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Abstract
Building upon fully convolutional networks (FCNs), deep learning-based salient object detection (SOD) methods achieve
gratifying performance in many vision tasks, including surface defect detection. However, most existing FCN-based methods
still suffer from the coarse object edge predictions. The state-of-the-art methods employ intricate feature aggregation tech-
niques to refine boundaries, but they are often too computational cost to deploy in the real application. This paper proposes
a semantics guided detection paradigm for salient object detection. Guided atrous pyramid module is first applied on the top
feature to segment complete salient semantics. Query context modules are further used to build relationmaps between saliency
and structural information from the top-down pathway. These two modules allow the semantic features to flow throughout
the decoder phase, yielding detail enriched saliency predictions. Experimental results demonstrate that the proposed method
performs favorably against the state-of-the-art methods on surface defect detection and SOD benchmarks. In addition, this
method can detect at 27 FPS in a fully convolutional fashion without any post-processing, which has the potential for real-time
detection.

Keywords Salient object detection · Fully convolutional network · Encoder–decoder · Query context network · Automatic
surface inspection

1 Introduction

The human visual system has an excellent attention mecha-
nism, which can capture the most important part of a visual
scene for the first time. Salient object detection (SOD) is
an effective way to imitate this system. Unlike other dense-
labeling visual tasks, SOD methods aim to distinguish the
most visually prominent areas in a frame. Usually, SOD
serves as the first step to benefit other downstream visual
tasks, including image segmentation [1], visual tracking
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[2,3], video abstraction [4], and content-aware image edit-
ing [5].

Recently, deep learning [6]-based convolutional neural
networks (CNNs, e.g. ResNet [7] and VGG [8]) trained for
image classification have been adopted into salient object
detection via transfer learning. Fully convolutional network
(FCN) [11] sets a paradigm for dense-labeling tasks, sur-
passing the traditional methods by a large margin [9,10].
However, the imperfection of FCN-like models is that they
suffer from coarse edge refinements. The consecutive down-
sampling operations in CNNs result in the loss of spatial
information, which is critical for object reconstruction.

To address the aforementioned problem, feature aggre-
gation mechanisms are introduced to refine the high-level
features with local information in a recursive way. Feng et
al. [12] adopted feature pairs to build ternary attention maps,
transmitting multi-level information throughout the whole
decoder stage. Xie et al. [13] used an effective feature aggre-
gation mechanism to resolve the object boundaries. Wang
et al. [14] learned residual features from integrating deep
and shadow features to generate multi-context information.
Although these strategies have brought satisfactory improve-
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Fig. 1 Examples of CFRP
defect dataset, labeled with
pixel-level ground truths (GTs)

ments, the boundaries of salient objects are still not explicitly
modeled. The relations between salient object information
and edge information are not fully evacuated. Besides, there
are some methods using Superpixel [15] or CRF [16–18]
as post-processing to preserve the object boundaries, and
EGNet [55] introduced extra supervision specially designed
for edge refinement. The main inconvenience with these
approaches is their computation cost and low inference speed.

This paper concentrates on proposing a salient-guided
object detection paradigm and bringing query mechanism
to explore latent relations between salient and edge informa-
tion,which does not need any costly post-processing. In order
to help semantics to locate the target and restore clear bound-
aries, these two types of information are fully integrated
and the relationships between them are fully evacuated. In
general, our model consists of two primary modules on the
base of the encoder-decoder network: a guided atrous pyra-
mid module (GAPM) and a query context module (QCM).
GAPMcontributes to capturing complete and accurate salient
objects, which uses as guide information for rebuilding. The
GAPM consists of atrous convolution blocks with different
artous rates. Then, high-level semantic information collected
by GAPM can be successively delivered to feature maps at
all pyramid levels, building relation maps between salient
and edge information across all stages. The relation map
fully evacuates the relationships between these two features,
refining predictions from coarse to fine. Without sophisti-
cated edge refinement modules, the proposed model can well
locate the target with complex edges and make accurate pre-
dictions. In addition, extra supervise is introduced to different
stages of the decoder to optimize the training process.

Besides that, the proposed method has been transferred to
surface defect detection tasks. We construct a carbon fiber-
reinforced plastics (CFRP) defect dataset. CFRP is a kind

of material widely used in aerospace, transportation, and
energy [19–21], which is superior in many aspects, including
lightweight, high strength, and high-temperature resistance
compared to traditional materials [22]. The target defects
of CFRP datasets such as break, bridging, disconnect, for-
eign, gap, puckering and tow defects are shown in Fig. 1 .
Compared with the natural image, the semantic information
contained in the defect image is scarcer, and the object edge
is difficult to recognize, which poses a greater challenge to
restore the exquisite boundaries.

In summary, this paper makes three major contributions:

• Query Context Network (QCNet) is proposed to explic-
itly build relations between salient objects and edge
information to make fine edge predictions.

• We further transfer the model to surface defect detection
tasks and contribute a CFRP defect dataset to test the
generality of the proposed method.

• The proposed model can run at a real-time speed of 27
FPS and achieves state-of-the-art performance on mul-
tiple popular salient object detection and surface defect
detection benchmarks.

2 Related work

2.1 Salient object detection

Salient object detection aims to distinguish the most visu-
ally obvious areas. Traditional SODmodelsmake predictions
mainly based on various saliency cues, including local con-
trast [23], global contrast [24], and background prior [40].
Recently, CNN-based SODmodels have achieved promising
performance. Qin et al. [52] proposed a predict-refine archi-
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tecture to segment the salient object regions effectively and
used a hybrid loss to supervise the training process at three
different levels. In [25], Yan et al. proposed a size divide and
conquer mechanism which separates and learn the feature of
different size, achieving good results on many tasks. Wang
et al. [16] combined background prior with the analysis of
boundary property to enhance salient objects and restrain the
backgrounds in an image. Qin et al. [59] proposed a two-
level nested U-structure model which is able to capture more
contextual information from different scales. Based on the
U-shape architecture, Liu et al. [58] used a global guidance
module and feature aggregation modules to fuse the multi-
level features in a top-down way. Although these models use
multi-scale features from different perspectives, they ignore
the implicit relationships between semantic and structural
features. Our model proposes an explicit pipeline to model
these two different features and efficiently uses the informa-
tion carried by different features to make final predictions.

2.2 Atrous convolution

Salient object detectors often use classification models
(ResNet [7], VGG [8]) as feature extractors in the first stage,
which shows their efficiency in many semantic segmentation
tasks. However, these models are designed for classification
tasks, consecutive down-sampling operations significantly
reduce the spatial resolution of resulting features, which is
essential for segmentation tasks.

Atrous convolution is a type of convolution that inflates the
kernel by inserting holes between the kernel elements. It can
expand the receptive field of the model without introducing
additional parameters. Models based on atrous convolution
have been actively explored for semantic segmentation. Wu
et al. [26] experimented with the effect of modifying atrous
rates for capturing long-range information. In [27], Chen et
al. proposed atrous spatial pyramid pooling (ASPP) to exploit
multi-scale features by employing multiple parallel filters
with different rates. ASPP probes an incoming convolutional
feature layer with filters at multiple sampling rates and effec-
tive fields-of-views, thus capturing objects and image context
at various scales. However, this kind of structure often causes
grid artifact [28], harming the model performance. At the
same time, as the network depth increases, a large rate may
cause the degradation of the convolution kernel. We pro-
pose guided atrous pyramid module for better global feature
extraction. Besides different receptive field features, we use
a one-to-one guild on each branch to guarantee the continuity
of features.

2.3 Attentionmodels

Attention models are popularly used in recent neural net-
works. The main idea is the model should pay more attention

to the region of interest to obtain more detailed information
about the target so as to suppress other useless information.
The visual attention mechanism dramatically improves the
efficiency and accuracy of visual information processing.
Islam et al. [29] applied gate units between each encoder and
decoder blocks as attention models. These gate units control
the feedforward message passing for the sake of filtering out
ambiguous information. However, these message filters only
happen between different level features within the encoder,
which lack feature filter in the decoder phase. To avoid this,
our query contextmodule builds relationships betweendiffer-
ent level features based on high-quality semantic predictions
step by step, making predictions while filtering ambiguous
information.

2.4 Automatic surface inspection

Over the past two decades, numerous methods based on
computer vision have been introduced to automatic surface
inspection (ASI) problems [30–32], which can be gener-
ally divided into traditional detection approaches and deep
learning-based approaches.

Traditional methods have mainly relied on hand-crafted
features, such as statistical information [33], texture [17],
distribution pattern [34]. Despite its efficiency, hand-crafted
features are mostly focused on structural characteristics. The
lack of semantic representations causes limited performance.
Most of these models are heavily dependent on expertise,
bring another obstacle to their application.

With the rapid development of deep learning, CNN-based
methods have been introduced to the ASI field, surpass-
ing the traditional methods by significantly improving [32].
Since Long et al. [11] proposed FCN to predict semantic
labels at a pixel level, FCN-based models have been pop-
ularized in surface inspection fields, further improving the
efficiency and accuracy of detection results. Yang et al. [35]
used feature pyramid to transfer multi-scale context infor-
mation from deep to shallow features and then used side
networks to generate predictions, achieving good perfor-
mance on pavement crack detection. Yan et al. [36] proposed
defect type classification plus defect area segmentation task
mode and mixed supervision network architecture, achiev-
ing good performance in four ASI tasks. In [37], Yang et al.
proposed a multi-scale feature-clustering-based fully con-
volutional autoencoder method for texture defect detection.
Although good results were achieved, most of these methods
focus more on high-level features but neglect the importance
of low-level edge features or relationships between them.
In contrast, we use guided atrous pyramid module to extract
more effective semantic information and thenmodel the rela-
tionships between different resolution featureswith proposed
query contextmodules, makingmore refined predictions step
by step.
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Fig. 2 The pipeline of proposed approach. Our network is in an
encoder–decoder fashion.We denote the output featuremaps of encoder
and decoder as E (l) and D(l), receptively, where l ∈ (1, 2, 3, 4). The
input image is first passed through the encoder to extract the multi-
level features. Then, Guided Atrous Pyramid Module is applied on the

top feature to extract E (5). The decoder consists of four Query Context
Modules to fuse E (5) and the lower features E (1) ∼ E (4) tomake predic-
tion. Each stage of the decoder has additional supervision to guarantee
prediction quality

3 The proposedmethod

In this paper, we propose a Query Context Network (QCNet)
with a novel Guided Atrous Pyramid Module (GAPM) and
Query Context Modules (QCMs) to predict salient objects
with entire object and exquisite boundaries. In this section,
we begin by describing the complete pipeline of the model
and then introduce the guided atrous pyramid module in
Sect. 3.2, query context module in Sect. 3.3, segmentation
head in Sect. 3.4, respectively.

3.1 Network overview

Similar to most previous approaches for salient object detec-
tion, we choose the ResNet50 [7] and VGG16 [8] as our
backbone network and develop it in an encoder–decoder
style. Thenetwork illustration is shown inFig. 2. Four pairs of
encoder and decoder blocks are denoted as E (l) and D(l); the
corresponding prediction maps are denoted as S(l), respec-
tively (l ∈ 1, 2, 3, 4 represents the stage number). The output
feature of GAPM denoted as E (5).
Encoder network We modify the backbone network into a
fully convolutional network by casting away the last fully

connected layers. E (1) ∼ E (4) are features after each stage,
the downsample rate is 4, 8, 16, 32, respectively.
Guided atrous pyramid module The GAPM, described in
Sect. 3.2, takes advantage of atrous convolution, extracting
high-quality context semantic information from E (4). This is
the guide cue of the whole decoder phase.
Decoder network The decoder network consists of four
QCMs and segmentation heads. We discuss the implementa-
tion details in Sects. 3.3 and 3.4. When training the network,
every D(l) estimates saliency maps S(l) respectively, each is
supervised by the same ground truth G. Particularly, we use
binary cross-entropy loss on S(1) and binary dice loss for
others.

3.2 Guided atrous pyramidmodule

In this section, we revisit the structure of ASPP and design
a guided atrous pyramid module for better semantic extrac-
tion. GAPM has three different atrous convolution branches,
and the atrous rates are 12, 24, 36, respectively, which is
larger than the ASPPmodule. Larger atrous rates bring wider
receptive field, help capture global information, but cause
degradation of convolution layer. So we add a global aver-
age pooling branch to alleviate the grid effect by set a basic
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Fig. 3 Illustration for guided atrous pyramid module

vector to each feature map. Besides that, a one-to-one guide
branch is added after each branch. The guide feature has
complete spatial information; combined with global context
from other branches, we can get the resulting feature map
with richer semantic expressions. We add a weight merge
mechanism before output for better feature reuse. The struc-
ture of GAPM is shown in Fig. 3.

GAPM is applied on the top feature of backbone outputs,
which is denoted as E (4):

Fskip = W1E
(4) (1)

where W1 denotes a 1x1 convolution layer.
Then,we use three convolution layerswith different atrous

rates and a global pooling layer to get multi-scale feature
maps.

Fout = Fconcat (F
ai (E (4)) + Fskip, Fgap(E

(4)) + Fskip) (2)

where (1) Fconcat represents feature concatenation. (2) Fai

denotes atrous convolution layers, ai ∈ {12, 24, 36}. (3) Fgap
denotes a global average pooling layer.

We use weight merge in the output phase to guarantee
better feature fusion.

E (5) = W3(Fout × W2Fout ) (3)

where W2 denotes a global average pooling layer and a 1x1
convolution layer for weight calculation, W3 denotes a 1x1
convolution layer for output channel adjustment.

3.3 Query context module

We control the message passing between encoder and
decoder blocks via Query Context Module (QCM). QCM is
a special information matching and filtering module, which
takes the high-order semantic features as the key and the low-
order structural features as the value. QCMwill calculate the
relationships between these two different type features in
a pixel-wise manner, establishing correspondence between

Fig. 4 Architecture of query context module

high-level semantic features and low-level structural fea-
tures more accurately, thereby reducing the sharp step to
object contour. The top semantic feature processed byGAPM
(denote as E (5)) has filtered most invalid information; thus,
the accuracy of subsequent feature matching calculation can
be guaranteed. At the same time, the matching calculation
between different stage features can also help to screen out
the redundant and incorrect information, and get the accurate
predictions. Figure 4 shows the architecture of query context
module.

The top feature of backbone (denoted as E (4)) is first pass
toGAPM, the output denoted as E (5). E (5) hasmore accurate
and complete semantic features, which is the basis of the
subsequent step. We denote x = xi Ni=1 as the feature map of
one semantic feature (after upsampled by 2), y = yi Ni=1 as
the feature map of one structure feature, respectively, where
N is the number of positions in the feature map (N = H ·W ),
c denotes the global context feature, and z denotes the output
of QCMs. We define a temporary variable t as:

ti j =
N∑

k=1

xi
exp(W1y j )∑N

m=1 exp(W1ym)
(4)

The global context feature can be calculated as:

c = δ(W2zi j + LN (
exp(zi )∑C

m=1 exp(zm)
x j )) (5)

so the QCM can be expressed as:

zi j = xi j + yi j + ci j (6)

where (1) i is the index of semantic feature and j is structure
feature positions, respectively. (2) W1 and W2 denote linear
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transformation matrices (1x1 convolution layer in model).
(3) LN denotes the Layer Normalization. (4) δ (·) denotes of
fusion function to aggregate the spatial context and channel
context.

The decoder phase consists of four QCM, which restores
the target contour step by step, and finally obtains the pre-
diction result.

3.4 Segmentation head

The downsample rates of D(1) ∼ D(4) are 4, 8, 16, 32,
respectively. The consecutive bilinear upsampling layers are
applied on the featuremap formatching the spatial resolution
with D(1). Then, we sum up all feature maps to pass through
the segmentation head, which is a transposed convolution
layer and a bilinear upsampling layer to get the final predic-
tion, denoted as S. We also add segmentation head on four
original feature maps to get the auxiliary prediction maps
denoted as S(1) ∼ S(4) to further supervise model training.

S(i) = Fhead(F
24−i

T (D(i))) (7)

where i = 1, 2, 3, 4. FT denotes a transposed convolution
layer, and its exponent represents the number of uses. Fhead
denotes a transposed convolution layer and a bilinear upsam-
pling layer.

The final prediction is represented as:

S = Fhead(
K∑

i=1

F24−i

T (D(i))) (8)

We use binary cross-entropy loss on the main branch and
binary dice loss on four auxiliary branches for better object
completeness. The loss function can be expressed:

L = Lbce(S,G) +
K∑

i=1

Ldice(S
i ,G) (9)

where K denotes the number of auxiliary predictions (four in
our model), Lbce denotes Binary Cross-Entropy (BCE) Loss,
and Ldice denotes Binary Dice Loss.

BCE loss is widely used in binary segmentation tasks,
which indicates the difference in the probability distribution
between the predicted value and the ground truth, defined as:

Lbce = − 1

N

N∑

i=1

(Gi log(Si ) + (1 − Gi ) log(1 − Si )) (10)

Since the BCE loss focuses on estimating the overall clas-
sification accuracy of all pixels indiscriminately, we further

adopt binary dice loss to enhance the regional consistency.

Ldice = 1 − 1

m

m∑

j=1

2
∑N

i=1 Gi j Si j∑N
i=1 Gi j + ∑N

i=1 Si j
(11)

where N = H · W .

4 Experiment

4.1 Implementation details

We train our model using the DUTS-TR dataset and CFRP
defect dataset. We choose ResNet50 [7] and VGG16 [8]
as the backbone networks, which are commonly used in
salient object detection models. Our system is implemented
in PyTorch. We train our network on TianXp GPU for 50
epochs, with a base learning rate 0.0001, momentum 0.9,
and weight decay 0.000001. The batch size is set to 7. The
parameter of backbone is pretrained on ImageNet [38]. For
other convolutional layers, we initialize the weights using
Kaiming uniform [39]. We choose Adam optimizer to train
our neural networks.

While inference, we cast all the auxiliary branches and
use the output of the main branch as the final salient map.

4.2 Datasets and evaluationmetrics

To evaluate the performance of proposed method, we con-
duct experiments onfivewidely used salient object detections
benchmarks: DUT-OMRON [40], DUTS [41], ECSSD [42],
HKU-IS [43], PASCAL-S [44] and two ASI datasets: CFRP
defect dataset and magnetic tile defect dataset [45].

DUT-OMRON [40] consists of 5168 high-quality images
manually selected from more than 140000 images. This
dataset is quite challenging since images could have more
than one salient object, and its background is relatively com-
plex. DUTS [41] contains 15572 images, 10553 for training
and 5019 for testing. DUTS is the largest publicly avail-
able salient object detection benchmark; most of its images
are challenging on both scale and scene. ECSSD [42] has
1000 imageswith various complex scenes.HKU-IS [43] con-
tains 4777 images, 2500 for training, 500 for validation and
2000 for testing, many of which have more than one salient
object. Disconnections of objects bring an extra difficulty to
detection. PASCAL-S [44] contains 850 images which are
hand-picked from the validation dataset of PASCAL VOC
segmentation dataset [46].

CFRP dataset has a total of 460 images; we split the
data into the training set and testing set according to the
ratio of 7:3. The spatial size of all images is 1000x1000
and can be divided into seven categories according to differ-
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Table 1 Comparison of our model and 10 SOTA models on ECSSD, HKU-IS in terms of FPS, Fmax , MAE, S Measure and E Measure

ECSSD HKU-IS
Backbone FPS1 FPS2 Fmax ↑ MAE ↓ S ↑ E ↑ Fmax ↑ MAE ↓ S ↑ E ↑

VGG16-Based

NLDF vgg16 23.6 1.23 .8887 .0626 .8749 .9221 .8876 .0480 .8784 .9344

PiCANet vgg16 7.2 1.15 .8877 .0588 .8879 .9285 .8769 .0510 .8799 .9311

EGNet vgg16 1.4 0.07 .9296 .0405 .9193 .9495 .9165 .0345 .9099 .9526

PoolNet vgg16 5.9 0.16 .9290 .0417 .9173 .9481 .9186 .0333 .9119 .9541

Ours vgg16 32.5 2.26 .9254 .0465 .9137 .9471 .9159 .0379 .9099 .9538

ResNet34/ResNet50/ResNeXt101/RSU-Based

BASNet resnet34 48.1 1.02 .9316 .0369 .9165 .9513 .9200 .0329 .9081 .9510

R3Net resnext101 4.5 0.26 .9257 .0402 .9102 .9487 .9037 .0349 .8952 .9457

HVPNet – 57.0 3.95 .9116 .0524 .9034 .9399 .9036 .0448 .8986 .9469

SAMNet – 38.8 3.89 .9148 .0504 .9071 .9451 .9021 .0447 .8981 .9477

CPD resnet50 48.1 5.18 .9261 .0371 .9182 .9511 .9127 .0339 .9066 .9530

EGNet resnet50 1.3 0.02 .9364 .0374 .9246 .9547 .9241 .0309 .9180 .9582

U2Net rsu 36.6 1.81 .9408 .0330 .9276 .9572 .9221 .0318 .9143 .9529

PoolNet resnet50 6.6 0.19 .9371 .0350 .9263 .9555 .9233 .0300 .9188 .9575

Ours resnet50 37.6 3.27 .9402 .0372 .9276 .9578 .9294 .0323 .9202 .9613

a ↑ & ↓ denote larger and smaller is better, respectively
b FPS1 & FPS2 denote GPU and CPU inference time, respectively
c Bolditalic, Italic, Bold indicate the best, second best and third best

Table 2 Comparison of our model and 10 SOTA models on PASCAL-S, DUT-O, DUTS-TE in terms of Fmax , MAE, S Measure and E Measure

PASCAL-S DUT-O DUTS-TE
Fmax ↑ MAE ↓ S ↑ E ↑ Fmax ↑ MAE ↓ S ↑ E ↑ Fmax ↑ MAE ↓ S ↑ E ↑

VGG16-Based

NLDF .7945 .0977 .8048 .8548 .6993 .0796 .7704 .8200 .7770 .0647 .8166 .8710

PiCANet .7923 .0853 .8225 .8707 .7154 .0671 .7932 .8495 .8034 .0529 .8438 .8971

EGNet .8363 .0766 .8475 .8842 .7727 .0565 .8356 .8697 .8542 .0431 .8786 .9179

PoolNet .8434 .0716 .8518 .8922 .7694 .0561 .8325 .8690 .8526 .0413 .8789 .9173

Ours .8488 .0749 .8564 .8951 .7665 .0622 .8278 .8725 .8550 .0450 .8764 .9212

ResNet34/ResNet50/ResNeXt101/RSU-Based

BASNet .8332 .0763 .8383 .8798 .7788 .0564 .8358 .8715 .8372 .0474 .8657 .9016

R3Net .8003 .0920 .8070 .8485 .7595 .0625 .8166 .8573 .8002 .0572 .8349 .8804

HVPNet .8099 .0895 .8299 .8678 .7732 .0646 .8312 .8755 .8143 .0573 .8494 .8986

SAMNet .8068 .0918 .8255 .8663 .7735 .0652 .8299 .8767 .8112 .0573 .8489 .9007

CPD .8332 .0706 .8484 .8864 .7536 .0560 .8248 .8683 .8399 .0429 .8691 .9134

EGNet .8411 .0740 .8521 .8873 .7776 .0528 .8411 .8779 .8656 .0386 .8872 .9260

U2Net .8316 .0740 .8444 .8791 .7931 .0545 .8466 .8796 .8478 .0443 .8738 .9103

PoolNet .8579 .0649 .8646 .9024 .7626 .0539 .8312 .8667 .8647 .0363 .8868 .9255

Ours .8527 .0678 .8647 .9032 .7809 .0591 .8377 .8756 .8753 .0384 .8911 .9331

a ↑ & ↓ denote larger and smaller is better, respectively
b Bolditalic, Italic, Bold indicate the best, second best and third best performance

123



4398 J. Sun et al.

Fig. 5 Examples of magnetic
tile defect dataset

ent defect types: Break, Bridging, Disconnect, Foreign, Gap,
Puckering, and TowDefect. Magnetic tile defect dataset [45]
contains 1344 images; the ROIs of the concerning surface
of magnetic tile are cropped. There are six different defect
types in this dataset, which areBlowhole, Crack, Fray, Break,
Uneven, Free, receptively, shown in Fig. 5.

We apply horizontal flip as data augmentation method,
and each image is resized to 384 (512 for ASI images) and
normalized using themean and std value provided byResNet.

We evaluate the performance of our approach and other
state-of-the-art methods with four widely used metrics: F-
measure score, mean absolute error (MAE) [47], S-measure
score [48] and E-measure score [49]. F-measure score,
denoted as Fβ , is the weighted harmonic mean of average
precision and average recall, can be computed as follows:

Fβ = (1 + β2) × Precision × Recall

β2 × Precision + Recall
(12)

we set β2 to 0.3 suggested in [24] to weight precision more
than recall. Following most salient object detection meth-
ods [50,51], we report the maximum F-measure from all
precision-recall pairs. TheMAE [47] score is a measurement
of the similarity between saliencymap S and the ground truth
G , formulated as:

MAE = 1

W × H

W∑

x=1

H∑

y=1

|S(x, y) − G(x, y)| (13)

where W and H denote the width and height of the saliency
map, respectively. S-measure [48] is a structure-based met-

ric, which is concentrated on structural information in the
saliency maps. Compared to the above metrics, S-measure is
more close to human visual perception, computed as:

S = γ So + (1 − γ )Sr (14)

where So and Sr denote the region-aware and object-aware
structural similarity, γ is set to 0.5 by default.

a2 + b2 = c2 (15)

E-measure [49] focuses more on global means of the image
and local pixel matching, which can be represented as:

Qs = 1

W × H

W∑

x=1

H∑

y=1

φs(i, j) (16)

φs denotes the enhanced alignment matrix, which reflects the
correlation between S and G after subtracting their global
means.

4.3 Comparison with the state-of-the-art

In this section, we compare our model with ten state-of-the-
art methods, including BASNet [52], NLDF [53], CPD [54],
EGNet [55], PiCANet [56], R3Net [57], PoolNet [58],U2Net
[59], HVPNet [60] and SAMNet [61]. All the saliency maps
are produced by running source codes or pre-computed by
the authors.
Results on common salient object detection benchmarks.
We evaluate the performance of the proposed method on five
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Table 3 Comparison of our model and 10 SOTA models on CFRP and magnetic tile defect dataset in terms of FPS, Fmax , MAE, S Measure and E
Measure

CFRP MagneticTile
Backbone FPS1 FPS2 Fmax ↑ MAE ↓ S ↑ E ↑ Fmax ↑ MAE ↓ S ↑ E ↑

VGG16-Based

NLDF vgg16 23.6 1.23 .5296 .0700 .6488 .8083 .2160 .0178 .7927 .4500

PiCANet vgg16 7.2 1.15 .4510 .0952 .6147 .7220 .1909 .0182 .8509 .4625

EGNet vgg16 1.4 0.07 .5483 .0528 .6806 .8088 .3224 .0029 .9365 .5410

PoolNet vgg16 5.9 0.16 .3015 .1379 .5431 .7131 .3138 .0042 .9276 .5367

Ours vgg16 21.5 1.28 .6302 .0515 .7174 .8511 .3552 .0028 .9480 .5524

ResNet34/ResNet50/ResNeXt101/RSU-Based

BASNet resnet34 48.1 1.02 .5651 .0510 .6880 .8156 .3500 .0024 .9613 .5440

R3Net resnext101 4.5 0.26 .5103 .0514 .6504 .7529 .2240 .0047 .8581 .4321

HVPNet – 57.0 3.95 .5395 .0568 .6712 .8149 .3000 .0031 .9129 .5318

SAMNet - 38.8 3.89 .5406 .0513 .6652 .8155 .2700 .0036 .8788 .5134

CPD resnet50 48.1 5.18 .4848 .0847 .6138 .7964 .2077 .0437 .8210 .4410

EGNet resnet50 1.3 0.02 .5582 .0581 .6864 .8170 .2697 .0037 .9096 .5354

U2Net rsu 36.6 1.81 .5604 .0520 .6835 .8083 .3556 .0023 .9512 .5504

PoolNet resnet50 6.6 0.19 .5656 .0593 .6884 .8231 .2557 .0037 .8999 .5321

Ours resnet50 26.6 1.85 .6184 .0478 .7088 .8455 .3562 .0020 .9523 .5470

a ↑ & ↓ denote larger and smaller is better, respectively
b FPS1 & FPS2 denote GPU and CPU inference time, respectively
c Bolditalic, Italic, Bold indicate the best, second best and third best performance

Table 4 Ablation analyses onDUTS-TEdataset. B denotes the baseline
model

Fmax ↑ MAE ↓ S ↑ E ↑
1. B .856 .041 .881 .924

2. B + GAPM .860 .042 .882 .925

3. B + QCM .868 .040 .886 .929

4. B + GAPM + QCM .875 .038 .891 .933

Table 5 Ablation analyses on CFRP dataset. B denotes the baseline
model

Fmax ↑ MAE ↓ S ↑ E ↑
1. B .576 .051 .689 .820

2. B + GAPM .589 .049 .698 .826

3. B + QCM .605 .049 .701 .833

4. B + GAPM + QCM .620 .048 .710 .846

widely used salient object detection datasets in terms of F-
measure, MAE, S-measure and E-measure. Tables 1 and 2
show the test results. We can conclude that our model can
achieve SOTA results on natural images while keeping a fast
inference speed.
Results on CFRP defect dataset Besides common SOD
benchmarks, we conduct experiments on CFRP defect
dataset to prove the generality of the proposed method. In

this scenario, our model needs to predict the most notable
object from the single-channel frames, which is slightly dif-
ferent from the previous tasks. Images from CFRP dataset
are primarily in grayscale, detectors mainly focus on the
change of image gray and morphological characteristics of
the defect to get the final prediction. We evaluate the perfor-
mance of our model with other SOTA SOD models in terms
of F-measure, MAE, S-measure and E-measure, as shown
in Table 3. It can be seen that our model outperforms other
methods on all four evaluationmetrics by a largemargin. The
F-measure, MAE, S-measure and E-measure are improved
8.25%, 2.04%, 4.06% and 3.40%, respectively. Note that this
is achieved without any post-processing.
Results on magnetic tile defect dataset To further prove
the effectiveness of the proposed method, we test it on the
magnetic tile defect dataset. Our model can be easily applied
to many ASI tasks without any specific process. The result is
shown in Table 3. Our model achieves the sota performance
on all four metrics.
Real-time performance comparison. FromTables 1, 2, and
3, we can see our model can run at 38 fps with an input size
of 384 (ECSSD, HKU-IS, PASCAL-S, DUT-O, DUTS-TE)
and 27 fps with an input size of 512 (CFRP and Magnetic
Tile defect dataset), which achieves good performance while
keeping a real-time inference speed. We further tested the
CPU inference time of each model as a reference (Intel i7
7700), and the results are also shown in tables.
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Fig. 6 Visualization of heat
map

Fig. 7 Visual comparison with state-of-the-art methods
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4.4 Ablation experiments

In this section, we explore the effect of proposed components
in QCNet. All experiments are based on the DUTS-TE and
CFRP datasets, respectively, and use ResNet50 as the back-
bone network. For comparison, we set a baseline model that
replaces the GAPM and QCM with ASPP and FPN, respec-
tively.

4.4.1 Extractor of semantic feature

In this subsection, we explore the effectiveness of the pro-
posed GAPM. In the baseline model, we use ASPP to extract
semantic information. The output of the backbone model
E (4) is passed into the ASPP module. We denote the result
semantic feature as Ê (5).We replace theASPPwith proposed
GAPM, and extract the E (5) and Ê (5) from two models and
compare their completeness and accuracy of semantic infor-
mation. The resulting heatmap is shown in Fig. 6. Themiddle
two columns and the last two columns show the heat maps of
the DUTS-TE and CFRP datasets, respectively. We can see
that the model with GAPM can locate the target more accu-
rately and suppress the interference elements well. At the
same time, we test the performance of these two strategies,
shown in the second row of Tables 4 and 5. Both results show
proposed GAPMworks better in semantic feature extraction,
which sets a better basis for the following process.

4.4.2 Bottom-up feature propagation

In this subsection, we explore the superiority of the proposed
QCM. Compared to baseline, we remove all FPNBlocks and
replace them with QCM in the decoder phase. The test result
is shown in the third row of Tables 4 and 5. We can find that
QCM can significantly improve model performance on four
evaluation metrics. Meanwhile, combined with GAPM, the
final evaluation result greatly improved frombaseline, shown
in the fourth row of Tables 4 and 5. The model was beyond
baseline at 2.21%(7.64%) on F-measure, 7.89%(6.25%) on
MAE, 1.14%(3.05%) on S-measure and 1.04%(3.17%) on
E-measure, respectively.

4.4.3 Visual comparison

To further illustrate the superiority of the proposed method,
we show the qualitative comparison with other ten SOTA
models. As shown in Fig. 7, our model is able to accurately
segment the target in both natural scenes (first four rows)
and ASI tasks (last four rows). In addition, the segmentation
results of our model have better completeness and sharper
boundaries.

5 Conclusion

This paper proposes a salient-guided salient object detec-
tion paradigm, which has excellent segmentation results and
less computational cost. Based on this idea, we first extract
salient object information under multiple different adaptive
fields. Then, we propose a query context module to build
relations between salient and edge information, which grad-
ually restores object boundaries stage by stage. The whole
network is capable of capturing complete objects and pre-
serving exquisite edges. Meanwhile, the proposed model can
be easily transferred to the surface defect detection field. This
model performs favorably against the state-of-the-art meth-
ods on salient object detection and surface defect detection
benchmarks without any post-processing. Besides that, our
model can run at a real-time speed of 27 FPS.

In the future, we will focus on two directions as follows:
Theone is data augmentation technologydue to the expensive
manual annotations in defect detection datasets. The other is
extending our work to 3D detection tasks.
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