97 2496

9 0.99 0.94 0.97 2496

10 0.99 0.98 0.99 2496

11 0.99 0.98 0.98 2496

12 0.99 0.98 0.98 2496

13 0.96 0.99 0.97 2496

14 0.96 0.92 0.94 2496

15 0.98 0.99 0.98 2496

16 0.94 0.94 0.94 2496

17 0.92 0.98 0.95 2496

18 0.98 0.95 0.96 2496

19 0.97 0.97 0.97 2496

Accuracy 0.97 49,920

Macro avg 0.97 0.97 0.97 49,920

Weighted avg 0.97 0.97 0.97 49,920

Table 3 displays results of theMobileNetV2 including the
precision, recall and F1-score for each class when evaluated
using the testing set. The model can predict with high levels
of accuracy on the testing dataset. However, we can identify
two sources of error that are not considered here: (1) error due
to noise in the image, which can lead to classify the patch
as sharper than it is and (2) error because the patch being
classified is not represented by those examples in the dataset,
which could result in inaccurate predictions. We minimize
the effect of these two types of errors by using a refinement
algorithm.

3.2 Blur map estimation

The trained neural network predicts the blur level of a patch
of 32 × 32 pixels. This section explains how to obtain the
blur map of the whole image at a pixel level using this patch
estimation. The blur-map (denoted M) is an image of the
same size as the input image (denoted I ). A pixel at loca-
tion q within the pth patch is denoted Ip(q). The image I is
divided into overlapping patches of (32×32). The extraction
of patches is implemented by using a slidingwindowmethod.
The amount of overlap depends on the step-size of moving
the widow from the current location to the next one. Results

presented in this paper are produced with a step size of 16
pixels unless specified. Each patch, e.g., the pth patch is fed
to the trained network. The network output, denoted Op, is
assigned to every pixel in the patch. Because of patch over-
lapping, one pixel belongs to multiple patches. Specifically,
let �q be the set of patches where the pixel I (q) belongs
to. For simplicity, we define the blurriness of the pixel at
location q as the average of classification results due to all
patches containing the pixel I (q):

M(q) = 1

|�q |
∑
p∈�q

Op (6)

where |�q | is the number of patches which have the pixel
I (q). Since the classification result Op is in the interval
[0, 19], the blur-map M(q) is also in the same interval.

We now discuss the computational complexity. Assum-
ing the CNN takes T seconds to process a patch, the total
inference time for an image is given by:

t = T × N

s2
(7)

where N is the number of pixels in the image and s is the step-
size. The timeT depends on the programming language, level
of code optimization, and the available computing resources.
For instance, it takes 9.9ms to process one patch on a Mac-
book pro 2022 with 16gB ram and anM1 Pro CPU running a
MATLAB toolbox called “DeepLearningToolboxConverter
for TensorFlow Models”.

The optimal step-size depends on the image resolution and
the complexity of the image. Generally, for images of large
size, the step size should be 32 pixels to avoid long processing
times. For images of small size, better results are obtained
by using a step size of 4 pixels such that so small objects
with different blur levels are preserved. As a rule thumb, we
suggest using a step size that can preserve the main structure
of the image.

3.3 Refinement of the defocus map

The defocus map obtained using a patch and sliding window
approach needs to be refined to get rid of the undesirable
blocking effect and to make the edges follow those in the
original image. A well-known tool for the refinement is the
matting Laplacian [27] which produces the alpha matting
matrix. However, thismethod is computationally very expen-
sive. TheGuided Image Filter (GIF) TheGuided Image Filter
(GIF) [29] has demonstrated a performance comparable to
that of the matting Laplacian algorithm at a lower computa-
tional cost. The weighted version of the GIF calledWeighted
Guided Image Filter (WGIF) [64] improves the performance
of the GIF and produces fewer halo effects. However both
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Fig. 5 Defocus map refinement

GIF and WGIF transfer details from the guidance image to
the processed image, which is an undesirable feature for our
applications because texture information from the original
image will be transferred to the refined defocus map lead-
ing to wrong predictions in pixel blurriness. To overcome
this limitation, we propose to use a modified version of the
WGIF [64]-based algorithm to refine the defocusmap.A new
feature in the proposed method is the use of a smoothed ver-
sion of the original image (through edge-aware filtering) as a
guide to producing a sharp defocus map without transferring
the texture information.

Figure 5 shows the block diagram of the proposed refine-
ment process. First, we perform edge-aware filtering of the
original image to smooth out texture information. Thefiltered
image, which retains information of sharp edges, is used as
a guidance image in the WGIF algorithm to refine the defo-
cus map. We aim to keep only silhouettes of elements in
the image, which should present an equal level of blurriness
preserving large scale edges. For the sake of simplicity, to
produce the guidance image Ismooth we use the self-guided
WGIF [64] iteratively.

Figure 6 shows an example of the refinement algorithm.
The blur map shown in Fig. 6b was estimated using the pro-
posed CNN approach with a step size of 16 pixels. It was

then refined by using the proposed algorithm with a patch
radius r = 16, regularization parameter ε = 0.005, and the
number of iterations Niter = 7. The guidance image is shown
in Fig. 6c and the refinement result is shown in Fig. 6g. Only
the fish’s silhouette has been transferred to the refined defo-
cus map. The darker area represents the area in sharp focus,
while the brighter area represents the area of more out of
focus. We can see that the refined defocus map accurately
represents objects in focus such as the fish in the foreground
and blurred objects such as those fish in the background.

Figure 6 also shows the result of refining the blur map
with other methods such as an iterative WGIF [64] using the
original image as guidance, mutually guided image faltering
muGIF [65] and matting Laplacian [17] to visually appreci-
ate the effectiveness of our method. All four methods clearly
remove the blocking effect and wrong predictions in the blur
map.However, theWGIFdoes not preserve edge consistency.
The smoothing effect of muGIF is very strong, it removes all
the background objects and shrinks the main object’s silhou-
ette. Apart from being computationally too expensive, the
mattingLaplacian algorithmproperly preserves the objects in
the background but it does transfer some undesirable details
from the original image to the defocusmap (brightness on the
upper side and tail of the closest fish). Our refinementmethod
does preserve defined edges and smooths objects at a lower
computational cost than the muGIF and matting Laplacian
algorithms. The running times to produce the results in Fig. 6
are presented in Table 4, which provides evidence of the rel-
atively faster running time of the proposed algorithm.

Another important characteristic of a our refinement
method is that it accurately preserves the defocus level clas-
sified by the CNN, i.e., after the refinement process is applied

Fig. 6 Defocus blur map refinement. a Input image, b Blur map, c Guidance image, d–g Refined blur maps by WGIF, muGIF, Matting laplacian
and the proposed method
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Table 4 Running time
comparison between different
refinement methods (coded in
MATLAB) for an input size of
1000 × 700 pixels running on a
PC with Apple M1 Pro Chip
with 16GB ram

Method Time (S)

WGIF 0.022

muGIF 2.462

Matting 33.737

Proposed 0.491

the effect of wrong predictions are mitigated and the edges
are improved while the defocus prediction values are pre-
served. This can be better appreciated in Fig. 7a, where we
created a binary version of the original defocus map. The
binary image is obtained by assigning a value 0 to every
pixel q where M(q) ≤ λ and 1 otherwise. The parameter λ

is a user defined threshold (λ = 4 in the figure). In the figure
we can see all the pixels with a level of blurriness lower or
equal than 4 are shown in black color. We can clearly see that
most of those pixels belong to the biggest fish in the image
and a small number of pixels belong to thewrong predictions.
Figures7b to e show the same threshold (λ = 4) applied to
the defocus maps refined using the WFIG, muGIF, Matting
Laplacian and the proposed method. Our method is the only
one which can segment the main object in focus correctly,
correct the edges, and remove incorrect predictions.

4 Comparison of defocus estimation
algorithms

In this section, we compare qualitatively and quantitatively
the proposed method with other methods in two categories:
classical methods such as entropy, standard deviation and
variance of the laplacian of the patch, and modern meth-
ods includingfivehandcrafted features: “Edge-baseddefocus
blur estimation with adaptive scale selection,” from Karaali
et al. [25], “Just noticeable defocus blur detection and esti-
mation” from Shi et al. [34], “Lbp-based segmentation of
defocus blur” from Yi et al. [31], “Defocus map estimation
from a single image” from Zhuo et al. [23] and “Fast defocus
map estimation” (FDM) from Chen et al. [26] and a CNN-
basedmethod fromLee et al. “DeepDefocusMapEstimation

Using Domain Adaptation” (DMNet) [51]. The parameters
settings in this section have been chosen to achieve the
best result possible in terms of defocus estimation and edge
preservation.

4.1 Comparison with classical methods

We studied three methods: entropy, standard deviation, and
variance of Laplacian [58]. The ideas of these three meth-
ods are similar. The blurriness of a pixel is measured by a
quantity such as the entropy or standard deviation of a patch
of pixels centred at that pixel. For the variance of Laplacian,
the image is filtered by using the Laplacian operator. The
blurriness of a pixel is measured by the variance of a patch
of pixels of the filtered image centred at that pixel. For these
three methods, we use a patch size of 16 × 16 to calculate
the entropy, standard deviation and variance of the Lapla-
cian. Simulation results are shown in Fig. 8. The proposed
CNN-based method classifies the level of defocus properly
for both the edges of objects and the featureless patches. On
the other hand, the entropy and standard deviation of the
patch can only classify adequately the edges and classify all
featureless patches as out of focus. Because both methods
are trying to capture edge detection rather than blurriness
estimation, they failed to capture information that the fish in
the foreground is in focus, see e.g., the certain parts of the
body of the fish which are in bright area indicating the area is
wrongly classified as out of focus by these two methods. We
made a similar observation when we compared the results of
the CNN-based method with the variance of the Laplacian.
For example, the tail of the fish in the foreground is in bright
gray scale indicating it is wrongly classified as out of focus
by this method.

4.2 Comparison withmodernmethods

The bird image shown in Fig. 9a presents different lev-
els of defocus blur. Karaali’s method is able to detect the
area in focus but fails to propagate the levels and properly
refine the map. The defocus map produced by Shi’s method
with σ = 2, σr = 0.2, σs = 10 and Niter = 3 does not

Fig. 7 Binary defocus maps obtained by setting a threshold λ = 4
and assigning a 0 to those pixels q where M(q) ≤ λ and 1 otherwise.
a Binary defocus map from original prediction, b–e Binary defocus

map from the map refined by WGIF, muGIF, Matting Laplacian, and
our method, respectively. This image shows the effectiveness of our
method in preserving the defocus level predicted by the CNN
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Fig. 8 Defocus blur map and refined map using different methods. The blur map obtained using different methods is displayed on the top row
and the refined version using the algorithm introduced in Sect. 3.3 is shown in the bottom row. a Our method. b Entropy. c Standard deviation. d
Variance of the Laplacian

Fig. 9 Blur map comparisons, a Input image, b Karaali [25] (σ1 =
1, σ2 = [1 : 0.5 : 5]), c Shi [34] (σ = 2, σr = 0.2, σs = 10, Niter =
3), d) Yi [31] (β = 0.25, s1 = 7, s2 = 11, s3 = 15, TLBP = 0.025), e

Zhuo [23] (e = 0.01, σ = 1, λ = 0.001, M = 10), f DMENet [51], g
FDM [26] (σ = 0.75), h Proposed method

capture all the in-focus pixels in the image. Yi’s algorithm
produces a similar result than image (c) when implemented
using a threshold TLBP = 0.025, square local regions of size
s1 = 7, s2 = 11, s3 = 15 for each level and setting theweight
β = 0.25 for themulti-scale inference step. Zhuo’s algorithm
is shown in image (e). We set the edge threshold as e = 0.01
and the standard deviation as σ = 1 for the blur detection
step. The interpolation step was performed using λ = 0.001
and a maximum blur level M = 10. Zhuo’s method suc-
cessfully identify that the bird is in focus. However a few
details from the background are transferred to the defocus

map after the interpolation step. Chen’s method (FDM) uses
Zhuo’s approach to estimate the blur level on edges, but uses
the SLIC algorithm [30] for the interpolation. In our simu-
lation, the SLIC parameters are set as: 200 super-pixels and
a standard deviation σ = 0.75. As shown in the figure, for
this particular image the focused region is not well defined.
In comparison, the DMNet has a very good performance in
capturing both background and foreground blurriness levels.
The result produced by the proposed algorithm is shown in
figure (h). Our method can represent the different levels of
blurriness in the bird image according to the CNN predic-
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Fig. 10 Blur map comparisons, a Input image, b Karaali [25] (σ1 =
1, σ2 = [1 : 0.5 : 5]), c Shi [34] (σ = 2, σr = 0.2, σs = 10, Niter =
3), d Yi [31] (β = 0.25, s1 = 7, s2 = 11, s3 = 15, TLBP = 0.025), e

Zhuo [23] (e = 0.01, σ = 1, λ = 0.001, M = 10), f DMENet [51], g
FDM [26] (σ = 0.75), h Proposed method

tion. Our refinement method reduces the number of details
transferred from the original image to the defocus map, this
can be appreciated more clearly in the background.

Another comparison example is shown in the last row of
Fig. 10. We can see that Karaali’s and Shi’s algorithms have
similar performance as those in the previous example while
Yi’s algorithm produces a better result on this image. It fully
captures and segments focused pixels in the foreground. The
methods ofZhuo andChenhave difficulty removingdetails in
the foreground especially in the toy’s eyes region. DMENet
produces a sharp and accurate defocus map. Our method
assigns the lowest blur level to the foreground allowing us to
differentiate the focused region from the rest of the image.

4.3 Accuracy evaluation

Quantitatively evaluating the accuracy of the defocus map
produced for our method and comparing with others is a
challenging task. There is no current dataset that allows to
evaluate different levels of defocus. In this section, we per-
form an experiment using the Blur Detection Dataset CUHK
[66] to show the effectiveness of our approach and the com-
parison with others [23,25,34,50,51].

The CUHK Blur Detection Dataset contains 1000 human
labeled images for binary blur detection at a pixel level. The
images are divided into two categories: blurred due tomotion
and blurred due to defocus. In this experiment, we only pick
the first 200 images with defocus blur since DMENet is par-
tially trained with the remaining images in the dataset. The

Table 5 Accuracy on CUHK dataset [66]

Method Accuracy (%)

Zhuo et al. [23] 72.96

Karaali et al. [25] 76.54

Shi et al. [34] 77.81

Park et al. [50] 84.08

DMENet [51] 87.35

Proposed 87.71

ground truth images are binary maps, where a “0” implies an
in-focus pixel and a “1” suggests an out-of-focus pixel. To
evaluate our algorithm and to avoid re-training ourmodel, we
post process each defocus map with a threshold operation to
get a compatible binary map. The binary image is obtained
by assigning a value “1” to every pixel q where M(q) ≥ λ

and “0” otherwise. The parameter λ is set to each image indi-
vidually to achieve the highest accuracy possible. The final
accuracy value is then calculated by averaging the percent-
ages of properly classified pixels on each image.We compare
our results with those reported in [51] in Table 5. Our new
patch-based approach can achieve 87.71% accuracy slightly
over-passing DMENet [51] whom is able to achieve 87.35%
accuracy with a significantly more complex model.

For a more comprehensive comparison, we present the
Precision-Recall curve in Fig. 11. To obtain these values,
we convert the defocus maps to binary maps using differ-
ent thresholds levels (λ) ranging from Mmin to Mmax, where
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Fig. 11 Precision vs Recall comparison on a subset of CUHK dataset
[66]

Mmin and Mmax are the minimum and maximum defocus
levels detected in each image. The precision vs recall metric
shows that the proposedmethod performs better thanKaraali,
Zhuo and Shi in this particular dataset, but it is outperformed
by DMENet and Park which are able to achieve a lower false
positive rate and a lower false negative rate than our method.
We remark that our method is not designed for making a
binary defocus map. The comparison presented in this sec-
tion is intended to show the capability of the proposedmethod
in applications in which a binary decision of whether a pixel
is in focus has to be made.

5 Applications

In this section, we demonstrate applications of the proposed
defocus map estimation in adaptive enhancement and defo-
cus magnification.

5.1 Adaptive enhancement

Unsharp masking (UM) [67] is frequently used for image
enhancement through image sharpening. TheUnsharpMask-
ing (UM) algorithm can be described as

J (q) = I (q) + λZ(q) (8)

where λ is used to control the enhancement level, Z(q) =
I (q) − B(q), and B is a low pass filtered version of I . For
a fixed λ, UM performs a higher degree of enhancement in
higher contrast or dynamic regions of the image. To raise the
sharpness level of a region with low contrast, the parameter
λ has to be set to a relatively higher value, resulting in over
enhancement in regions of high contrast. As such, an unde-
sirable non-natural looking result may be produced. Besides,
natural images may present different blur and contrast levels
in different areas. Having a constant scale-factor λ for the
whole image could also lead to the sharpening of regions

that are intentionally produced with a high level of blur, e.g.,
a highly smoothed background to produce a shallow depth
of field. It is not desirable to sharpen those areas. Differ-
ent methods have been proposed to address those problems,
including using nonlinear or edge-aware filters [67–69] and
a pixel adaptive λ that produces a spatially varying enhance-
ment [10,70].

We follow the same idea of using a pixel adaptive λ and
propose an adaptive unsharp masking algorithm for images
with multiple defocus levels such that the parameter λ for
each pixel is a nonlinear function of the refined defocus
blur map. The aim of the nonlinear function is to avoid the
enhancement of sharp regions as well as in heavily blurred
regions. We use the following nonlinear function:

λ(q) = λmax × λ1(q) × λ2(q) (9)

where λmax is the desired maximum gain level, λ1 and λ2 are
two sigmoid functions:

λ1(q) = 1

1 + e−α1(M(q)−β1)
(10)

λ2(q) = 1 − 1

1 + e−α2(M(q)−β2)
(11)

The four parameters α1, β1, α2 and β2 are determined
by the user to have control over the sharpening gain. An
example of controlling the gain is shown in Fig. 12. In this
example, three out of the four parameters (α1, β1, α2 and β2)
are kept fixed while one varies. The scale of the blur map
is linearly normalized from the interval [0, 19] to [0, 1] for
better visualization. Figure 12a, b c and d show the effect
of varying β1, β2, α1 and α2, respectively, while keeping
the other parameters fixed. The two parameters β1 and β2

indicate the points where the gain is 0.5 × λmax, while the
other two parameters α1 and α2 set the growth speed of the
curve.

In Fig. 13, we present an example of obtaining the gain
map through a non-linear transformation of the defocus map.
Figure 13a shows the input imagewith different levels of blur-
riness. For example, the bird in the foreground is relatively
sharp in comparison with the branches and the background
which is heavily defocused. Enhancing this image is a real
challenge. Figure13b andFig. 13c show the defocus blurmap
and the gain map respectively. The gain map was calculated
using the nonlinear transformation setting α1 = 46, β1 =
0.1, α2 = 183, β2 = 0.27 and λmax = 2. We aim to adap-
tively enhance the image by preventing over-sharpening in
focused regions and avoiding sharpening in blur sections.

Figure13 also shows the comparison of our method with
the classical unsharp masking (UM) and two newer meth-
ods contrast adaptive sharpening (CAS)1 and Generalized

1 https://www.amd.com/en/technologies/radeon-software-fidelityfx.
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Fig. 12 Nonlinear transformation of the defocus level. For easy visualization, the defocus level is normalized and the parameter settings are: a
α1 = 50, β2 = 0.8 and α2 = 50, b α1 = 50, β1 = 0.1 and α2 = 50, c β1 = 0.2, β2 = 0.8 and α2 = 50, d α1 = 50, β1 = 0.2 and β2 = 0.8

Fig. 13 Adaptive image enhancement comparison, a Original image,
b Refined blur map (step size of 16 pixels), c Gain map (α1 = 46, β1 =
0.1, α2 = 183, β2 = 0.27 and λmax = 2), d UM algorithm λ = 2,

e GUM (κ = 5 × 10−4, λ = 7), f CAS (λ = −0.125), g Proposed
method (α1 = 46, β1 = 0.1, α2 = 183, β2 = 0.27 and λmax = 2)

Unsharp Masking (GUM) [71]. The parameter values for
all the methods have been selected to produce a visually
perceptible enhancement with minimum distortion and arti-

facts. We can see that applying UM with a fixed global gain
λ = 2 produces an unpleasant sharpening in the background
(green box) and over-sharpening of areas in focus such as
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Table 6 Image quality
assessment of results in Fig. 13.
Best results are indicated in bold
fonts

Metric Original UM GUM CAS Proposed

BRISQUE ↓ 20.83 44.41 24.89 55.19 20.61

IL-NIQE ↓ 26.72 25.331 26.0949 26.0814 24.4754

NBIQA ↑ 66.244 66.4285 63.5012 76.4527 72.0607

PSS ↓ 0.091 0.1161 0.0921 0.1407 0.0887

BLIINDS-II ↓ 42.5 40 37 52.5 43

the indicated by the orange, red and blue boxes. The CAS
algorithm was implemented using a gain λ = −0.125. We
can see in Fig. 13f that the algorithm performs very well
in regions with medium and high defocus blur. However, it
cannot deal with the blur areas properly producing a noisy
result(green and red boxes). The GUM algorithm (Fig. 13e)
handles both background and foregroundproperlywith a gain
λ = 7 and a contrast factor κ = 5 × 10−4. But it produces
strong halo artifacts when the gain increases. The result of
applying the proposed method is shown in Fig. 13g. It does
not sharpen the heavily blurred background (green box) and
prevents over-sharpening of highly focused pixels by limiting
the sharpening gain (orange, red and blue boxes).

We perform the image quality assessment (IQA) of the
images shown in Fig. 13 and present the results in Table 6.
We use a series of no-reference (NR) IQA methods such as
BRISQUE [72], IL-NIQE [73], NBIQA [74], PSS [75] and
BLIINDS-II [76] to objectively evaluate the performance of
the proposed algorithm. These metrics take into account fea-
tures from the spatial domain or transform domain to assess
the quality and naturalness of an image. We should point
out that these quality measurements use different scales. For
example, while for the BRISQUE method a smaller score
means a better image quality, for the NBIQA method a
larger score means a better quality. In Table 6 we can see
that our method achieves the best result on BRISQUE, IL-
NIQUE and PSS, and second-best on NBIQA, this indicates
that the proposed method produces a more natural-looking
image enhancement than the other three methods. However,
BLIINDS-II gives the second best score to UM algorithm
leaving our method in 3rd position. In fact, from Fig. 13 we
can see that UM algorithm produces excessive halo artifacts
due to enhancement in high contrast regions such as shown
in the red box. The BLIINDS-II score for the UM result is
thus debatable. Therefore, such qualitymetrics do not always
generalize well as a full-reference metric. It is always advis-
able to perform a visual comparison when possible. Indeed,
in image enhancement applications in which the user of the
image is human, he/she will manipulate parameters of the
algorithm to adjust the image until a satisfactory outcome
is produced. This a very subjective process which cannot be
replaced by a quality metric.

5.2 Defocus magnification

In photography, the shallow depth-of-field (DoF) technique
is used to make the main object stand out from the back-
ground by producing an image in which in-focus objects are
with great details and contrast, while out-of-focus objects
are greatly smoothed. In a camera, the DoF is controlled by a
combination of three factors: the f-number, the focal length,
and the distance of the camera from in-focus objects. Due to
practical limitations such as a lens with a small diameter, it is
not always possible to obtain the desired shallowDoF (SDoF)
effect. Enhancement of an image by producing/increasing the
SDoF effect is thus a practical image processing problem.

Computer vision algorithms were recently developed to
achieve the shallow depth of field effect. For example, in
DeepLens [77], the depth information from a RGB-D sen-
sor was used to train a CNN to create the SDoF effect from
an image that has everything in focus. Sakurikar et al. [78]
proposed an end-to-end GAN architecture that selectively
increases the level of blurriness in the input image while
keeping the edges of the in-focus object intact. Also, in
[79] an object segmentation based algorithm differentiates
main objects from the those in the background. The latter are
blurred to create the SDoF effect.

A key idea in creating a SDoF effect from a single image
is to perform a pixel adaptive weighted combination of a
smoothed version denoted B(p) and a sharpened version of
the input image denoted S(p),

R(q) = W (q)S(q) + (1 − W (q))B(q) (12)

We take this approach in this paper by using the defocus map
to estimate the weightsW (q). The smoothed image B is pro-
duced by using one of the edge-aware smoothing filters such
as guided filter [29] or one of its weighted versions [64,80].
The guided filter has two parameters: the radius of the neigh-
bourhood r and the smoothing parameter ε. A bigger value
of r results in larger structures in the image being smoothed
out, while a bigger value of ε leads to the overall greater
degree of smoothness. To better control the smoothing result,
we iterate the guided filter in a self-guidance mode. In our
experiments presented in Fig. 14, we use r = 33, ε = 128,
and 5 iterations. The sharpened image S is produced by the
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Fig. 14 SDoF effect example. a Original image, bWeight map, c SDoF result, d DeepLens result

classical unsharp masking algorithm with a fixed λ = 0.25
for illustration purpose.

The weight map W is determined by the nonlinear map-
ping:

W (q) = 1 − exp

(
−

∣∣∣∣M(q) − 10

σ

∣∣∣∣
γ )

(13)

where σ and γ are two parameters.
The justification for the nonlinear transformation and the

calculation of σ and γ can be explained as follows. When
a pixel is within an in-focus area which corresponds to
M(q) ≤ c0 (e.g., c0 = 1 is user defined constant) the sharp-
ened image should have greater weight such that the in-focus
area is not blurred in the output image. Referring to equation
(12), this requires that W (q) = W0 → 1. Similarly, when

a pixel is within an out-of-focus area which corresponds to
M(q) ≥ c1 (e.g., c1 = 7 is also a user defined constant),
the blurred image should have a greater weight such that in
the output image the out-of-focus area is further blurred to
create the SDoF effect. This requires W (q) = W1 → 0.
With these considerations, the two parameters σ and γ can
be determined. For example, we can set W0 = 0.999 (for
M(q) = c0) and W1 = 0.001 (for M(q) = c1) and calculate
the two parameters based on equation (13). In our experi-
ments, the values of c0 and c1 were set depending on the
image and the defocus levels present application.

Experimental results are shown in Fig. 14which show that
the proposed algorithm can effectively produce the SDoF
effect. In the original images shown in Fig. 14a the fore-
ground is in focus while the background is slightly out of
focus.After applying the nonlinear transformation theweight
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map splits the image in two well-defined regions. Pixels in
focus are with W (q) ≈ 1 while pixels out of focus are with
W (q) ≈ 0 as shown in Fig. 14b. The resulting SDoF image is
shown in Fig. 14c. It is evident that the main subject remains
sharp while the defocused background is further smoothed.
The last columnof this figure shows the results fromusing the
DeepLens algorithm.We can see that the proposed algorithm
is able to smooth the background to a greater degree. A more
realistic result can be produced by using different smooth-
ing techniques to produce B such as the method proposed in
[81].

A notable limitation of this algorithm is that the input
imagemust present a clear distinction between defocus levels
to be able to perform the blur-based segmentation. However,
the method can still be applied partially if the main object is
segmented manually or with an additional machine learning
model.

6 Conclusion

In this paper, we address a challenging problem of estimating
the degree of defocus blur from a single image. This work is
based on the assumption that the defocus blur can be mod-
elled as spatially varying Gaussian blur. As such the variance
of the Gaussian kernel can be used as a proxy for the degree
of blurriness. We train a CNN to classify the blurriness of
an image patch as one of the 20 classes. Each class label is
the variance of a Gaussian kernel. We create a dataset by (1)
choosing sharply focused patches of size (32 × 32) from a
high resolution image dataset, and (2) filtering those patches
by using Gaussian filters of different standard deviations σ

ranging from 1 to 19 to produce 20 classes of blurriness (the
original patch is regarded as being filtered by a kernel with
σ = 0). The compiled dataset is used to train a deep CNN
model called MobileNetV2 to classify patches into 20 dif-
ferent levels of blurriness. Using a sliding window algorithm
and a novel weighted guided filter-based refinement, a pixel
level defocus map is obtained.

We have tested and validated the proposed method by
comparing it qualitatively and quantitatively with classical
and state-of-the-artmethods.Wehave also demonstrated suc-
cessful applications of the blur map estimation in adaptive
image enhancement, and producing shallow of depth of field
effects.

We remark that the underlying assumption of this work
imposes a limitation to its application to selectively smooth
objects which are in focus. This is a problem of first
performing object selection/recognition, and then perform-
ing smoothing. The proposed blurriness estimation is not
designed for the selection of objectswhich are in focus. How-

ever, once the object is selected, the proposed refinement and
enhancement method can still be applied.
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