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Abstract
Due to the success and growing job market of deep learning (DL), students and researchers from many areas are interested
in learning about DL technologies. Visualization has been used as a modern medium during this learning process. However,
despite the fact that sequential data tasks, such as text and function analysis, are at the forefront of DL research, there does
not yet exist an educational visualization that covers recurrent neural networks (RNNs). Additionally, the benefits and trade-
offs between using visualization environments and conventional learning material for DL have not yet been evaluated. To
address these gaps, we propose exploRNN, the first interactively explorable educational visualization for RNNs. exploRNN is
accessible online and provides an overview of the training process of RNNs at a coarse level, as well as detailed tools for the
inspection of data flow within LSTM cells. In an empirical between-subjects study with 37 participants, we investigate the
learning outcomes and cognitive load of exploRNN compared to a classic text-based learning environment. While learners
in the text group are ahead in superficial knowledge acquisition, exploRNN is particularly helpful for deeper understanding.
Additionally, learning with exploRNN is perceived as significantly easier and causes less extraneous load. In conclusion,
for difficult learning material, such as neural networks that require deep understanding, interactive visualizations such as
exploRNN can be helpful.

Keywords Neural network education · Recurrent neural networks · Sequential data · Visual education

1 Introduction

With its recent advances, DL has gained immense traction
in research, industry, and education. As job opportunities
related to machine learning are unprecedented, many want
to learn about and understand DL technologies.

While initial progress inDLwasmainly possible due to the
rise of convolutional neural networks (CNNs), large training
data sets, and GPU training in the context of image recogni-
tion [1–3], other network architectures, such as RNNs, which
are able to process sequential data, are becoming increas-
ingly important. At the same time, these more advanced
learning architectures are more difficult to comprehend, as
they employ concepts that are fundamentally different from
classical computer science. Thus, by making the process
behind RNNs transparent and easy to understand, research
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in sequential learning tasks can be accelerated as the field
opens up to additional users and contributors.

Along this line, the visualization community has shown
how interactive visual explorables can be effective for learn-
ing about DL concepts [4–7]. Since different architectures
come with their unique challenges, existing educational
applications usually focus on one type of architecture. Unfor-
tunately, the set of existing applications still does not cover
RNNs. This is despite the fact that RNNs are widely adopted
in tasks such as speechprocessing [8,9], handwriting recogni-
tion [10], and machine translation [11], among many others.
While RNNs are capable of solving such sequential tasks,
they also bring their unique architectures and concepts to
capture temporal information. As these concepts differ from
other network types, RNN education could be of great ben-
efit. To facilitate RNN education, we propose exploRNN,
an interactive explorable visualization for RNNs that runs
directly in any modern web browser (Fig. 1).

The focus of exploRNN is to make learning about these
abstract and complex network types easier, more motivat-
ing, and more applicable to real problems. By presenting
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Fig. 1 a Simple input types illustrate the abstract concepts behind
RNNs. b An animated, modifiable network architecture shows the data
flow. c The prediction visualization shows the network input, predic-
tion, ground truth, and error bars, all animated to communicate their

temporal nature. d Text helps explain the training process. e RNNs
can be interactively trained. f Training parameters can be interactively
explored

learningmaterial in away that is conducive to learning, learn-
ers should need fewer unnecessary cognitive resources CR
[12]. These freed-up resources are then available to be used
for a deeper understanding DU of the learning material.
We also expect that this would result in a more motivating
and joyful MJ learning experience compared to traditional
learningmethods, such as text. In turn, learnersmight bewill-
ing to spend more time learning, and more learners could be
attracted in general, effectively increasing overall knowledge
gain. To assess these hypotheses,we compare exploRNN with
text-based learning in a between-subjects study with 37 par-
ticipants. Our evaluation provides insights into when, and
under which conditions, visual interactive learning environ-
ments can outperform conventional learning material.

Along this line, we make the following contributions:

• Educational Objectives and Design Challenges for edu-
cational RNN visualizations, informing our visualization
design.

• An interactive visualization approach for RNN educa-
tion, enabling investigation at different levels of granu-
larity.

• A quantitative, comparative evaluation, investigating the
effectiveness of our approach and providing hints for
other interactive educational visualizations.

exploRNN can be accessed online at: https://mi-pages.
informatik.uni-ulm.de/explornn, contributing to a fast-growing
corpus of visualization work in the field of DL. To our

knowledge, exploRNN is the first educational visualization
interface that is targeted at RNNs, an important and growing
class of neural networks (NN). Additionally, our study is the
first to compare conventional learning material to a visual,
interactive learning environment for DL education.

2 Background: RNNs

We would like to invite readers who want to refresh their
knowledge on RNNs to use exploRNN at https://mi-pages.
informatik.uni-ulm.de/explornn as an interactive learning
experiment. This chapter contains a brief summary of the
knowledge that is communicated in exploRNN.

CNNs and multi-layer perceptrons (MLPs), which are
used for most classical DL tasks, process data in a feed-
forward manner. On the contrary, RNNs provide a cyclical
architecture in which the output of the previous timestep is
used in combination with new inputs to inform the activation
of a cell. The main difference in training RNNs is backprop-
agation through time (BPTT), where the prediction error is
propagated not only back through the layers but also within
the recurrent connections of the layers.

We visualize the LSTM architecture (cf. Fig. 2). Although
this is not the most simple recurrent architecture that exists,
it is superior in capturing long-range dependencies, as it mit-
igates the vanishing gradient problem [13–15], and is thus
widely used. The main features of an LSTM cell are the gat-
ing mechanisms and the cell state. The three gates within an
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Fig. 2 LSTM cell with all operations visualized. The input is added to
the output of the previous time step and then used by the three gates for
the gate activation

LSTM cell are computed based on the input at time step t ,
xt and the activation of the cell at time step t − 1, at−1 as
follows:

Input Gate: i t = sigmoid(Wix xt + Wiaat−1 + bi ), what
new information to use to update the cell state ct .

Forget Gate: f t = sigmoid(W f x xt + W f aat−1 + b f ),
what information in the cell state ct can be forgotten.

OutputGate: ot = sigmoid(Wox xt+Woaat−1+bo), what
part of the cell state ct is used to compute the activation.

The cell state at timestep t is then computed as ct =
f t ◦ ct−1 + i t ◦ tanh(Wcx xt + Wcaat−1 + bc), where ◦ is
the hadamard product.

While there are other architectures that also use the con-
cept of cell state and modular updating, such as gated
recurrent units (GRUs) [16], their underlying idea does
not greatly differ. However, since LSTMs were the first to
introduce the explained concepts, are more general in their
application [17], and often outperform GRUs [18], we focus
on conveying the LSTM architecture.

3 Related work

In this section, we first give a brief overview of the explorable
explanation literature before elaborating on the corpus of
related work in the area of educational visualizations for DL
non-experts and RNN visualizations.

3.1 Explorable explanations

Explorable learning environments were invented long before
DL raised awareness in the broader public. Their effective-
ness was investigated in the line of work by Hundhausen
et al. [19,20]. Schweitzer and Brown then described design
characteristics and an evaluation of active learning settings
in classrooms by using visualization [21]. There also exists
a line of work on the use of visualization for programming
education [22–24]. These approaches show how visualiza-
tion can communicate algorithmic thinking effectively. We
combine these ideas with more recent concepts, which have

been proposed under the term exploranation in the area of
science education [25], where explorable explanations pro-
vide benefits for learning.

There are numerous helpful visualizations conveying
properties of NN architectures, their functionality, or appli-
cation scenarios [5,6,26]. However, we will focus on edu-
cational, explorable visualization approaches that have been
proposed for different network types. One of themost promi-
nent interactive educational visualization approaches has
been proposed by Smilkov et al. [7]. In their explainable
TensorflowPlayground, one can select the properties of a NN
to be trained. They also allow the customization of certain
training parameters and deployed their approach as a web-
based application. Similarly, in Revacnn, users can explore
the activations of a CNN by modifying the network struc-
ture and training the network in the browser [27]. While
these approaches help teach themost basic concepts ofMLPs
and CNNs, respectively, more advanced architectures need
further, specialized visualizations. Another approach that is
closely related to ours, but works on a different type of NNs,
namelyGANs, isGanLab [4]. They focus on how the genera-
tor and discriminator are used adversarially to yield synthetic
data that resembles the data distribution it was trained on.
However, GANs bring their own visualization challenges,
which are fundamentally different from those we found for
RNNs. Additionally, neither of these systems was systemat-
ically and quantitatively evaluated.

As none of these visualization approaches is designed to
help non-experts understand how RNNs function, with their
unique concepts of memory and temporal dependence, our
aim is to fill this gap in the literature with exploRNN. Addi-
tionally, we shed light on the usefulness of such interactive
learning environments through our quantitative user study.
We specifically examine the difference in learning outcomes
across different learning hierarchies [28], the complexity of
the learning experience by means of cognitive load [12], and
qualitative assessments such asmotivation, perceived quality
of content, and joy throughout the learning process. We hope
that our findings in this area can be an indication for similar
learning environments andmotivate others to conduct similar
experiments.

3.2 RNN visualizations

Apart from educational visualizations, there is another line
of visualization work targeted toward investigating RNNs.
These approaches are designed mainly for researchers who
want to understand and debug their models. An early
approach toward visualizing RNNs was proposed by Karpa-
thy et al., who visualize the activation of RNN cells for expert
analysis [29]. Strobelt et al. published LSTMVis, in which
the hidden state dynamics of RNNs is investigated [30].
They specifically demonstrate how text understanding can
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be analyzed through investigating the structure and change
of the cell state. They also presented Seq2Seq-Vis, in which
sequence-to-sequence models can be probed to reveal errors
and learned patterns [31]. Along the same line, Ming et al.
introduced RNNVis [32]. They analyze the functionality of
individual hidden state units by observing their reaction to
specific text segments. With RNNbow, Cashman et al. pub-
lished a visualization, in which the gradients of RNNs can
be analyzed [33]. They attribute the gradient to individual
letters in a textual input sequence. This way, researchers
can inspect how their models learn. In another approach,
Shen et al. proposed visualizations for RNNs [34] operat-
ing on multi-dimensional sequence data. Here, developers
can inspect hidden unit responses to get insight into different
networks. Similarly, Garcia and Weiskopf proposed a visu-
alization for the inspection of hidden states of RNNs [35].
However, all approaches described here are expert tools that
help during development. Contrary to this, we aim to convey
the general idea of RNNs to novices in this area of DL.

Insights on the effects of using exploration and visual-
ization for learning in general, as well as present educational
visualizations for NNs, show how interactive exploration can
help a broader audience with access to learning experiences.
Therefore, we propose exploRNN, which provides insight
into the function of RNNs for users who know the basics
of DL, but are laymen in the area of sequential learning.
Our evaluation also provides the first comparative analysis
of interactive learning environments and classical learning
approaches for NN education.

4 Educational objectives

To inform the visualization design of a learning experi-
ence, educational objectives are needed, which we defined
based on Bloom’s taxonomy [28]. Our target users already
understand the fundamental concepts of DL and know about
feed-forward NNs. Without this background knowledge,
the theory behind those techniques would first need to be
explained, which would extend the scope of exploRNN . As
our target audience aims to learn the yet unknown con-
cepts of RNNs, we focused on recall O1&2 , comprehension
O2&3 , and transfer O3&4 of the learned information.
Later, this learning can be applied in the wild to access levels
four to six (analyze, evaluate, create) of Bloom’s taxonomy.
Formulated on this basis, our educational objectives are:
O1 Justification. Users should know that RNNs, in contrast
to other network types, can be used for sequential data. This
also includes BPTT, through which RNNs can learn tem-
poral dependencies, which classical feed-forward networks
cannot.
O2 Cell Structure. Users should then understand how
LSTM cells are built and what functionality their individ-

ual components have. Here, the cell gates, as well as the
memory element, are of special importance, as they enable
the processing of sequential data.
O3 Training Setup. To understand the training process of
such networks, users should know important parameters for
the setup of RNNs. This includes the network structure, train-
ing parameters, and how data are fed to the network.
O4 Task. Finally, to transfer this theoretical knowledge
about RNNs to real applications, users should learn about
different application areas and data types that can be used
with RNNs. In the end, they should be able to describe how
RNNs could be used for their own application scenarios.

Similarly to a lecture at a university or a textbook, our
learning environment is designed to provide an introduction
to RNNs fromwhich interested users can start experimenting
with the techniques. Accordingly, our educational objectives
not onlymotivate the importance ofRNNs, but are also aimed
at providing insights about the input data and related tasks,
as well as how the training process and LSTM cells work.

5 Design challenges

Since RNN cells are a special form of NN layers, they open
up unique challenges for visualization-based education. We
observed both visualization design challenges and technical
challenges, which we describe in this section.

5.1 Visualization design challenges

Wefirst discuss the following visualization design challenges
that we identified in the context of an interactive learning
environment aimed at RNNs and illustrate how they relate to
our educational objectives:
V1 Complexity. As mentioned in Sect. 1, one of our cen-
tral goals is to simplify learning by reducing cognitive
load [12]. However, RNNs are typically trained on a large
amount of complex data that can be difficult to grasp O1
O4 [36,37]. The same holds for network architectures,
which are also often too complex to fully comprehend in
their entirety O3 [38,39]. Consequently, all visualizations
must be interpretable and intuitive, but realistic enough to
form a compelling use case [40,41].
V2 Dynamics. An educational system to teach RNN con-
cepts should clarify the dynamics of the sequential data on
which these networks operate O1 , as well as the dynam-
ics of the training process O3 . These dynamic processes
must be visually communicated, including data type and data
processing, both forward (inference) and backward (back-
propagation), within the network [42].
V3 Multiscale. RNN structures need to be communicated
at different granularities, i.e., network, cell, and cell com-
ponents O2 . These multiple scales need to be fluidly
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inspectable, while at the same time, the granularity at which
the user currently operates must be communicated [41,43].
V4 Supervision. In classical learning settings, teacher super-
vision or other opportunities to seek further information is
provided. Contrary to this, exploRNN is designed as a stan-
dalone learning environment that does not require external
guidance O1-4 . Thus, supervision has to be substituted by
visual guidance [44,45].

5.2 Technical challenges

Whereas the visualization design challenges are based
directly on our educational objectives, the following tech-
nical challenges relate to the development of such an inter-
active, explorable learning environment:
T1 Training Time. Typically, training processes can take
up to several days to convergence [46,47]. However, for an
interactive learning experience,waiting days for convergence
is not feasible. To provide direct feedback to the user, our
networks thus have to converge in minutes instead of hours
or days.
T2 Training Steps. Normally, computation is done as fast
as possible to minimize the time it takes for the network to
converge. However, we want the user to be able to follow the
training process and observe individual training steps [44].
Thus, training steps should be separated temporally from the
visualization.
T3 Deployment. Modern-day learning is often conducted
via online courses, blog posts, or explainable web pages [48].
Although this makes such learning environments accessible
to a broad audience, it also limits the technical freedom of
such applications [49]. Therefore, educational environments
should be deployed to a broad audience, while also providing
diverse functionality.

6 Visualization design

In the following,wediscuss thevisualizationdesignof exploRNN .
We explain how we tackle the aforementioned visualization
challenges Vx and learning psychology goals CR/DU/MJ
while targeting the educational objectives Ox defined
in Sect. 4. We first describe the overall visualization con-
cepts we implemented for exploRNN. Then, we elaborate on
the different views of our environment in the upcoming sub-
sections.
Scales To show both an overview of the training process O3
and give detailed insight into the computation that is per-
formed within one recurrent cell O2 DU , we employ an
overview first, zoom and filter, then details on demand visu-
alization design, following Shneiderman’s mantra V3 [43].
Therefore, exploRNN consists of two main views, the net-
work overview (Fig. 1), which displays the training progress

on the network scale, and the LSTM cell view (Fig. 6), which
allows for a detailed inspection of an LSTM cell. This is in
line with our goal of reducing complexity CR by focusing
on individual steps of the learning process rather than pre-
senting everything at once.
AnimationAnimation has shown to be effective in visualizing
data relationships and algorithms O1-3 [42,50,51]. Further-
more, animation has shown to be associated with fun and
excitement [52], which is in line with our goal of making
learning more enjoyable MJ . Thus, to visually communi-
cate how the network operates on sequential data, we use
animation throughout our visualizations V2 .
OnboardingNovel visualizations and interactive systems can
be hard to understand [53]. We designed exploRNN in a way
that allows exploration without running the risk of making
irreversible errors or needing teacher supervision V4 . How-
ever, instructional aids may be important to understand such
complex content DU [54]. Therefore, we use an onboard-
ing process for our educational environment [55] (cf. Fig. 3).
With this process, we aim to further reduce the cognitive load
during learning compared to classical learning environments
CR [56]. For example, the sequential nature of RNNs O1
V2 and the data and tasks that RNNs can be used for O4
are communicated in exploRNN.
Textual explanations In contrast to other learning environ-
ments,which show static textual explanations below themain
visualization [4,7], we instead provide such additional infor-
mation as details on demand V3 [43]. This way, users can
access more information for exactly the components they
want to learn more about DU , while not having to read a
lot of text CR . Our interactively explorable dialog boxes,
as shown in Fig. 4, provide information about all important
elements of the learning environment. Such dialogs exist for
all headings and are anchored through an icon, and for
all components of an LSTM cell, which is referred to in our
onboarding process.

6.1 Network overview

In the network overview, following the natural reading direc-
tion of western cultures, as well as related work on NN
architecture visualization [57–59], we arrange the network
from left to right. On the left, one can see the input type that
is currently used to train the network A . Centered,wepresent
an abstracted visualization of the network, where users can
see how many layers the network contains B . On the right,
a visualization of the prediction along with the prediction
error shows how training progresses C . Below these visual-
izations, information about the training process, controls for
the training process, andmeans to change training parameters
are shown D-F .

A Input. To experiment with the network, users can
select the input data that is used to train the network from
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Fig. 3 Onboarding dialogs guide the user through our visualizations,
so that no manual introduction is needed, and the user can explore
exploRNN on their own. Textual descriptions with highlights pro-
vide detailed explanations for individual components. Positioning and
arrows reveal associations between dialogs and components

Fig. 4 Users can access more detailed explanations for many elements
of our visualizations such as training steps, hyper-parameters, and oper-
ations in a cell

a set of explanatory input types. Data for an interactive and
explainable visualization of NNs needs to both explain the
network functionality O1 and be easy to understand V1 .
Therefore, current educational visualizations use an abstract,
two-dimensional distribution of points to train their networks
on [4,7].With exploRNN, we follow this approach of employ-
ing data that is as simple as possible CR . As RNNs are
focused on sequential data, we decided to use periodical
mathematical functions and simple text snippets, which map
nicely to the sequential nature of RNNs V2 . The functions
that can be used as training data in exploRNNare a sinusoidal
function, a sawtooth function, an oscillating function, and a
composite sinusoidal function and vary in their periodicity.
To demonstrate the sequential and dynamic nature of these

input functions, we animated those that are in use so that they
seem to flow while being input to the network MJ .

In addition to abstract function continuation, we also pro-
vide text-based data to train the network on DU .To allow for
interactive training,we employ rather simplistic text samples.
These include a recurring character sequence (ababab…)and
the well-known text lorem ipsum. Here, we employ a simi-
lar design language as with function data, to show that most
ideas can be transferred across tasks. By incorporating this
text learning scenario, users of exploRNN get to learn and
inspect not only abstract problems, but can also experience
more realistic scenarios O4 MJ .

B Network. In the network visualization,wewant to com-
municate the recurrent nature of our network O1 , but at the
same time, show all layers. Thus, instead of the more fre-
quently used unrolling of RNN layers [60], we add a loop to
the layer glyph to symbolize this recurrence. This symbol-
izes the feedback loop of information output at t back to the
input of a cell at t + 1 V2 , which enables BPTT.

Our network visualization is animated as data flows
through its layers O3 MJ . For the prediction step, dashed
lines flow in the forward direction to symbolize forward data
processing. For the backpropagation step, they flow back-
ward to resemble the backpropagation of the error V2 .
Dashed lines are moving from input to output during the
prediction phase, and from output to the first network layer
during training, because backpropagation is not applied to
the input domain.

Users can also investigate how the training progresses dif-
ferently depending on the number of recurrent layers in the
network O3 . Therefore, layers can be added or removed
from the network to be trained, as shown in Fig. 5 DU . As
with most explorable components, we explain the implica-
tions of this in our introduction, and users can click the
next to the network heading.

C Predictions. Commencing the top rowof visualizations
is the data plot, where we visualize an input sample and the
prediction of the network along with its ground truth O3 .
Here, multiple data points that are processed by the network
one after the other are used to inform a prediction, which is
visualized by sliding a gray box over the input data that is
currently processed V2 . Additionally, the prediction values
slowly build up with animations to clarify that this prediction
is building up sequentially MJ . We then use vertical lines
in the function plots, which slowly emerge between the pre-
diction and the target value. This vertical line encoding is in
analogywith the waywe calculate errors, namely, by looking
at the prediction values and calculating the difference to the
ground truth DU . The error calculation is embedded tem-
porally between the inference (forward network animation)
and backpropagation (backward network animation) phases
of the training process V2 . Altogether, through this ani-
mated component, while not being interactive itself, users
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Fig. 5 left: Adding a layer
between two existing layers.
right: Removing a layer from
the network

can inspect the results of modifications that have been made
in other places O3 .

D Process. According to the typical NN training setup,
we divide the training process into three distinct steps:
inference (forward), validation (error calculation), and back-
propagation (backward). The explanation pane in the lower
left of the network overview (see Fig. 1) displays which step
is currently executed and provides an explanation of what
happens in each of these steps DU . Through this, the user
can learn more about the training dynamics of the network
O3 . As described previously, animations in other compo-
nents complement this dynamic nature of the training process
V2 .

E Controls. In the network overview, the network is
trained by means of epochs to first provide an overview [43]
of the training process V3 CR . To experiment O3 , users
can interact with the control area in the bottom center of our
environment MJ . In addition to automatically advancing
epochs, which can be controlled with the and buttons,
users can also trigger network training for a single epoch, by
pressing the button DU . The training process can always
be reset using the button. A back button to go to a previ-
ous epoch is not included in exploRNN as this would require
saving multiple previous states of the network parameters,
which would require significant browser memory. Therefore,
and as individual epochs normally do not change the network
behavior completely, going back one training epoch during
training is not a common operation during neural network
training, so we think users will not miss such functionality.

F Training Parameters. To communicate the training
setup of an RNN O3 , a trade-off between completeness and
simplicity must be made V1 . Thus, we let the user freely
choose some training parameters, but employ restrictions for
others CR . As mentioned, users can add or remove individ-
ual network layers and use different preset training inputs. In
addition, they can change the learning rate, batch size, and
noise DU . The learning rate and batch size allow for explo-
ration of different training settings O3 . Noise can be added
to make the training data more realistic, resembling real-
world scenarios of imperfect measurements O4 . Parameter
changes can bemade through sliders,which are positioned on
the bottom right. To provide an intuition about the influence
of these parameters, we include pretrained models that are
loaded during the onboarding steps which explain each indi-

vidual parameter V4 . Other parameters, such as units per
layer or optimization strategies, cannot be changed in our
implementation. This trade-off between freedom of explo-
ration and simplicity proved to be effective in educating users
about the influence of different training parameters and keep-
ing their cognitive load low V1 .

Hierarchical aggregation can help simplify visualization
designs CR [61]. Thus, after getting an overview of the net-
work, the user can inspect another hierarchy level in detail,
namely individual LSTM cells O2 [43].When selecting one
of the layers in the network overview a zooming transition
onto one of the network layers gradually reveals the struc-
ture of an LSTM cell to support the user’s mental image of
looking into one of the layers V3 CR . With this multiscale
approach, where users can navigate between views, orienta-
tion is important CR . Therefore, a color coding indicates
the current level of detail. This highlight color is blue for
the network overview, whereas orange is used for the LSTM
cell view. Orange and blue are complementary colors, which
makes them easily distinguishable, and they can be differen-
tiated by vision-impaired users [62].

6.2 LSTM cell view

In the LSTM cell view, we show a detailed visualization of
the selected cell on the left, embedded in small pictograms of
neighboring cells G . On the right of this cell visualization,
one can see the input, target, and prediction values of the
network, where new points are added as they flow through
the cell H . Below these visualizations, we show information
about the training process, controls for the training process,
and means to change training parameters, similar to the net-
work overview I-K .

G Cell Architecture. To convey the functionality of one
recurrent unit O2 , we show all computational elements
within a cell DU . Wherever information is combined, we
show a icon. Icons for the input ( ), forget ( ), and out-
put gates ( ) visualize the gating functionality of an LSTM
cell. While all gates that transform the data are depicted with
circular icons, the cell state, which represents the saved state
of the cell, is represented by a squared icon, illustrating
the semantic difference between these components. Each of
these cell components can be selected to get a detailed expla-
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Fig. 6 LSTM cell view. G Visualization of data flow through the cell.
H Input to the network and its prediction. Visualization of the training
error computation. A gray sliding window indicates which data points
are needed to initialize the cell state. I Explanations withmore detailed

steps for the forward direction of data flow. J In addition to interactively
training the network, users can change the speed at which the visualiza-
tion for cell steps advances. K Just as in the network overview, users
can modify training parameters

nation of its functionality, as shown inFig. 4,marking another
level of detail in this visualization V3 CR .

Data flow is visualized through connecting lines O2 and
step-by-step animations of the cell components MJ . Here,
elements that process data in the currently visualized com-
putation step are highlighted. As in the network overview,
connections moving data are symbolized with dashed lines.
Those lines flow forward during inference and backward dur-
ing backpropagation. This way, we communicate how the
hidden state and output of these cells is computed and visu-
alize how the data flows from one to the next operation or
gate V2 DU .

The reverse data flowofBPTToccurs not only oncewithin
a cell to backpropagate to the previous layer, but multiple
times, for all input time steps O1 . The connections within
the cell also clarify that there are two recurrent cycles, one
from the output of the cell back to the input, and one within
the cell to update the cell state based on its state in the pre-
vious iteration DU . As a result, while other visualizations
require unrolling, where time steps are visualized by display-
ing multiple cells in concatenation [60], we communicate
recurrence through step-by-step animation. This removes the
ambiguity of stacked layers vs. unrolled cells, which was
shown to hinder learners in our first experiments V1 CR .

H Data Plot. Right of the cell visualization, we show
the input data, network prediction, and ground truth all in

one graph. In contrast to the network overview, where the
network is directly connected to this output graph, the cell
is disentangled from this visualization. As the depicted cell
typically receives data from previous cells and outputs data
to subsequent cells, this visualization, where animation steps
are synchronized but not visually connected on both the input
and output side, better reflects the network architecture of
RNNs V3 DU . Users can inspect this view during interac-
tively controlled training to see how the network processes
input data to make predictions sequentially and how it cal-
culates the training loss in relation to the processing steps
within a cell O1&2 V2 .

I Training Process. The three steps of inference, valida-
tion, and backpropagation are just as relevant in the LSTM
cell view as they are in the network overview O3 . As the
training speed is lower in the LSTM cell view, users can skip
part of the data processing and go directly to the process-
ing step of interest V1&2 . For the forward pass, we add
additional explanations for the different processing steps of
receiving the layer input, calculating the gate activations,
updating the cell state, and outputting the activation value
DU . These explanations are highlighted in synchronization
with the processing steps during the forward pass to the data
flow in the cell visualization above MJ , allowing users to
draw links between the processing steps and the explanations
they are interested in V2&4 CR .
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J Controls. In the LSTM cell view, processing is done
by means of compute steps, showing a much more detailed
processing pipeline than in the network overview V3 . As
in the network overview, the control area can be used to
experiment with the training process O3 . The more fine-
grained advancement of the visualization is also adopted by
the degree to which the animation advances with the forward
button, since it only executes the next compute step within
a cell DU . In addition to what can be done in the network
overview, the speed of the animations for data processing
within this cell can be adjusted, so that users can explore the
processing steps at their own pace V2 .

We want to emphasize the buildup of state within a cell
based on multiple input time steps. Thus, we show how the
network processes these inputs in great detail, whereas we
made the animation of the backpropagation take less time
than forward processing. As exploRNN is not designed to
represent accurate timings anyway, this is our way of visual-
izing cell processes in detail, while also preserving the ability
to observe multiple epochs.

K Training Parameters. Training parameters can be
adjusted in the LSTM cell view just as in the network
overview, giving the user even more control over the training
process and room for experimentation O3 .

To get back to the network overview, one can click any-
where outside of the LSTM cell in Fig. 6 G V3 .

7 Technical realization

While the visualization design described above has been
carefully crafted tomeet the educational objectives described
in Sect. 4 and the visualization design challenges outlined
in Sect. 5.1, its technical realization needs to take into account
the technical challenges identified in Sect. 5.2. In this section,
we detail how we tackled these technical challenges.

T1 Training Time. While an RNN for a complex appli-
cation cannot be trained live in the browser, we simplify the
problem inmultiple ways. By employing simplistic data sets,
the model can converge after relatively few epochs. Addi-
tionally, we limit the number of data points that are fed to
the network per epoch. Therefore, epochs are processed suf-
ficiently fast for our interactive visualization approach. We
also limit the network size to at most seven layers, so that
memory consumption and processing time are reduced. In
turn, users can see the training progress and get visible pre-
diction improvements after only a few epochs,while one such
epoch takes seconds to compute.

T2 Training Steps. A key aspect of our approach is the
decoupling of computation and visualization. Through this
decoupling, we are able to show the training steps in an
observable manner and enable exploration at the user’s own

pace. This helps users understand how the model processes
input data and predicts new data points.

T3 Deployment. To be able to make exploRNN publicly
available for a large audience, we implemented it as an inter-
active browser application using HTML and JavaScript. To
train the RNN, we use TensorflowJS [49], for animated visu-
alizations of the trained network, we use P5.js [63]. This
way, we are able to provide an interactive, web application
that visualizes the training dynamics of RNNs through ani-
mation, which is accessible at: https://mi-pages.informatik.
uni-ulm.de/explornn/.

8 Limitations

While exploRNN provides a novel environment for learning
about RNNs, there is still room for more advanced visual-
ization designs that could be explored in the future. Some of
these limitations are explained in the following.
Explanations exploRNN offers a lot of experimentation that is
complemented by textual explanations.However, the number
of textual explanations that fit into the context of such an edu-
cational system, which is designed to provide an overview of
this complex topic, is insufficient to fully explain RNNs. For
specific questions that are not addressed by our interactive
system, we refer to developer documentation and scientific
papers.
Drill-Down exploRNN explains RNNs on both a network and
a cell level. Apart from seeing the data flow on these gran-
ularities and textually describing the components of a cell,
visualizing the workings of these components could further
benefit the learning experience. However, these components
are just mathematical functions to which neither the input
nor output have a directly discernable meaning. If we were
to, e.g., visualize the internals of amemory component, users
could only see matrices of seemingly meaningless numbers
flowing through these cells. This would not add any benefit
andmight even result in confusion about such a visualization.
To explain these internal components, novel interpretability
techniques might help. Inventing and implementing those is
beyond the scope of this work.
Component change To see the influence of individual com-
ponents in a cell, changing or removing them could be an
interesting addition to the workflow. We did not implement
this capability for two reasons. First, adding such function-
ality goes deep into the working of individual cells, which
would exceed the learning objective of getting an overview
of RNNs and LSTM cells. In turn, we assume that changing
single components in individual cells is unlikely to have a
measurable and interpretable effect on the overall learning
outcome. Second, we would have needed to implement our
own DL library for this to be possible, as TensorflowJS has
predefined LSTM layer implementations.
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Degrees of freedom While users can change some hyper-
parameters and network settings in our environment, we
deliberately do not expose all possible settings to our users.
The goal of this limited exploration setting is that users can
get an overviewof importantmanipulations to bemade,while
at the same time not overwhelming our target audience. As
for limited explanations, we refer to developer documenta-
tion and scientific papers for users that want to explore these
details.
Layer types In our implementation, we focused on conveying
LSTM cells. However, there are numerous other cell archi-
tectures for RNNs. Although we do not think this limited
focus hinders learners with understanding RNNs on a high
level, it would, nonetheless, be helpful for users specifically
interested in certain cell types to include these in exploRNN.

9 User study

To evaluate the effectiveness of our approach,we conducted a
user study with 37 participants (30 male, seven female) aged
between 21 and 32. Participants were recruited from a DL
course at our local university. Our study was a lecture at the
end of the course, after students had already learned about
feed-forward NNs. Participants were randomly assigned to
one of two groups. The exploRNN group received the interac-
tive application, and the text groupwas presented a text-based
learning environment.

To look at learning outcome in detail, our evaluation was
divided into the first three distinct, hierarchical cognitive
learning goals according to Bloom’s taxonomy [28], namely
recall, comprehension, and transfer. We expect higher learn-
ing outcomes for the exploRNN group compared to the text
group at all three levels. For a closer look at the cognitive
processes involved in learning CR , we also collected data
for the three types of cognitive load [12]. Intrinsic cognitive
load (ICL) results from the natural complexity that underlies
the learning content. Since the difficulty does not differ, there
should be no difference between the two groups. Extraneous
cognitive load (ECL) is caused by inadequate instruction or
presentation of information. Due to the step-by-step presen-
tation of information and the direct connection of textual
information and explanatory figures in the exploRNN group,
we expect lower ECL for the exploRNNgroup compared to
the text group. Lastly, germane cognitive load (GCL) repre-
sents the invested learning-related load. GCL is connected
to the processes that are needed to construct and automate
mental representations [12]. Following the reduced ECL in
the exploRNN group, learners should have more free cogni-
tive capacity in workingmemory to invest in learning-related
GCL.

9.1 Hypotheses

Based on the described theory, we hypothesize the follow-
ing. We expect a higher learning outcome, differentiated
by recall H1 , comprehension H2 and transfer H3 in the
exploRNN group than in the text group. Furthermore, we
expect no differences between the groups for ICL H4 . We
expect a lower ECL in the exploRNN group than in the text
group H5 . For the GCL, we expect it to be higher in the
exploRNN group compared to the text group H6 .

9.2 Method

Our study was split into different steps, which we explain in
the order they were presented to the participants.
Prior knowledge. Prior knowledge was measured with seven
open-ended questions onNNs andDL techniques (e.g.,Name
two activation functions used in deep learning.). The ques-
tions were developed by a domain expert. All answers were
rated by a domain expert, following a predefined solution to
ensure objectivity. A total of one point could be scored for
each question, with partial points of .5. The maximum score
for the prior knowledge test was seven.
Motivation (MSLQ). To assess motivation, the MSLQ [64]
subscale for motivation was used. The MSLQ is a self-report
questionnaire designed for an academic setting. Motivation
was measured with twelve items (e.g., I’m confident I can do
an excellent job on the tests in this study.). Learners were
instructed to respond as accurately as possible, reflecting
their attitudes and behaviors toward the learning module.
Responses were given on a 7-point Likert scale ranging
from 1 strongly disagree to 7 strongly agree. Cronbach’s
Alpha was computed for the internal consistency of the mea-
sures [65], and the reliability was α = .95.
Learning material. The learning material was presented
either as a text with illustrating figures, formulas, and graphs
(see our supplementary material) or through exploRNN(see
website). For both conditions, the information was the same.
The only difference was the presentation medium and the
lack of interactivity in text-based learning.
Learning outcome. To assess learning outcome, a domain
expert developed a posttest with 11 open questions on the
content of the learning session. To better understand cog-
nitive processes, the posttest was differentiated by the first
three levels of Bloom’s taxonomy DU [28]. Recall wasmea-
sured with four questions (e.g., Name the backpropagation
algorithm that is used for RNNs.). Comprehension was also
measured with four questions (e.g., Explain the meaning of
this formula: ct = filtered_input+ filtered_state). The main
purpose of these questions was to test how well people could
explain and discuss the learning content. Transfer was mea-
sured with three questions (e.g., Assuming you have a poem
continuation network and training data with poems from the
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internet. If your network now makes a prediction, how do
you determine if it is correct, to calculate the loss?). These
questions were designed to test the ability of learners to draw
inferences from the learning content and apply it to new con-
texts. Similarly to the prior knowledge test, each questionwas
rated by a domain expert, following a predefined solution to
ensure objectivity. A total of one point could be scored for
each question, with partial points of .5. The maximum score
for recall and comprehension was four each, and for transfer,
it was three, so the total maximum score for the posttest was
eleven. We did an ANOVA on the learning outcome to test
for statistical significance.
Cognitive load. To measure cognitive load CR , the dif-
ferentiated cognitive load questionnaire was used [66]. It
contains two items for ICL, three items for ECL, and three
items for GCL, all measured as self-reports on a 7-point Lik-
ert scale from 1 strongly disagree to 7 strongly agree. To
measure internal consistency, the Cronbach Alpha was cal-
culated [65]. Reliability was α = .66 for ICL, α = .81 for
ECL, and α = .77 for GCL. As for learning outcome, we
tested for significance with an ANOVA.
System usabilityTo quantitativelymeasure the systemusabil-
ity, the System Usability Scale (SUS) was used [67]. This
scale is a self-report measurement consisting of 10 items
related to the usability of exploRNN(e.g., I found the system
very cumbersome to use.). Responses to the items were given
on a 7-point Likert scale ranging from 1 strongly disagree to
7 strongly agree. The internal consistency of this scale was
α = .74.
Qualitative questions For an impression of the quality of the
learningmaterial, further questionswere implemented.Three
open-ended questions were related to likeability (What about
the learning experience did you like especially, what did you
not like?), missing functionality (Was there something you
would have liked to do but could not?), and additional com-
ments (Other remarks.) MJ . For liking (I would like to use
this learning material.) and recommendation (I would rec-
ommend this learningmaterial tomy friends.) of thematerial,
two items could be rated on a 5-point Likert scale from very
unlikely to very likely. Content (How was the quality of the
content?) and design (How was the design of the learning
experience?) could be rated with 0–5 stars.

9.3 Results

In the following, we present the results of the user study.
Descriptive data. The analysis of the descriptive statistics
showed that subjects of the text group and the exploRNN group
did not differ in most of the variables. T tests (variances
were equal for all variables) with respect to age (p = .33),
gender (exploRNN group 21% females, text group 16.67%
females) (p = .74), MSLQ (p = .11), self-efficacy (MSLQ)
(p = .16) and duration (p = .79) revealed no significant

differences. Motivation (MSLQ) showed a significant t test
(p = .02), indicating that learners in the text group had a
significantly higher score. Descriptive data for all variables
per condition are given in Table 1.

To analyze whether prior knowledge and MSLQ should
be used as covariates, we conducted a correlation analysis
with learning outcomes and cognitive load. Significant cor-
relations could be found for GCL with the MSLQ (r = .37,
p = .024) and for the recall of the posttest with the MSLQ
(r = .44, p = .006). Therefore, they were included as
a covariate in the following calculations concerning GCL
and recall. No other significant correlations for the potential
covariates could be found.
Learning outcome. Against our hypotheses, we found a
significant difference regarding recall (F(1, 34) = 3.91,
p = .028, η2p = .103) in favor of the text group but not
for comprehension (F < 1, n.s.) or transfer (F < 1, n.s.).
Cognitive load. Contrary to our expectations, we found a
significant difference between text and exploRNN group for
ICL (F(1, 34) = 3.85, p = .029, η2p = .099). ECL showed
the hypothesized effect: The exploRNN group showed a sig-
nificant lower score than the text group (F(1, 34) = 4.33,
p = .023, η2p = .113). Against our hypothesis, GCLwas not
significantly higher in the exploRNN group than in the text
group (F < 1, n.s.).
System usability. The SUS questionnaire indicates an excel-
lent usability (M = 84.47, SD = 9.45)[68]. Partici-
pants also rated our approach as significantly more likable
(F(1, 30) = 10.52, p = .003, η2p = .260), more recom-
mendable (F(1, 30) = 11.75, p = .002, η2p = .281), and
better designed (F(1, 30) = 20.711, p < .001, η2p = .408)
compared to the learning text.
Qualitative questions. We also got some qualitative feedback
in our free-form fields. Participants liked our introduction,
which apparently made it easy for them to get started with
exploRNN the tutorial was nice and the platform was easy
to use. They also mentioned that the graphical support of
these textual explanations was helpful for them to form a
mental image of the setting: the mental bridge the graph-
ical presentation helped build was helpful in memorizing
and understanding. Some participants said that they did not
remember specific names, as it was not important during the
usage of exploRNN : I later did not remember the name of the
algorithm that was used, since it was not important during
the usage of the tool. Some participants asked for something
similar for other types of networks, e.g., I would like to have
similar resources to cover other topics from the basics such
as MLPs up to advanced topics and more complicated kinds
of networks. As described in Sect. 8, we only support a lim-
ited set of interactions, which some participants commented
on, e.g., [I missed] changing the activation function of the
LSTM gates.
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Table 1 Means and standard deviations for our study results separated
by groups for all variables

Variable Text exploRNN
M SD M SD

Duratiton (min): 43.6 26.78 40.87 35.67

Age (years): 24.94 2.96 24.05 2.51

Pre-T: (%) 83.14 13.86 80.0 14.57

Post-T: (%) 68.48 20.46 65.47 14.41

Post-T recall*: (%) 79.75 26.30 63.25 29.64

Post-T comp.: (%) 65.00 51.54 65.50 37.26

Post-T trans.: (%) 58.00 69.54 68.33 41.46

ICL*: (%) 61.51 18.51 48.82 20.51

ECL*: (%) 48.14 23.32 37.09 15.52

GCL: (%) 77.51 13.94 75.94 17.13

MSLQ*: (Max: 7) 5.17 0.95 4.56 1.30

SUS: (Max: 100) – – 84.47 9.45

Qualit. Like*: (Max: 5) 3.27 1.03 4.35 0.86

Qualit. Recomm.*: (Max: 5) 3.00 1.20 4.24 0.83

Qualit. Content: (Max: 5) 4.00 0.76 4.35 0.61

Qualit. Design*: (Max: 5) 3.20 0.94 4.47 0.62

Numbers annotated with * indicate a significant difference between the
two conditions

9.4 Discussion

In the following, we will refer back to the hypotheses we had
before conducting the study and discuss the study outcome.
Learning outcomeWe looked at both recall and understand-
ing regarding the learning outcome. In contrast to H1 , we
found that learners in the text group showed significantly
better results for recall. While we found no significant differ-
ences between the groups regarding comprehension H2 and
transfer H3 the results are interesting nonetheless. Although
not significant, the descriptive statistics indicate that the score
for transfer is about 10% higher for exploRNN compared to
text DU . This could be a first indication that learning envi-
ronments such as exploRNN can help learners build a deeper
understanding of the subject compared to learning with clas-
sic text. However, significant results and further research are
needed to support this statement. Compared to recall, these
results may indicate that while learners are better at learning
terms by heart (surface learning) when they learn with text
than with exploRNN.

A possible explanation for the better recall performance
in the text group could be that learners have more experience
with text-reading strategies [69]. This might help with the
complex terms explained here, as learners might find it easier
to find information that was previously presented [70]. Thus,
designing ways to easily retrieve previously presented infor-
mation could be an interesting direction of future research for
such interactive explorables. Another possibility is that learn-

ing with an interactive environment, which is affirmative and
provides information step by step, might infuse the illusion
of knowing [71]. Learners may think that after a few experi-
ments in exploRNN, they have acquired enough knowledge,
while there is still muchmore to explore and learn. In the text
group, it is immediately clear to the learner when the text is
finished. On the contrary, exploRNNcan require user initia-
tive for information acquisition. As the learning experience
was self-controlled, participants could decide for themselves
when to go from the learning content to the posttest. Refer-
ring to the illusion of knowing, learners might have felt too
competent as they experienced this more guided experience.
However, even though learners may be able to transfer what
they have learned to other application areas, they may be
missing important basic terminology that was presented in
the learningmaterial to reflect their knowledge gain in a clas-
sical learning test.
Cognitive load Against H4 , the exploRNN group showed
significantly lower ICL than the text group. The perceived
difficulty of the learning material is 12.71% lower for
exploRNN even though the text content was identical in both
conditions. This suggests that exploRNN makes the learn-
ing material appear easier CR . The reason for this could be
that the content is presented step by step in the tutorial of
exploRNN, instead of all at once as in the text condition [56].

The results regarding H5 are consistent with our assump-
tions. With a large effect size, the exploRNN group showed
lowerECL than the text group CR .Therefore, exploRNNreduced
the extraneous cognitive load compared to the text content,
although the content was the same in both conditions and
there were no unnecessary figures or information in the text.
Combined with lower ICL, more cognitive capacity remains
for GCL, which is important for learning.

For GCL, we did not find the significant difference we
hypothesized in H6 . Although ICL and ECL indicate that
more cognitive capacity should be free in the exploRNN con-
dition, participants did not invest that cognitive capacity
into GCL. This could be because there might already be
high investment in GCL in both groups. Another explanation
could be that since participants in the text group perceived the
learning content as more difficult, they might have invested
more GCL to compensate for said difficulty.
System usability The results of the SUS questionnaire indi-
cate that our system is easy to use. This supports our
proposed visualization and interaction design and shows that
our design choice of creating an interactive environment as
a learning experience on RNNs matches our target audi-
ence well. Additionally, as participants rated our approach
as significantly more likeable, recommendable, and better
designed, users are likely to experience more joy, and be
more motivated when learning MJ . In combination with the
reduced cognitive load exploRNN inflicts on users, we hope
that this could result in a larger number of users willing to
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spend their time learning and more time spent learning per
user. In turn, we think that this might outweigh the advan-
tage in some areas of learning outcomewith themore familiar
text-based learning environment. Further longitudinal stud-
ies on NN learning systems need to be done to investigate
this in more detail.
Qualitataive feedback. The open feedback forms also pro-
vided interesting insights. In general, participants seemed to
like exploRNN as a learning experience and even asked for
similar interfaces in other contexts. Furthermore, the amount
of information and our onboarding process seemed to make
exploRNN easily usable. Most of the criticism was related
to limitations regarding the freedom of interaction, which
we deliberately implemented to provide an overview rather
than in-depth technical details. Futureworkmight reveal how
both an overview and full depth could be combined in NN
learning environments. We also learned why recall might be
better in the text condition. As participants mentioned, they
did not feel they needed tomemorize specific terms to be able
to use RNNs. This seems natural, as when programming or
using RNNs in the wild, remembering specific terms is also
not essential as they can be searched for. On the other hand,
transfer tends to be much more important when tasked with
solving real problems.

For learning material where transfer is important DU ,
as in recurrent networks, our descriptive results suggest
that interactive visualizations such as exploRNN might be
helpful. Additionally, the lower cognitive load and higher
perceived likeability of our interactive environment might
result in more learners spending more time with exploRNN.
Although we extensively evaluated exploRNN in this study,
it remains to be seen whether our insights are transferable to
other learning environments. If so, the development of future
explorables could be much better informed, indicating what
is important, what could be discarded, and what needs to be
improved on. While this study provides first insights into the
effectiveness of such educational NN exploration environ-
ments, we hope that similar evaluations of other applications
can broaden our insights.

10 Conclusions and future work

This paper presents the first interactive learning environment
specifically designed for RNNs.We propose a new visualiza-
tion approach for inspecting RNNs where different levels of
granularity are employed. To informour visualization design,
we first introduced educational objectives for this setting.
Based on these objectives, we identified design challenges,
which we tackle in the proposed learning environment. We
hope that this process can be helpful for the development of
future interactive learning environments.

Subsequently, we tested the learning outcome, cognitive
load, and usability of this learning environment in an empir-
ical study. Our study is the first quantitative evaluation of
an interactive NN learning interface and, as such, provides
helpful insights and directions for future work. The results
of the user study indicate that while the raw learning out-
come was not improved compared to conventional methods,
exploRNN makes learning easier and more fun since cog-
nitive load was significantly reduced by exploRNN , while
subjective likeability was significantly improved. Based on
these findings, we propose to specifically design interactive
NN learning environments so that cognitive load is reduced.
For broadly accessible education, exploRNN can be used in
any modern browser at https://mi-pages.informatik.uni-ulm.
de/explornn/.

As mentioned, more user studies for similar educational
explorables could further advance the field and better inform
future visualization designs. One such possible research
direction is the suspected advantage of the text condition for
going back to previously presented information. Here, eye-
tracking studies and novel interaction designs might provide
new insights. Additionally, it would be interesting to inves-
tigate whether such systems indeed lead to more voluntary
learning and how that affects learning outcome.
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