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Abstract
Nowadays the trend is to acquire and share information in an immersive and natural way with new technologies such as
Virtual Reality (VR) and 360◦ video. However, the use of 360◦ video, even more the use of VR head-mounted display, can
generate general discomfort (“cybersickness”) and one factor is the video shaking. In this work, we developed a method to
make the viewing of 360◦ video smoother and more comfortable to watch. First, the rotations are obtained with an innovative
technique using a Particle Swarm Optimization algorithm considering the uncertainty estimation among features. In addition,
a modified Chauvenet criterion is used to find and suppress outliers features from the algorithm. Afterward, a time-weighted
color filter is applied to each frame in order to handle also videos with small translational jitter, rolling shutter wobble,
parallax, and lens deformation. Thanks to our complete offline stabilization process, we achieved good-quality results in
terms of video stabilization. Achieving better robustness compared to other works. The method was validated using virtual
and real 360◦ video data of a mine environment acquired by a drone. Finally, a user study based on a subjective and standard
Simulator Sickness Questionnaire was submitted to quantify simulator sickness before and after the stabilization process. The
questionnaire underlined alleviation of cybersickness using stabilized videos with our approach

Keywords Video stabilization · 360◦ video · Particle swarm optimization · Chauvenet’s criterion · Uncertainty estimation ·
Shaking

1 Introduction

The recent spread of cheap 360◦ cameras is leading to an
extension of their use and therefore availability to a large
number of people.

Through a spherical video, they give the most accessible
way toVirtual Reality (VR).VRallows users to enter a digital
world and fully immerse themselves in it. In a more general
contextVR is part ofMixedReality (MR)[1].One of themore
well-known MR uses is gaming, but in recent years with its
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ability to immerse its users in a virtual or augmented world,
MR was used for education [2], training [3], healthcare [4],
tourism [5].

Some famous 360◦ device examples of omnidirectional
camera are the GoPro Max 1, Xiaomi Mijia Mi Sphere 360
2 and Insta360 3. After the explosion of immersive media
technologies even social platforms, such as Facebook4 and
Youtube5 have been providing 360◦ videos in the offered
services. The use of spherical videos ismainly used for action
sports [6] such as biking or skiing, virtual tours [7], education
[8], and adult videos.

Omnidirectional camera videos contain more information
because they capture data from the entire environment. Their
videos allow the viewer to look in all directions. This tech-
nique allows creating what is better known as “immersive
video” because the user is completely immersed in a vir-

1 https://gopro.com [Accessed: February 2022].
2 https://www.mi.com [Accessed: February 2022].
3 https://store.insta360.com [Accessed: February 2022].
4 https://facebook360.fb.com/ [Accessed: February 2022].
5 https://support.google.com/youtube/answer/6178631?hl=en
[Accessed: February 2022].
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tual world presented to him and he can control the viewing
direction during playback. Anyhow, the level of the viewer’s
immersive experience can change depending on the medium
in which the 360◦ videos are watched.

The viewer can watch 360◦ videos on a standard display
of a smartphone, tablet, or computer with the possibility to
scroll the graphic interface with a mouse or touch to see dif-
ferent parts of the scene. This method is similar to watching a
conventional video but with the benefits of having the possi-
bility to decide the viewing angles thanks to the more images
information acquired. This advantage is widely used by film-
makers during editing because, by having more options for
angle choices, they can decide and fix the viewing angles
generating a standard 2D video that emphasizes the video
from the best parts of the scene. The medium that widens
the immersive experience is given by Virtual Reality (VR)
Head-Mounted Display (HMD) that isolates the user from
the surrounding environment andmakes the experiencemore
immersive. The user can control the viewing direction with
a simple and natural interaction and an effective and hyper-
realistic result. The HMD is a wearable hardware device that
displays video on a small head-mounted screen that updates
dynamically to show different parts of a scene as the viewer
turns his head.

With the growing use of immersive virtual environ-
ments also the environmental psychology research based on
human–nature interactions started to study the connection
between VR and cybersickness [9] including the impact of
improved camera stability on cybersickness [10]. With the
use of 360◦ VR, especially with HMDs, users can undergo
general discomfort, nausea, headache, vomiting, disorienta-
tion. Causes could include the user’s health conditions or too
much time spent in VR but mainly is due to video shaking
[11]. It can be very disorienting for a VR-user, which may
make the viewer fall or get sick.

Exposure to camera vibration is affected by the support
to which the camera is connected, such as our body or
an external object. For example, in the case of Unmanned
Aerial Vehicles (UAV) the impact of the wind field and rotor
dynamics conditioned its trajectory [12]. These disturbances
inevitably generate shaking in panoramic shots. To make the
final experience more comfortable, the most recent omnidi-
rectional cameras have mechanical solutions and real-time
optical flow algorithms to smooth out shaky movements.
Sometimes this is not enough and some advanced video
editing software solutions such as Adobe Premiere Pro CC6

and Cyberlink PowerDirector 3657 are used. However, com-
mercial 360◦ stabilization solutions are expensive, hard to

6 https://www.adobe.com/products/premiere.html [Accessed: Febru-
ary 2022].
7 https://www.cyberlink.com/products/powerdirector-video-editing-
software [Accessed: February 2022].

use, and require intensive training before they can be used.
Furthermore, it is not always clear which commercial sta-
bilization algorithms are used in the mentioned software
products, making them in many cases unsuitable for the
required application.

In this work, we provide a robust and efficient solu-
tion to stabilize 360◦ camera motion, to make the resulting
panoramic video more comfortable to view. We introduce a
new approach for estimating the camera orientation among
frames based on the Particle Swarm Optimization algorithm.
Our approach takes into account the estimation of uncer-
tainty among features and the suppression of outliers through
a modified Chauvenet criterion.

This paper can be divided as follows:

– In the introduction, we presented the problem of stabi-
lization for a more comfortable VR experience.

– In Sect. 2, we discussed the state of the art on stabilizing
360◦ video.

– In the following section, we describe the developed
method.

– In the fourth section, we validate its results in a controlled
environment by using simulated 360◦ videos, as well as
on captured 360◦ videos.

– In the fourth section, we present the results of a user study
comparing processed and unprocessed 360◦ videos.

– In the final section, we expose the drawn conclusions.

2 Related work

The challenge of camera motion estimation is an important
research topic for computer vision,widely used especially for
robotics applications such as visual servoing [13] or visual
simultaneous localization andmapping [14].Most of existing
techniques to estimate camera motion are based on feature-
correspondences techniques [15] or on analysis of the optical
flow between consecutive video frame [16]. In recent years,
the approaches based on the convolutional neural networks
(CNNs) have also been exploited [17].

On the other hand the goal of the stabilization is to remove
the camera shaking from the estimated camera motion. Sta-
bilization of 360◦ video was studied in many works in the
past decade. The proposed approaches can be divided into
2D, 3D, and a combination of the two (2.5D).

The work in [18] uses the SIFT algorithm and the 3D
approach based on the Structure from Motion (SfM) pro-
cess for feature extraction and obtaining the camera path,
respectively. The SfM estimates a camera pose (location and
orientation) and point cloud. Each output frame is gener-
ated by warping a single frame from the input video. The 3D
reconstructionmakes this process computationally expensive
and not robust under certain situations such as the absence of
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translationalmotion orwith a significant amount of pure rota-
tions. In general, approaches based on 3D methods [19,20]
depend highly on camera motion, limiting their practical
application.

In [21], the authors through a 2.5D approach first esti-
mate and remove all rotations; then, they employmesh-based
image warping [22] in order to compensate the remaining
high-frequency jitters caused by camera translation and par-
allax. After that, they restore proper camera rotations. They
use the Kabsch algorithm [23] to find the rotation matrix
between two adjacent frames, with the disadvantage that it is
less robust because it does not avoid possible localminima by
limiting the search. In addition, the warp stabilizer used can
lead to a warping increase and sometimes an inappropriate
output frame can be generated.

Most existing 2.5D approaches start by tracking the
motion of feature points in the video, such as in [24]. In [24],
they convert the 360◦ frames into cube map representation.
This representation is less distorted than the equirectangu-
lar projection near the poles. On the other hand, if a tracked
point falls outside its originating cube face that correspond-
ing observation is dropped and the track is ended. With this
method, it is not possible to select a Region of Interest (ROI)
for the algorithm. Therefore, the method will fail if the video
contains static overlays such as logos or text. Their algorithm
[24] removes all rotation from the input video, and after-
ward, it adds back a smoothed version of rotations. It uses
keyframes that are appropriately spaced, so it can reliably
estimate the true rotations. To estimate the rotation among
them it uses a five-point algorithm in a RANSAC procedure
[25]. For the inner frames, it solves a 2D optimization that
maximizes the smoothness of tracked feature point trajec-
tories. Finally, it uses a flexible deformed-rotation motion
model for handling residual jitter. The most recent approach
[26] differs from [24] by using a 3D spherical warpingmodel
which is derived from a motion estimation that handles both,
rotation and translation, which allowsmore control than [24].
In both aforementioned works, the search of the keyframes
slows down the tracking operation.

Our work is similar to [27,28]. They estimate and smooth
the relative rotations between consecutive equirectangular
frames. Similar to [27,28], we also track feature points
between adjacent frames. However, due to the similarity
between each pair of frames small translations and rotations
may be difficult to estimate. The limitation of their approach
is that if the features tracked are always those of the first
frame, less smooth results can be obtained due to the accu-
mulation of errors.

In our work we developed a 2.5D method that estimates
3D rotations from the selected features motions without
involving 3D structure from motion methods. We periodi-
cally detect new features with their uncertainty in frames
taken in consecutive pairs. In order to remove only shaking

while preserving intentional rotations, and to compensate the
remaining jitters, we use a moving average filter and a time-
weighted average filter in the pixel frame color, respectively.
In this way, we can handle not only small translations and
parallax effect but also videos with temporal artifacts, such
as shearing and wobbling, otherwise impossible to manage
with a mesh-warping approach.

3 Method

The method can be divided into three steps.

– First, we estimate the camera rotation between each pair
of consecutive frames.

– Subsequently, we remove undesired rotations from each
frame to generate new stabilized equirectangular images.

– Finally, we produce the stabilized 360◦ video.

3.1 Step 1: estimating relative camera rotations

First of all, the frames from the 360◦ video are read and
saved as equirectangular images (2880 × 5760 pixel) in
the MATLAB R2019b environment using the MATLAB
V ideoReader function. This function returns an object that
contains information about the videofile and allows us to read
data from the video. Equirectangular projection allows us to
show 360◦ images in a single 2D visualization since it shows
360◦ × 180◦ angles at once. This projection, which trans-
forms spherical coordinates into planar coordinates, creates
severe geometric distortions near the poles, i.e., away from
the horizontal centerline. However, it is the most popular and
most widely supported format.

The possible movement of the camera involves both rota-
tions and translations. In our method we decouple rotation
from the other motions and handle them separately. First
we find the rotation matrix between two consecutive frames,
describingonly the 3D rotations of yaw, pitch and roll, assum-
ing zero translations. In the case of panoramic video, this
is justified by the large distance of the 360◦ camera image
from its surroundings, which makes the relative translation
between frames negligible. In addition, camera rotation has a
muchmore significant impact than translation in the final sta-
bilization process because translations can bemore tolerated.
However, remaining jitters generated by the translations, not
considered in this first step, is handled by a final filter added
in the stabilization process.

The first input image is transformed into 2D grayscale.
Then the SURF algorithm [29] is applied to detect blob
features. The algorithm is used in a rectangular Region of
Interest (ROI) to exclude the more distorted areas near the
poles corresponding to high latitude and lower areas of the
image.

123



4106 A. Luchetti et al.

A feature-tracking algorithm is then used to track points
using Kanade-Lucas-Tomasi (KLT) [30] applied only to the
adjacent frame. KLT is based on a small motion assump-
tion. In our case, the accuracy is high because the difference
in time and space between each two consecutive equirect-
angular images is small. This feature-tracking algorithm is
commonly used for video stabilization, camera motion esti-
mation, and object tracking. It has the advantage of being fast
and handling RGB images.

The matched features between two consecutive frames
are shown in Fig. 1, found with SURF and KLT algorithms,
respectively, for the first and adjacent frames.

The problems most frequently observed with the use of
the KLT algorithm, in the analysis of real sequences, con-
cern overlappingofmultiplemovements, occlusions, lighting
changes, and non-rigid movements. Under these conditions,
some points can be lost. For this reason, to strengthen our
method, we periodically reacquired points every two con-
secutive frames with the SURF detector.

We do not use SURF feature descriptor and featurematch-
ing because they are computationally demanding and KLT
is robust enough under the assumption of small transforma-
tions, e.g., rotations and scale.

However, the KLTmethod does not guarantee that the cor-
responding points in the adjacent frame are feature points. To
solve that we used the Block method [31] to extract features’
descriptors in the first and consecutive frames. It consists
of a simple square neighborhood extraction to identify the
features. The Block method extracts only the neighborhoods
fully contained within the image boundary. Therefore, only
valid points in the first and the corresponding points in the
adjacent frame are stored. The difference between each pair
of features’ descriptors is obtained by summing all the dif-
ferences among the descriptors’ components. This provides
the uncertainty estimation values among features.

Using this parameter in the optimization process improves
the robustness of our method without affecting its computa-
tional efficiency because the features’ descriptor is simple
and allows a smaller number of matching candidates to be

Fig. 1 Matching points of the first (in red) and second (in green) frames
with ROI (960×5760 pixel)

used. The features are sorted according to their weights in
ascending order. A high weight value means that the descrip-
tors between a pair of features are different.

To find and suppress possible outliers from the list of
features, a modified Chauvenet criterion [32] is used. We
modified Chauvenet by changing the standard deviation with
the camera angular resolution term in the expression of frac-
tional deviation from the mean. The new expression is:

Di = |xi − x |
Res

(1)

where

– Di is the fractional deviation from the mean;
– xi is the value of suspected outlier;
– x is the mean of the data set;
– Res is the camera angular resolution value.

The set of data used to apply the modified Chauvenet crite-
rion was obtained by taking n-times three features at a time
and calculating their 3D rotations comparing them to those
of the adjacent frame. The total number of previously sorted
features was divided into intervals, and the calculation of 3D
rotations was repeated within them. Each interval identifies
a subset of features and the percentage values indicate which
subset of the sorted featureswe are considering. In each inter-
val, we obtained a histogram with the height of the baskets
indicating the number of elements and the abscissa angle val-
ues. An example of the histograms obtained for two different
intervals of features is shown in Fig. 2. The maximum spread
value was extracted by adding the minimum and maximum
absolute values of the angles obtained. In Fig. 2 the spread
for each angle in the interval 0–5% is less than the one in
the interval 95–100%. In particular the spreads of yaw, pitch,
roll angles in the interval 0–5% are 0.1037◦, 0.2452◦, and
0.1056◦, respectively; in the interval 95–100% are 0.4919◦,
0.8922◦, 0.5116◦.

Dividing the features with 1% intervals, the results of the
histogram spreads for each angle are displayed in Fig. 3. In
the same figure, in red, the range selected with the modified
Chauvenet criterion corresponds to the spreads of histograms
with values above the Chauvenet threshold.

In Fig. 4 can be seen how, thanks to the use of the Res
camera resolution in the modified Chauvenet expression Eq.
(1), if the variations of the angle values are low, and therefore
a low standard deviation occurs, no values are considered as
an outlier. This is motivated also by the fact that, as shown
in Figs. 3 and 4, the maximum value of the weights, when
comparing their first plot, is different by one order of magni-
tude. Moreover, after the weights of the features are sorted in
increasing order as in Figs. 3 and 4, the possibility to find out-
liers lies in the last intervals; for this reason, the research can
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Fig. 2 Histograms of the values assumed by each 3D rotation angle by
taking two different subsets of features previously sorted in ascending
order according to the weight associated with their uncertainty estimate

Fig. 3 Weight for each pair of features and histograms spread of each
3D angle in each interval between two random frames: in red the outliers
with Chauvenet filtering

be focused in that area reducing by a lot the computational
time.

The final architecture of the method used to find the valid
features with their estimation of uncertainty between each
pair of frames is schematically shown in Fig. 5. Each step of
Fig. 5 will be validated in Sect. 4.

The valid points found in the previous steps are used as
input to the optimization algorithm. The points selected in
the first frame and those tracked in the adjacent frame are
projected from the two equirectangular images with N rows
and M columns, to the surface of two unitary radius spheres.

Fig. 4 Weight for each pair of features and histograms spread of each
3D angle in each interval between two random frames: no outliers with
Chauvenet filtering

Fig. 5 Architecture for finding valid features

First of all each selected image’s pixel in 2D Cartesian coor-
dinates pixel (n,m) is transformed in spherical coordinates,
computing the corresponding azimuth a and elevation e, set-
ting the radius r equal to 1.

The relations used for the conversion are:

a = −
( m

M
− 0.5

)
· 2π (2)

e = −
( n

N
− 0.5

)
· π (3)

r = 1 (4)

Thepurpose of the value 0.5 inEqs. (2–3) is to have the spread
of the angle between ±π and ±π

2 for a and e, respectively.
Finally, the 3D point cloud is obtained through the map-

ping from spherical coordinates to 3DCartesian coordinates:

x = r · cos(e) · cos(a) (5)

y = r · cos(e) · sin(a) (6)

z = r · sin(e) (7)

123



4108 A. Luchetti et al.

The two “spherical” point clouds centered in the same
origin are rotated to try to overlap the matching points by
using a Particle Swarm Optimization (PSO) algorithm [33].

PSO algorithm is applied for each consecutive frame, try-
ing tominimize the objective function by changing the values
of the three Euler angles around the z-axis, y-axis, x-axis,
which are roll (γ ), pitch (β), and yaw (α), respectively.

The objective function (�) to minimize between the first
image (I1) and the adjacent one (I2) is:

y(γ, β, α) = �(P I1 , P I2 , R,W )

=
N∑
i=1

∣∣∣P I1
i − P I2

i · R
∣∣∣
2 · Wi (8)

where

Wi =
(
max(W) − Wi

max(W)

)2

P I1 = {P I1
1 , P I1

2 , .., P I1
N }

P I2 = {P I2
1 , P I2

2 , .., P I2
N }

W = {W1,W2, ..,WN }
R = Rz(γ )Ry(β)Rx (α)

The objective function in Eq. (8) is a function of the two-
point clouds P I1 and P I2 , of the first and adjacent frames,
respectively, the rotation matrix R and the weights of the
features’ descriptors W . In particular, the output of Eq. (8)
is given by the sum of the squared differences between the
3D Cartesian coordinates of each i th feature in I1, (P I1 ),
with the corresponding one in I2, (P I2 ), multiplied by their
normalized weightsW . In the optimization loop, the position
of the second point clouds P I2 changes each time because it is
multiplied with a rotationmatrix of design variables yaw (α),
pitch (β), and roll (γ ) angles. In Eq. (8) the i th weight Wi is
obtained through the distance between the descriptors vectors
of each pair of features found with the Blockmethod. It gives
more weight to a pair of points with a higher correspondence
between their descriptors given by a smaller distance between
them. The max (W) returns the maximum weight value of
the array from 1 to N , with N as the total number of valid
features. It is used to normalize the weight and to use the
weight parameter accordingly to the minimization process.

A lower and upper bounds on the design variables x were
set so that a solution is found in the range lb ≤ x ≤ ub.

One possible operation to remove camera shake is to com-
pletely remove all camera rotations. This is possible if the
positions and intentional rotations of the camera are fixed or
almost fixed in time. In this case, for each frame, we could go
back to the orientations of the first frame [21]. The rotation
matrix applicable to each consecutive frame is a cumulative
rotation matrix that sums all the contributions of the previ-

Fig. 6 Camera orientations between each consecutive frame

Fig. 7 Camera smoothed and cumulative rotations between each con-
secutive frame

ous orientations. If the camera object has an imposed rotation
movement in space, it will not be possible to relate all the
frames with the first one. For this reason, a possible solu-
tion could be the use of a moving average. The length of the
sliding window depends on the total number of frames and
mainly on the context in which the camera is used [27]. In
Fig. 6 is shown an example of the differences in yaw, pitch,
and roll angles among 50 consecutive frames taken two at
a time with the PSO algorithm. Figure 7 shows the cumula-
tive rotations of angles of Fig. 6. In particular, for each angle
in red, there are the cumulative rotations given by the sum
of each previous rotations; in blue, there is a smooth curve
found by using an average mean of length 12; in green, there
is a difference between the previous two curves that allow to
pass from the original to the smoothed trajectory.

In Fig. 8 the two original point clouds are displayed, in
blue the key points related to the first frame, in red those
related to the consecutive frame, plus the green points rep-
resent the new point cloud found by applying the rotation
matrix with Euler angles, found through the PSO algorithm,
to the consecutive point cloud. In the zoom area of Fig. 8
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Fig. 8 Example of two point clouds related to the 3D feature positions
of two consecutive frames (in red and blue) and the point cloud resulting
from the PSO algorithm (in green). A zoomof a specific section is added
on the right side

can be seen the result. The blue points that are related to the
consecutive frame generate the green ones that are close to
the points of the first frame.

3.2 Step 2: stabilized equirectangular images

After the estimations of the relative camera orientation were
found, we apply the inverse rotation matrix to each image.
This generates the new equirectangular images by rotating
all pixels around the ZYX axis with the values found in the
previous step.

Before applying the 3D rotation to each equirectangular
image, we project all image pixels with their colors on the
surface of a unitary radius sphere, see Eqs. (2–7). Due to the
same size of each frame, the projection of all the equirect-
angular image’s pixels to the surface of the sphere is done
only the first time. For all the consecutive frames only the
different pixel colors are updated. This helps to reduce the
computational cost.

Rigid transformation, rotations are applied to each spher-
ical frame keeping the position of the center of the sphere
fixed. After that, the new 3D Cartesian coordinates of each
pixel are converted to spherical coordinates by using the
MATLAB cart2sph function.

Between this new set of spherical coordinates and the 2D
Cartesian coordinates of the equirectangular image to be gen-
erated there could not be an exact correspondence since some
rotations could be lower than the angular resolution of the
camera.

To avoid this problem the spherical coordinates of each
pixel were generated from a colorless image, Eqs. (2–4).
The color of each colorless pixel was then reconstructed by
applying aweighted average among neighboring pixels of the
previous rotated image, which on a color matrix corresponds
to 8 pixels if the pixels near the corners are also taken into
account.

To increase the relation and smooth between two con-
secutive frames a further filter was applied over time. It
generates new frames updating the pixels colors from the
average between two previous and two subsequent frames

Fig. 9 General outline of the developed method

using an overall weight of 0.7 for the two frames nearby and
0.3 for those immediately after. These weights, although not
critical values, were set with the highest value for the neigh-
boring frames, because the farther away from the selected
frame, the easier it is for the pixel color values to mismatch.
In addition, to have the selected frame with the same weight
between the previous and following frames, the sum of the
weights was set to 1.

3.3 Step 3: 360◦ video production

After all the new equirectangular images were saved the
V ideoWriter function in MATLAB was used to create a
video file with MPEG-4 container format and a frame rate of
25Hz.

Finally, the metadata was added to the movie in *.mp4
file extension to include 360◦ information with an external
tool called Spatial Media Metadata injector v2.18. Adding
the metadata enables online platforms, such as YouTube, to
warp into a sphere when watching the video.

The general outline of the developed method is schema-
tized in the flowchart of Fig. 9.

4 Validation

A VR environment instead of a real environment was used
initially as a gold standard as far as we know the result to
achieve. It has allowed us to test different algorithms and
approaches by verifying their results and robustness. In this
section, we will show the results obtained after applying
the stabilization process to virtual and real videos with our
method.

4.1 Virtual videos

Each step of the previous chapter was validated within a
VR environment in Unity 3D platform. A script was writ-
ten to simulate a 360◦ camera. The 360◦ capture technique

8 https://github.com/google/spatial-media/releases [Accessed: Febru-
ary 2022].
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Fig. 10 Virtual scenario with the virtual mine model and the simulated
360◦ camera

Fig. 11 Example of an equirectangular image acquired by the simulated
360◦ camera within the virtual scenario

is based on Google’s Omni-directional Stereo (ODS) tech-
nology using cubemap rendering [34]. After the cubemap
is generated, it is possible to convert this cubemap to an
equirectangular map which is a projection format used by
360◦ video players. Placing the simulated camera inside the
scene, Fig. 10, allows us to acquire an equirectangular image,
Fig. 11.

The scene acquired, Fig. 11, is the one corresponding
to a Wavefront 3D Object File (OBJ file extension) of the
3D high-resolution virtual environment of a mine previously
imported in Unity.

The first validation was related to whether the uncertainty
estimation of the feature’s descriptors in Eq. (8) provides bet-
ter results in terms of found rotations. To test it, 100 images
were acquired in Unity by rotating the camera with random
rotations in yaw, roll, and pitch between a ±0.2◦ interval
while keeping the surrounding environment unchanged. The
results of the PSO algorithm with these images are the same
whether the cost function contains weight terms related to
the uncertainty estimation or not. This happens because the
SURF and the KLT algorithms always find robust features
for small rotations in the absence of other disturbances in
the environment. To make the images more realistic in the
Unity platform, lighting changes have been applied to each
frame. To simulate it in theUnity scene a directional lightwas

Table 1 Errors in the use or non-use of the uncertainty estimation of
features descriptors in the cost function: error sum without descriptors
(A), error sum with descriptors (B)

Angle A B A-B

YAW 0.1215◦ 0.1182◦ −2.72%

PITCH 0.1241◦ 0.1224◦ −1.37%

ROLL 0.1104◦ 0.1070◦ −3.08%

applied. The directional light’s rays are parallel and infinite in
a specific directionmaking them suitable to simulate outdoor
lighting as the real sun. This light influences all objects in the
scene regardless of their distance, no matter how it is posi-
tioned. As well as the lights, the shadows were approximated
with the command Sof t Shadows, with softened edges. For
shadows Unity uses a method called shadow mapping: in
practice, it creates a depth map from the point of view of the
light and uses it to decide where to cast the shadows. The
color of the light was presumably fixed; instead, its inten-
sity parameter was changed randomly, between 1 and 2, for
each new camera’s orientations. The intensity parameter was
changed to simulate lighting changes and to force the PSO
algorithm to increase variability. The swarm size of PSOwas
set to 30. Usually, the iterations process of the optimization
ended because the relative change in the objective value over
the last options of the maximum number of stall iterations
(default 20) is less than the fixed-function tolerance (default
1e-6). The values of the SURF and KLT algorithm properties
are chosen by default. In the Block method, the Block size of
a local square neighborhood, centered at each interest point,
was set to 11 by default.

Table 1 shows the values of the sum of the errors obtained
using or not in the cost function theweights of the uncertainty
estimation of the features descriptors on imageswith environ-
mental disturbances previously discussed. How can be seen
in Table 1, the results now change with the cost function;
in particular, if we consider the term related to descriptors in
cost function, wemake aminor error on all the final rotations.
Moreover, this difference in error sum values will become
greater with real environments because they are subjected to
more sources of disturbance.

The second validation concerns how the result changes
with the suppression of outliers among the features through
the modified Chauvenet criterion before using the PSO algo-
rithm. The modified Chauvenet relation used is explained in
Sect. 3.1. The validation was done with the same set of 100
images acquired in Unity in the simulated case where the
environment is affected by disturbances. Table 2 shows that
the sum of errors is lower with outliers suppression before
the PSO. This means that the presence of outliers contributes
to the generation of an error in the final angles found and
it has a negative influence on the weight of a normalization
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Table 2 Errors with the outliers suppression or not: error sum with
descriptors (B), error sumwith descriptors andwith outliers suppression
(C)

Angle B C C-B

YAW 0.1182◦ 0.1157◦ −2.12%

PITCH 0.1224◦ 0.1207◦ −1.39%

ROLL 0.1070◦ 0.1066◦ −0.37%

Fig. 12 Percentage differences in the final execution time of the 3D
rotations estimation process and angle estimation errors as the number
of features used increases

process because it refers to the maximum weight value. The
expression of the cost function used to extract all the data in
Table 1 always contains the weights of the estimated uncer-
tainty of the feature descriptors because in this case we just
want to quantify how the errors in rotations change if the
outliers are suppressed using the Chauvenet criterion or not.

Figure 12 shows the percentage difference in time and
yaw, pitch, and roll errors by changing the number of features
used for the optimization process. Before the selection, the
features are sorted with decreasing weight in such a way the
first set of 5% concerns the best and gradually all the others
are addedwith theirweights.Among the sortedweights, there
are no outliers discarded with the previous method. From
the results of Fig. 12 it is clear how using all the features
with their weights, from the point of view of angles’ errors,
is better than considering only a small set at the expense
of increasing final optimization time. Although 15% of the
features’ number has a smaller error value for the pitch, the
best result of all angles is at 100%. This means that for an
offline stabilization process, where time can be longer, it is
better to consider all the features.

To generate the frames used for the previous analyses, we
randomly rotated the simulated 360◦ camera in a controlled
virtual environment and then verified the effectiveness of
our method by checking the errors on the 3D rotation results.
Since the real videos we had available for further analysis in

Fig. 13 Camera orientations between each consecutive frame estimated
from a real video acquired with a drone. These 3D rotations are repro-
duced and used as ground truths in the simulated virtual video

Fig. 14 Camera orientations estimated with our method from the gen-
erated virtual video with translation

Sect. 4.2 are based on acquisitions made with a real drone
equipped with a 360◦ camera, we tried to estimate the drone
shaking to replicate it in a virtual environment as well. We
initially estimated the 3D rotations on the frames of the real
video by applying our method and assumed them to be true.
Then we verified their correctness and thus of our algorithm
by replicating these rotations in a simulated environment and
estimating the same data another time but now in a controlled
environment. In Fig. 13 are shown the 3D rotations estimated
from a real video acquired from a drone.

We generated two virtual videos: for the first video, the
position of the camera was fixed and only the rotations of
Fig. 13 were applied; for the second virtual video also a cam-
era motion in the straight forward direction with a velocity
of 0,5m/s was applied. From the two arrays of frames saved,
360◦ virtual videos were produced by using a V ideoWriter
object in MATLAB.
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Fig. 15 Camera orientations estimated with our method on the stabi-
lized virtual video affected by rotations and translation

Fig. 16 Camera orientations estimated with our method on the stabi-
lized virtual video affected only by pure rotations

The aforementionedmethod of Sect. 3 was applied to both
videos. The first step of our method is to look for camera
orientations between each pair of frames. The camera orien-
tations found from the first video where the camera position
is fixed perfectly match the input 3D angles of Fig. 13 pro-
vided to the camera in Unity. It shows the goodness of the
PSO algorithm.

Figure 14, which represents the camera orientations esti-
mated with our method for the second video, shows a
similarity with the pure rotations of Fig. 13. It proves the
robustness of the PSO algorithm in estimating 3D rota-
tions even in panoramic videos where small translations are
present.

Once the equirectangular image sets of the two input
videos were stabilized, we produced the two new stabilized
videos.

Fig. 17 Camera orientations estimated with our method on non-
stabilized real video acquired with a drone

Fig. 18 Camera orientations estimated with our method on stabilized
real video with our developed approach

In addition, to quantify how stabilized the new videos are,
we applied the PSO algorithm to find the new camera rota-
tions. The result for the first stabilized video is shown in
Fig. 16 and for the second one in Fig. 15. How it can be seen
in Figs. 16 and 15, the oscillations due to the stabilization
process have been reduced by an order of magnitude, so that
the final video results much smoother.

4.2 Real videos

In a real environment compared to a virtual one, other
variables come into consideration, such as the multiple
movements, occlusions, lighting changes, and non-rigid
movements. In this section, we want to verify the correct per-
formance of the implemented method with real 360◦ videos.
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Table 3 Total method execution time

Stage Time/frame

Image saving: 150ms

Camera relative rotations:

Features detection (SURF) 150ms

Points tracking (KLT) 71ms

Block method 10ms

Modified Chauvenet criterion 4800ms

Point cloud generation 1,5ms

Particle Swarm Optimization (PSO) 3300ms

Stabilize equirectangular images:

Equirectangular to spherical image 5000ms

Image rotation 40ms

Pixels coloring 20,000ms

Pixels’ filtering in time 16,000ms

Time

Video input reading: 290ms

Image to video: 7500ms

Adding metadata file: 100ms

We tested our method on a large number of spherical
panorama videos captured with the DJI Matrice 210 RTK
drone9 equipped with an Insta360 camera.

To show the goodness and robustness of the method pro-
posed in this paper we analyzed an example of a short real
video in theworst-case undergoing high shaking. The camera
yaw, pitch, and roll trajectories before and after the stabiliza-
tion process can be seen, respectively, in Figs. 17 and 18.

As can be seen in Fig. 18 after the stabilization process,
the camera rotations are consistently less. As in the case of
a virtual environment, the result is smooth enough to make
viewing comfortable, even with a headset. Both videos have
a frame rate of 25Hz.

Given the short duration of this example and the type of
panoramic shot with slow intentional rotations, camera rota-
tions are removed by comparing them to the first frame.

The average times per frame spent in each step of the
proposed method are shown in Table 3. The tests were run on
aPCwith an Intel(R)Core(TM) i7-9700KFCPU@3.60GHz
processor and64GBofRAM,on2880x5760 equirectangular
video frames.

5 User study

We tested the impact of our approach to 360◦ videos pre-
sented in VR. We were interested in the capability of our
method to reduce symptoms of cybersickness.

9 https://www.dji-store.it/prodotto/dji-matrice-210-rtk-g/ [Accessed:
February 2022].

Fig. 19 Simulator Sickness Questionnaires results

Task We designed a task, in which a user watches sev-
eral 360◦ videos in a VR environment. In particular, each
participant was asked to watch a total of five minutes of
360◦ unprocessed videos, followed by watching a total of
five minutes of 360◦ video that is the result from the pro-
posed stabilization process. We scheduled a one-hour break
between each session to avoid compound effects between
both conditions.

Apparatus We used an Oculus Quest 1 VR Headset10 in
both conditions. After completing a consent form and demo-
graphics questionnaire, the participant was introduced to the
system. We recruited twenty (20) participants for the experi-
ment. Participants include 3 females and 17males: 12 people
with ages between 18 and 24 years, and 8 people with ages
between 25 and 35 years; 10 people reported to have expe-
rience with VR. All participants were free from any known
neurological disorders, as verified by self-report.

ProcedureAfter completing each session, the participants
filled out a Simulator Sickness Questionnaire (SSQ) [35].
Participants were asked to add notes wherever they feel it is
necessary.

Results Figure 19 shows the SSQ results in terms of the
scores for symptoms related to their specific aspects of nau-
sea, oculomotor, disorientation. The values range from 0 to

10 https://www.oculus.com/quest [Accessed: February 2022].
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3 accordingly to the effect of each item: None (0), Slight (1),
Moderate (2), Severe (3).

Furthermore, we compute a total score (TS) to repre-
sent the overall severity of cybersickness experienced by the
users. We follow the approach of Walter et al. [36] for cal-
culation T S as the weighted sum of nausea, oculomotor, and
disorientation. We measure a total score of 64.70 for the raw
360◦ video condition and a score of 13.65 for the stabilized
360◦ video.

Discussion From the SSQ scores it can be noticed how the
trend of all the symptoms is decreased in the sessions with
stabilized videos when compared to the ones with original
videos. In particular, we believe that reduced camera shaking
affects the oculomotor and disorientation aspects.

Vertigo’s score remains almost unchanged in both ses-
sions due to the videos showing a panoramic video shot with
a drone. The remaining general discomfort score in the stabi-
lized video is connected with the 360◦ videos which slowly
rotate and translate even if the participants do not move. This
is confirmed by the participants’ notes. Their notes also show
how all these symptoms grow over time when using the VR
Headset.

6 Conclusion

The stabilization of a 360◦ video is increasingly required
because viewers, especially when it comes to immersive
visual environment, are dizzy or nauseous due to shaky
scenes. This paper presents a new approach to stabilize the
360◦ videos affected by the problem of shaking to alleviate
cybersickness. Our approach is 2.5D because it estimates 3D
rotations without involving 3D structure from motion meth-
ods.

The method’s validation was achieved using real 360◦
videos captured by a drone equippedwith an omnidirectional
camera during a mine overflight. Instead, the virtual videos
were simulated and produced in a VR environment using
Unity 3D platform. Working in a simulated virtual environ-
ment allowed us to have a reference to test the goodness of
each step of our approach knowing in this context the result
to achieve.

With the method proposed in this paper, it is possible to
remove shaking fromvideoswithout knowing the initial cam-
era position and its motion. The possibility to select the ROI
area where to analyze the video and to define the length of the
window to interpolate differently the camera’s orientations
in time makes possible the use of this method in different
contexts. The selection of the ROI area allows us to stabilize
also videos with static overlays, logos.

The periodical selection of two frames at a time avoids
the possibility of accumulation errors in the estimation of
camera rotation angles. The detection and tracking of inter-

est points, respectively, with the SURF and KLT algorithm,
the use of a PSO algorithm, for their matching using their
descriptors similarity in the cost function and the outliers sup-
pression through the modified Chauvenet’s Criterion, makes
our method accurate and more robust than other works.
Finally, the time-weighted color filter applied to each frame
gives the possibility to handle videos with small translational
jitter, rolling shutter wobble, parallax, and lens deformation.

Through the user study, we proved how a good stabiliza-
tion can reduce all the simulator sickness symptoms that can
be summarized with the final TS value. From the user study,
this value was 64.70 before the stabilization and 13.65 after.

One main drawback of our approach is the computation
time, which makes our method suitable for non-real-time
applications. In addition, our algorithm is unable to stabilize
videos in which there is a predominance of translations over
camera rotations. Furthermore, it is based on features track-
ing between frames to estimate 3D camera rotations; if light
is scattered or flared in the camera lens, it can generate severe
lens flare that generates inaccurate estimates leading to poor
stabilization.11:
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