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Abstract
Skin disease cases are rising in prevalence, and the diagnosis of skin diseases is always a challenging task in the clinic.
Utilizing deep learning to diagnose skin diseases could help to meet these challenges. In this study, a novel neural network is
proposed for the classification of skin diseases. Since the datasets for the research consist of skin disease images and clinical
metadata, we propose a novel multimodal Transformer, which consists of two encoders for both images and metadata and one
decoder to fuse the multimodal information. In the proposed network, a suitable Vision Transformer (ViT) model is utilized as
the backbone to extract image deep features. As for metadata, they are regarded as labels and a new Soft Label Encoder (SLE)
is designed to embed them. Furthermore, in the decoder part, a novel Mutual Attention (MA) block is proposed to better fuse
image features and metadata features. To evaluate the model’s effectiveness, extensive experiments have been conducted on
the private skin disease dataset and the benchmark dataset ISIC 2018. Compared with state-of-the-art methods, the proposed
model shows better performance and represents an advancement in skin disease diagnosis.

Keywords Skin disease · Deep learning · Transformer · Multimodal fusion · Attention

1 Introduction

In recent years, with an increasingly aging population, the
number of skin disease cases has been growing significantly.
This status quo brings a great challenge to medical insti-
tutions since the diagnosis of skin diseases is almost fully
dependent on expert dermatologists. Utilizing deep learning
could help to alleviate the burden on medical institutions.

In the earliest studies, researchers usually used traditional
methods to extract image color features for classification.
After the emergence of Convolutional Neural Networks
(CNNs), such as ResNet [1], and DenseNet [2], due to their
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efficient performance in feature extraction, they soon became
the most used methods in image classification. Those net-
works have been introduced in the medical field and have
performedwell in diagnosis[3–6].Moreover, in the last years,
many new ViT-based networks [7–11] have been proposed
since the proposal of the Vision Transformer [12]. Due to
their superior performance in various vision tasks, ViTs have
received a lot of attention. Many recent ViT-based models
[7, 9, 10], such as Swin Transformer [9], and NesT [10],
have achieved better results in image classification than tra-
ditional state-of-the-art CNNs [1, 2, 13, 14]. In this study, the
Transformer framework [15] is introduced for skin disease
diagnosis.

The datasets used for the experiments were multimodal
datasets that contain skin disease images and clinical meta-
data. During the screening phase, patients will not only have
associated images of skin diseases but will also provide some
clinical metadata (age, sex, etc.). Themetadata could provide
key information for diagnosis and help improve diagnostic
accuracy. This means that a dataset containing both images
and clinical metadata has more clinical significance. Due to
the multimodal nature of the data, how to effectively fuse
image information and metadata information becomes a key
feature. Inspired by the fusionmechanism in the Transformer
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[15] framework, the model design includes two encoders to
extract the image and metadata features, and one decoder for
feature fusion.

In this work, a new multimodal Transformer is proposed
for skin disease classification. The network mainly con-
tains two encoders for both images and metadata, and one
decoder to fuse the multimodal information. A pre-trained
ViT model is utilized as the backbone in the image encoder
to obtain image deep features. Additionally, a Soft Label
Encoder is designed to embed the metadata more effec-
tively. After the features from different modalities have been
extracted, the most important task is to fuse them effectively.
A novel Mutual Attention block is proposed to improve the
decoder part of the network. Extensive experiments have
been conducted to evaluate the proposed model. The main
contributions are summarized as follows:

1. Aiming at the classification of skin diseases containing
images and metadata, a novel multimodal Transformer is
proposed. The model combines two encoders to extract
image features and metadata features, respectively, and
a decoder to fuse multimodal features.

2. In the encoder part, ViT models are introduced as the
backbone to extract image features, a Soft Label Encoder
is designed to embed metadata. In the decoder part, the
Mutual Attention block is proposed to better fuse multi-
modal features.

3. Extensive experiments have been performed on the pri-
vate datasets and the benchmark dataset ISIC 2018.
Compared with the state-of-the-art methods, the exper-
imental results demonstrate the effectiveness of the
proposed model.

2 Related work

2.1 CNN-basedmethods for skin disease diagnosis

Early methods for medical image classification were mainly
based on traditional machine learning methods and deep
CNN methods. Phung et al. [16] used to extract image tra-
ditional features to complete skin classification. With the
development of deep CNN, various neural networks [1, 13,
14] have been proposed and have a better performance than
traditional methods in image feature extraction. Due to their
effective performance, CNN-based methods soon became
the mainstream methods in image classification, and some
methods were introduced into themedical field. For instance,
ResNet andDenseNet arewidely used inmedical image clas-
sification [5, 17]. It is worth mentioning that some methods
that combine traditionalmethodswith deep learningmethods

also have an efficient performance in skin disease diagnosis
[18–21].

2.2 Vision transformer

Transformer was first proposed in the field of Natural Lan-
guage Processing (NLP) [15]. Motivated by its success in
NLP, Dosovitskiy et al. [12] applied it to Computer Vision.
According to the method of the Transformer, ViT [12] first
split an input image into patches as tokens, and utilized
the encoder in the Transformer to obtain the correlation of
tokens. After the ViT [12] was proposed, many models were
designed based on it. For instance, Swin Transformer [9]
mainly improves the way images are split and uses a hierar-
chical structure to improve the ViT [12]. Based on the Swin
Transformer, NesT [10] combines a hierarchical structure
with a block aggregation function to reach faster conver-
gence and a lighter network, which are more suitable for
small datasets. In this study, ViT models are introduced as
the backbone to design the overall framework, and the results
of experiments show that ViTs can also achieve effective per-
formance in medicine.

Unlike CNNs, ViTs are usually more data-hungry and are
often trained on public datasets with millions of labeled data.
So when used for other datasets, pre-trained ViT models
would be a better choice. It is also worth mentioning that
different sized ViTs adapt to different sized datasets. Addi-
tionally, although there have been many improvements in the
Transformer encoder part, there have been few improvements
in the Transformer decoder part. Many multimodal fusion
methods [11, 22] still utilize Cross Attention in the Trans-
former decoder to fuse multimodal features. In this study,
a new Mutual Attention block is designed to improve the
decoder part.

2.3 Multimodal fusion

Recently, an increasing number of tasks involve multimodal
input. In skin disease classification, many previous stud-
ies [23–25] used only images. This is mainly because most
datasets do not contain metadata, and the metadata does not
seem to be related to skin diseases. However, some studies
[26, 27] demonstrated the effectiveness ofmetadata, and then
more researchers [28] began to introduce metadata into their
models, achieving great results. Inspired by those studies and
the multimodal information in the datasets, we consider the
task as a multimodal task.

Early researches [29–32] mainly utilized the One-hot
Encoder to embed the metadata, which encodes metadata as
hard labels. In this study, a Soft Label Encoder is designed
to embed the metadata into soft labels.

The multimodal task is to fuse information from differ-
ent modalities into a stable multimodal representation for
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downstream tasks. And the most important part of multi-
modal tasks ismultimodal features fusion. Earlyworkmainly
focused on simple operation-based and simple attention-
based multimodal fusion. For instance, Kim et al. [33] were
the first to use the tensor outer product to calculate the cor-
relation between two modalities. In the Bilinear Attention
Network (BAN) [34], bilinear pooling and co-attention are
used to fuse metadata information and image information.
Xiong et al. [35] used attention-based Gate Recurrent Units
to update episodic memory and retrieve the required infor-
mation. Since the Transformer [15] has been proposed, more
studies have usedCrossAttention in theTransformer decoder
to fuse multimodal information. For example, Chen et al.
[11] used Cross Attention to fuse multi-scale image features.
Bose et al. [36] used self-attention and Cross Attention to
fuse RGB and LiDAR image features. Motivated by those
studies, we designed a Mutual Attention block to fuse mul-
timodal features.

3 Methods

This sectionmainly describes themethods used and proposed
in this study. An architecture overview of the model is first
presented. Then, the network will be explained in detail as
ViT for image features, Soft Label Encoder for metadata, and
Mutual Attention block.

3.1 Architecture overview

Figure 1 presents the overall architecture of the model. As
shown, the network is composed of two encoders and one
decoder. Two encoders extract image features and metadata
features, respectively, and the decoder is to fuse multimodal
features.

A suitable ViT model is utilized as the Transformer
Encoder to extract image deep features in Image Encoder.
The selection of the Transformer Encoder is according to the
size of the dataset and the model’s performance on a cer-
tain dataset. As Table 2 shows, several ViTs(original ViT,
Swin Transformer, NesT) are compared with some popular
CNNs(ResNet101, Densenet121) on the private dataset and
NesT shows the best performance. Then, NesT is utilized as
the backbone on the private dataset and ViT-L is utilized as
the backbone on the benchmark dataset ISIC 2018. A subse-
quent Multilayer Perceptron (MLP) is used to further extract
image features.

In the metadata encoder, a Soft Label Encoder(SLE) is
designed to embed metadata into soft labels. SLE is a data
processingmethod to embedmetadata into vectors and it will
not be trained. A subsequentMLP is used to extract metadata
features.

After the image and metadata features are obtained, they
are fused in the decoder. The main part of the decoder is the
proposed Mutual Attention block, which will be introduced
in detail in Sect. 3.4.

At the end of the network, fused representation is mapped
to the output through FFN and SoftMax.

3.2 ViT for image deep features

Due to the ViTs’ significant performance in image classifi-
cation, ViT models are introduced for the task. Considering
that the dataset contains limited data, and that ViT mod-
els are data-hungry, pre-trained models would have better
performance. Thus, pre-trained ViT models are utilized as
the backbone for transfer learning in the network. These
models had been pre-trained on large-scale datasets before
fine-tuning. The models used in the experiments, both NesT
and ViT-L, are pre-trained in the ILSVRC-2012 ImageNet
dataset with 1 k classes and 1.3 M images.

A better backbone is utilized according to the size of the
dataset and the model’s performance on a certain dataset.
Several ViTs and CNNs are compared on each dataset, and a
better one is utilized as the backbone. The backbone net-
work can be replaced by other suitable models. Table 2
presents a comparison of different ViTs and CNNs on the
private dataset. As is evident, NesT [10] has the best results
and is utilized as the backbone of the private dataset. On
the benchmark dataset ISIC 2018, several ViTs(original ViT,
Swin Transformer, NesT) are compared with some popular
CNNs(ResNet101, Densenet121, VGG19). Original ViT-L
[12] shows the best performance and is utilized as the back-
bone on ISIC 2018.

3.3 Soft label encoder for metadata

In addition to images, there are corresponding metadata in
the datasets. Unlike the large number of words in the Visual
Question Answering (VQA) tasks, the metadata in the used
datasets only contain a small amount of textual descriptions
of the patient’s clinical information.

The metadata of the private dataset contains 13 common
causes of skin diseases(unknown, thermal injury, infectious
disease, burn, diabetes, diabetes bug bite, trauma, vascular
wounddisease,mechanical injury, scarring, iatrogenic injury,
tumor, pressure ulcer). And the metadata in the dataset ISIC
2018 contains a more extensive range of information, which
consists of 4 attributes: gender, diagnosis type, age, and body
location. In total, there are 39 types of textual descriptions in
the public dataset ISIC 2018.

Due to the fewer types of textual descriptions in the meta-
data, they could be regarded as descriptive labels. Therefore,
we consider encodingmetadata as encoding labels. Each type
of textual description can be regarded as a kind of label.
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Fig. 1 The overall architecture of the model

And each descriptive label corresponds to an element in the
encoded vectors. As the examples in Fig. 3, “Age: 5,” “Age:
15,” and “Location: face” are all textual descriptions in the
metadata. “Age: 5” corresponds to the second element, and
“Age: 15” corresponds to the fourth element in the encoded
vectors. Hence, for each image in the private dataset, corre-
sponding metadata can be encoded into a 13-dimensional
vector. And for each image in ISIC 2018, corresponding
metadata can be encoded into a 39-dimensional vector.

One-hot encoded vectors are also called hard labels, which
are usually used to calculate loss with the output of the net-
work. Someworks[29–32] utilizeOne-hot Encoder to embed
metadata and achieve great results. The principle of One-hot
Encoder is that the element is encoded as 1 if the correspond-
ing textual description exists, otherwise, it is encoded as 0.

One-hot encoded vectors contain extensive zero elements,
whichmakes no attribution to the feature extraction.As Fig. 2
shows, the forward propagation of One-hot encoded vectors
in the first layer of MLP is as follows:

a01 � x0W00 + x1W10 + .. + xnWn0 + b0 (1)

x ([x0, x1.., xn]) refers to the input vector. a1 and a2 are
hidden layers. al represents the output of theMLP.W00,W10,
Wn0, and b0 are all network parameters in the MLP.

As shown in Fig. 2, when x takes the value of [1,0..,0],
a01 is (x0W00 + b0). Then, W10,.., Wn0 make no impact and
a01 only contains the information of x0. The output of the
MLP(al ) also only contains the information of x0. Then, the
MLP plays the role of re-encoding the metadata.

To make the network learn more information and the out-
put of the MLP could be more expressive, the Soft Label

Fig. 2 Forward propagation of One-hot encoded vectors in MLP

Fig. 3 Comparison of Soft Label Encoder with One-hot Encoder

Encoder(SLE) is designed. Figure 3 shows how it works and
gives a comparison with One-hot Encoder. In SLE, metadata
are encoded as soft labels instead of hard labels. In greater
detail, the elements that are encoded as 0 in the One-hot
Encoder will be encoded as 0.1 in SLE. The value of 0.1
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is close to 0 and much smaller than 1, so the SLE encoded
vectors could keep the distinguishability of One-hot encoded
vectors. Additionally, in the forward propagation of theMLP,
0.1 alsomakes attributions,which enable the network to learn
correlations among textual descriptions and the output of the
MLP containsmore information. By this operation, themeta-
data features are more expressive and the vectors are more
suitable to be sent to the network.

3.4 Mutual attention block

There are many ways to fuse multimodal features, and the
most frequently used methods are simple operation-based
fusion and attention-based fusion. Simple operation-based
fusion is mainly based on element-wise addition or concate-
nation.

Some more complex fusions are attention-based or cross-
attention-based. In the Attention block, the input represen-
tation is transformed to three vectors(i.e., query(q), key(k),
value(v)). q is multiplied by k to generate an attention map
between vectors. And v, which represents the value of the
input representation, is multiplied by the attention map to
get the result of the Attention block. Considering q and k
do not have to be transformed from the same representation,
Cross Attention multiplies q and k from different modalities
to fuse multimodal features. Furthermore, in the Multi-head
Cross Attention block, the input representations are trans-
formed to multiple sets of (q, k, v) to learn more attention
information. Head(h) refers to the number of sets.

Inspired by those fusionmethods, we proposed theMutual
Attention block.

The architecture of the proposedMutualAttention block is
presented in Fig. 4. di represents the dimension of the image
representation. dt refers to the dimension of the metadata
representation. h means the number of heads.

As shown, the MA utilizes two Multi-head Cross Atten-
tion to interactively fuse information from images and
metadata. This symmetrical structure in MA could not only
enhance the interaction ofmultimodal features but also retain
the key information of their ownmodalities. Differently from
the Cross Attention used by the Transformer, the features for
residual connection are used to calculate k and v instead of q
inMA. This aims to incorporatemore interactive information
while retaining the original modal information. Additionally,
to prevent the degradation of the model, a residual connec-
tion is added after each Multi-head Cross Attention block.
At the end of the MA block, two fused representations are
concatenated into a stable representation as the output of the
MA block.

The q, k and v can be formulated as follows:

qn1 � Wn
q1 I , k

n
1 � Wn

k1 I , v
n
1 � Wn

v1
I

Fig. 4 Mutual Attention block

qn2 � Wn
q2T , k

n
2 � Wn

k2T , v
n
2 � Wn

v2
T (2)

where I ∈ Rdi represents the image presentation; T ∈
Rdt represents the metadata presentation. Wn

q1 ∈ Rdi×dt ,
Wn

k1
∈ Rdi×di , Wn

v1
∈ Rdi×di , Wn

q2 ∈ Rdt×di , Wn
k2

∈ Rdt×dt ,

Wn
v2

∈ Rdt×dt are linear transformation matrices. di is the
dimension of the image representation. dt means the dimen-
sion of the metadata representation. n refers to the nth head
in the Attention module. It is worth noting that di and dt
have different dimensions while q1 and k2 (q2 and k1) should
keep the same dimension. And the solution is to align their
dimensions with the transform matrix Wq .

After q, k and v are calculated, they are fused in the
Multi-head Cross Attention. Figure 5 shows the architecture
of Multi-head Cross Attention. ⊗ operation means element-
wise multiply. Softmax operation is on every Attention map.
Concatenation operation is to concatenate h d-dimensional
vectors to a h × d-dimensional vector. Linear operation is
to transform a h × d-dimensional vector to a d-dimensional
vector. The function of Multi-head Cross Attention can be
described as follows:

headn � Sof tmax

(
qnknT√

d

)
vn (3)

fmh_att (q, k, v) � Concat(head1, . . . , headn)W
O (4)

where d represents the dimension of qh . h refers to the num-
ber of heads. q consists of q1, q2, ..., qh . k consists of k1,
k2, ..., kh . v consists of v1, v2, ..., vh . WO ∈ Rhd×d is lin-
ear transformation matrice. fmh_att presents the function of
Multi-head Cross Attention.
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Fig. 5 Multi-head Cross Attention

At the end of MA, two residual presentations are concate-
nated as the output. It can be described as follows:

O � Concat(I + fmh_att (q2, k1, v1),

T + fmh_att (q1, k2, v2)) (5)

where O ∈ Rdi+dt represents the output of the MA block.

4 Materials and experiments

In this section, extensive experiments are conducted on the
private dataset and ISIC 2018. On the private dataset, the
network is compared with other popular methods and the
results show the effectiveness and advancement of the pro-
posed model. We first introduce the dataset in Sect. 4.1 and
then the implementation details in Sect. 4.2. After that, the
experimental results on the private dataset and a compari-
son with the state-of-the-art methods will be presented in
Sect. 4.3.Moreover, themodel is applied to the public dataset
ISIC 2018 and the results are compared with some recent
studies in Sect. 4.4. Finally, in Sect. 4.5, to verify the effec-
tiveness of the proposed MA and SLE, ablation experiments
are conducted on the ISIC 2018.

4.1 Datasets

The private dataset was collected by the doctors we coop-
erate with. Mobile phones are used to take skin wound
disease images in the clinic. Considering that the cause of
the disease can also make an attribution to the disease diag-
nosis, the doctors summarize some common causes of skin

wound diseases for patients to choose from (unknown, ther-
mal injury, infectious disease, burn, diabetes, diabetes bug
bite, trauma, vascular wound disease, mechanical injury,
scarring, iatrogenic injury, tumor, pressure ulcer). After the
images and clinical metadata are collected, the dataset is
given to skin wound specialist doctors for diagnosis. A total
of 760 disease images are collected and they are finally clas-
sified into 9 categories(skin necrosis, skin defect, skin and
soft tissue infection, gangrene, sinus tract, first-degree burn,
second-degree burn, third-degree burns, Scar healing), each
containing 97, 165, 32, 66, 13, 86, 116, 90, 95 images. In the
experiments, the dataset is randomly split into 610 images
for training and 150 images for the test.

To further verify the practicability and effectiveness of the
model, it is evaluated on the benchmark dataset ISIC 2018
[37, 38], which includes 10,015 dermatoscopic images in 7
diagnostic classes. Each image is also with corresponding
metadata, and there are a total of 39 types of textual descrip-
tions in the metadata. The dataset is randomly split into 8012
images for training and 2003 images for the test.

Table 1 presents some examples in both datasets. The
images in the private dataset are in nine diagnostic classes:
skin necrosis(skn), skin defect(skd), skin and soft tis-
sue infection(sti), gangrene(gan), sinus(sin), first-degree
burn(fdb), second-degree burn(sdb), third-degree burn(tdb),
and scar healing(sch). The images in ISIC 2018 are among
seven categories: benign keratosis (bkl), melanoma (mel),
basal cell carcinoma (bcc), melanocytic (nv), actinic kerato-
sis (akiec), dermatofibroma (df), and vascular lesion (vasc).

4.2 Implementation details

The ratio of the training set to the test set is about 4:1. The
private dataset is randomly split into 610 images for training
and 150 images for the test. And the public dataset contains
8012 images for training and 2003 images for the test.

All the MLP and FFN in the network are composed of
3 fully connected layers. Each full-connection layer is con-
nected to the ReLU6 activation function.MLP ismainly used
to extract the feature or carry out representation mapping.

All experiments are conducted on a single GPU (Titan)
with a batchsize of 8. From the convergence graphs in Fig. 6,
it can be seen that the loss converges and the accuracy does
not improve after 50 epochs of training. Thus, the training
epoch is set to 50. Some other setups include the weighted
cross-entropy loss and the learning scheduler. The weighted
cross-entropy loss assigns aweight to each category to handle
the category imbalance. The initial learning rate is 0.001 and
is multiplied by 0.1 every 7 epochs. The optimizer used is
SGD instead of AdamW, which brings a faster convergence
to the loss.

In terms of data augmentation, each image from the orig-
inal dataset will be preprocessed before being sent to the
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Table 1 Skin disease images

Catagory skn skd sti tan sin fdb sdb tdb sch

Private 

dataset

Catagory bkl mel bcc nv akiec df vasc

ISIC 2018

Fig. 6 The convergence graphs on the private dataset (a) and public dataset (b)

network. During the training, images are randomly cropped
to 224 × 224 after the shorter sides of images are resized to
256. In this way, the network is trained on a different part of
the image each time, which aims to enhance the robustness
of the model. Then, random rotation and flip operations are
also performed to augment the image. During the test, the
images are resized to 224 × 224 and sent to the network.

4.3 Experiments on the private dataset

This subsection mainly compares the proposed model with
some popular methods using the private dataset. Skin disease
classification is a multi-classification task in medicine, and
the main evaluation metrics include accuracy(Acc), AUC,
sensitivity(Sen), specificity(Spe), and F1. Accordingly, some
metrics are used to evaluate the model. Table 2 compares dif-
ferentmodels on the private datasetwith only images as input.
Table 3 presents the effects of different metadata encoders.

Table 4 is a comparison of the Mutual Attention with some
other fusion methods. Additionally, the ROC curve and con-
fusion matrix are presented in Fig. 7.

Backbone The performance of some ViTs and CNNs on
the private dataset is presented in Table 2. According to the
size of the private dataset, corresponding sized models are
utilized. And all the models are pre-trained. Compared with
other CNNs, DenseNet121 and ResNet101 have relatively
better performances on the private dataset. With only images
as inputs, they can achieve an accuracy of about 66%. The
original ViT does not show better results than traditional
CNNs on the private dataset. Swin Transformer shows a
slight improvement, and NesT has great performance and
even achieved an accuracy of 0.75 on the private dataset.
According to the description of Zhang et al. [10], NesT is
more adaptable to small datasets and has better performance
on them. Thus, NesT is utilized as the backbone in the net-
work on the private dataset.
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Table 2 Comparison of the
performance of networks on the
private dataset

Methods Acc Sen Spe F1 AUC

DenseNet121 0.667 0.722 0.943 0.664 0.889

ResNet101 0.662 0.726 0.950 0.673 0.889

ViT-B 0.594 0.623 0.935 0.587 0.850

Swin-B 0.693 0.736 0.966 0.695 0.918

NesT-B 0.750 0.746 0.968 0.716 0.944

The bold values represent the best results in the metrics. This can make more readable and make it easier to
compare the results of different methods. This also highlights the effectiveness of the proposed method

Table 3 Comparison of different
metadata encoders (private
dataset)

Methods Acc1 Acc2 Spe Sen F1 AUC

Word2vec 0.313 0.750 0.967 0.746 0.718 0.944

One-hot Encoder 0.401 0.763 0.962 0.783 0.745 0.947

Soft Label Encoder 0.473 0.777 0.973 0.804 0.788 0.964

The bold values represent the best results in the metrics. This can make more readable and make it easier to
compare the results of different methods. This also highlights the effectiveness of the proposed method

Table 4 Comparison of different
fusion methods (private dataset) Methods Acc Spe Sen F1 AUC

No metadata 0.750 0.946 0.746 0.716 0.944

Element-wise concat 0.777 0.9732 0.804 0.788 0.964

Element-wise multiply 0.762 0.9718 0.801 0.756 0.971

MFB [39] 0.756 0.9705 0.794 0.747 0.954

BAN [34] 0.746 0.9709 0.795 0.750 0.967

CrossViT [11] 0.750 0.9677 0.783 0.746 0.954

MetaBlock [32] 0.786 0.9728 0.823 0.807 0.968

Mutual attention 0.816 0.9745 0.854 0.820 0.974

The bold values represent the best results in the metrics. This can make more readable and make it easier to
compare the results of different methods. This also highlights the effectiveness of the proposed method

Fig. 7 The results of the proposed model on the private dataset: (a) ROC curve, (b) Confusion matrix
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Soft Label Encoder Two other encodingmethods are com-
pared with the Soft Label Encoder in Table 3. One is the
One-hot Encoder, which is more similar to SLE. A com-
parison between them is presented in Sect. 3.2. Another is
Word2Vec, which is more often used for large corpora. One-
hot Encoder and SLE encode the metadata as labels, while
word2vect encodes the metadata as words. Acc1 in Table 3
represents the accuracy with only metadata as input for clas-
sification. Acc2 and the other metrics are the results with the
common input of images and metadata. In the network, the
fusion method used is concatenation, and the backbone used
is Nest-B.

Comparing the Acc1 of the Word2Vec method with that
of One-hot Encoder and SLEmethods, it can be seen that the
metadata are more suitable to be encoded as labels. Addi-
tionally, the Acc1 of the One-hot Encoder method is lower
than that of the SLE method, which indicates that the soft
label vectors are more suitable for the model. Furthermore,
comparing the Acc2 of the three methods and some other
metrics, it is found that the soft label encoded vectors could
bring the greatest improvement to the whole network.

Mutual Attention block As shown in Table 4, the Mutual
Attention block is compared with six other popular fusion
methods. In the network, metadata are encoded to soft labels
and the backbone used is NesT-B. For comparison, the met-
rics of themodelwith only images as input are also presented.
Compared with the results of the model without metadata
information, the accuracy of some methods has decreased.
This means that some valuable features are lost during the
fusion. Element-wise concatenation and element-wise mul-
tiplication are simple operation-based. The results show that
simple operation-based fusion methods can bring a slight
improvement to the original model. Multi-modal Factorized
Bilinear pooling (MFB) [39] and Bilinear Attention Net-
works (BAN) [34] mainly use bilinear pooling and bilinear
attention to fuse multimodal features. These methods have
been often used in VQA tasks. But the results indicate that
they are not suitable for the task. CrossViT [11] mainly
uses Cross Attention to fusemultimodal features.MetaBlock
is an Attention-Based mechanism to combine images and
metadata [32]. Comparing all the methods, Mutual Attention
achieves the best accuracy, sensitivity, specificity, F1 score,
and AUC, which demonstrates that the proposed MA could
enable the model to better fuse image features and metadata
features.

Results Compared with other methods, the previous
results have demonstrated the effectiveness of the proposed
network. Some other detailed results are presented in Fig. 7.
From the ROC curve in Fig. 7a, it can be seen that the AUC
value of each category has reached about 0.95 or higher.
What’s more, some categories’ AUC value is around 0.99.
The confusion matrix in Fig. 7b shows that the model can
give high diagnostic accuracy on some categories(e.g., 0.94

in the skin and soft tissue infection(ski)). While some other
categories have relatively lower accuracy. From the analysis
and observation of the private dataset, it is found that the
images have high similarities, which might be the reason for
the low accuracy. For example, some images of skin necrosis
have a high similarity to some images of skin defect, and
many images of scar healing are similar to the images of
the second-degree burn. In fact, those categories with similar
images are also the most difficult for experts to diagnose. In
general, thenetworkhasaneffectiveperformance inthe private
dataset.

4.4 Experiments on ISIC 2018 dataset

To prove the practicality and generalizability of the proposed
network, the model is evaluated on the benchmark dataset
ISIC 2018. The dataset is randomly split into 8012 images for
training and 2003 images for the test. In addition, to evaluate
the effectiveness and advancement of the model, the network
is comparedwith someother state-of-the-artmethods on ISIC
2018.

Table 5 presents a comparison of the network with six
other state-of-the-art methods on the ISIC 2018. The results
for other networks are from the respective publications.
Our method has achieved 0.9381 for accuracy, thus outper-
forming previous works by more than 1%. In addition, the
proposed model achieved the best sensitivity, specificity, F1
score, and AUC (0.9014, 0.9836, 0.9013, 0.9932, respec-
tively). The comparison to the state-of-the-art methods on
ISIC 2018 reflects the model’s effective performance and
advancement.

The ROC curve and confusion matrix are presented in
Fig. 8. From the ROC curve in Fig. 8a, it can be seen
that the proposed network achieves a high AUC value and
almost every category’s AUC value reaches 0.99. Addition-
ally, the confusion matrix shows that the model can give
high accuracy in the diagnosis of some diseases (e.g., basal
cell carcinoma(bcc), melanocytic(nv), and vascular lesion
(vasc)). And the model has reached a balanced accuracy of
0.88, which is a respectable result on the unbalanced dataset.
These results in Fig. 8 reflect our method’s efficient perfor-
mance in the benchmark dataset ISIC 2018.

4.5 Ablation experiments

The experiments performed on the private dataset have com-
pared SLE and MA with some other methods. To further
verify the effectiveness of the proposed SLE and MA, abla-
tion experiments were conducted on ISIC 2018. The results
are shown in Table 6. The experiments in rows 1–4 cor-
respond to experiments 1–4. When SLE is not used, it is
replaced with the One-hot Encoder. When MA is not used,
it is replaced with a concatenation operation.
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Table 5 Comparison on ISIC
2018 Methods Acc Sen Spe F1 AUC

Multi-model [40] 0.8980 0.8971 / 0.8992 0.978

MobileNet [4] 0.9270 0.7242 0.9714 0.7277 0.96

DenseNet [41] 0.8580 0.6904 0.9592 / 0.88

Semi-supervised [42] 0.9254 0.7147 0.9272 60.68 0.9358

Transfer-learning [43] 0.914 0.8374 / / 0.974

MAT [28] 0.9255 / / / 0.98

Ours 0.9381 0.9014 0.9836 0.9013 0.9932

The bold values represent the best results in the metrics. This can make more readable and make it easier to
compare the results of different methods. This also highlights the effectiveness of the proposed method

Fig. 8 The results of the proposed model on ISIC 2018: (a) ROC curve, (b) Confusion matrix

Table 6 Ablation experiments
(ISIC 2018) SLE MA Acc Sen Spe AUC

0.9206 0.8825 0.9795 0.9896

✓ 0.9281 0.8967 0.9812 0.9920

✓ 0.9286 0.8893 0.9824 0.9918

✓ ✓ 0.9381 0.9014 0.9836 0.9932

From the comparison of experiments 2 and 3 with exper-
iment 1, it is demonstrated that both SLE and MA bring
improvements to the network. From experiment 4, it can be
seen that when SLE andMA are both used, the effect is better
than that of either used alone. The results in Table 6 reflect
the effectiveness of the proposed SLE and MA.

5 Discussion

The results presented in the previous sections have shown
the proposed model’s effectiveness and advancement in skin

disease classification. In this section, we mainly discuss the
improvement of the proposed model and analyze the reasons
for its significant performance.

In the diagnosis of skin diseases, the accuracy of diagnosis
will be improved when patients provide clinical information.
Then, the images and metadata can be used together to diag-
nose skin disease. And the network is designed based on the
datasets that consist of images and clinical metadata. Com-
pared with the model with only images as inputs, the model
improves the accuracy from 0.75 to 0.816. To further verify
the effectiveness and generalizability of the proposed model,
it is evaluated on the benchmark dataset ISIC 2018.
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Inspired by the Transformer framework, the model is
designed with two encoders to extract image features and
metadata features, respectively, and a decoder to fuse them.
For image feature extraction, due to the relatively small size
of skin datasets compared with ImageNet, pre-trained ViT
models are introduced for transfer learning. A comparison of
ViTs and CNNs on the private dataset is presented in Table
2, and the results show the better performance of ViT. Then,
ViT models were utilized as the backbone in the task for bet-
ter results. The images in the private dataset are not uniform
and contain some background noise. NesT can better adapt to
those images. However, ISIC 2018 contains much more data
and the images are clear and uniform. Then, ViT-L shows
better performance in ISIC 2018.

The othermain contributions of this paper are the improve-
ments in the metadata encoder and the fusion mechanism.
As for metadata, they have usually been treated as words in
previous research. Considering the small number of textual
descriptions in the metadata, a simple encoder would be bet-
ter for them. The Word2Vec encoded vectors would contain
more semantic information and have higher similarity since
the metadata contain similar descriptive information. In con-
trast, the One-hot encoded vectors and soft label encoded
vectors would have lower similarities. Additionally, the One-
hot encoded vectors contain many 0 elements, which makes
no attribution to feature extraction in the forward propaga-
tion. To enable the model to learn more information and
make the metadata feature more expressive, a Soft Label
Encoder(SLE) is designed to embedmetadata into soft labels.
The results in Table 3 demonstrate that SLE has better per-
formance in encoding metadata thanWord2Vec and One-hot
Encoder. The comparison illustrates the practicability of
SLE.

In the decoder, the designed Mutual Attention block
mainly consists of two Multi-head Cross Attention blocks
and a concatenation operation. To better balance the infor-
mation from different modalities, an asymmetrical structure
design is adopted. And a residual link is added after each
Cross Attention block to prevent the degradation of the
network. Usually, the output of one Cross Attention block
contains more information about the features for residual
connection. Thus, the representation for residual connection
is used to calculate k and v instead of q to retain more self-
information. On each branch, Cross Attention is utilized to
introduce interactive information of another modality. At the
end of the MA, two residual representations are concate-
nated to obtain fused features. In Table 4, the comparison
of different fusion methods demonstrates the effectiveness
of MA. Compared with the network, which utilizes One-hot
Encoder for metadata and concatenation for fusion, the pro-
posed model improves the accuracy from 0.763 to 0.816.

In the experiments on the benchmark dataset ISIC 2018,
the network is compared with some other state-of-the-art

methods on it. And the results illustrate the better perfor-
mance and advancement of the proposed model. From the
ablation studies in Table 6, it can be found that the model
does not show better results than previous methods without
MA and SLE. After MA and SLE are used, the accuracy
is increased from 0.9206 to 0.9381. As the ISIC 2018 con-
tains much more data and the accuracy is more than 0.92, the
improvement is not as much as on the private dataset when
MA and SLE applied. But compared with the improvements
achieved by other studies, the model has improved the accu-
racy by more than 1% and achieved the best results in some
other metrics. This can demonstrate the effectiveness of MA
and SLE and the model’s significant performance on skin
disease classification.

6 Conclusion

In this paper, a novel multimodal Transformer is proposed to
fuse images and metadata for skin disease classification. In
the network, a properViTmodel is utilized as the backbone to
extract image deep features. As for clinical metadata, a Soft
Label Encoder is designed to embed them into soft labels.
Moreover, the designed Mutual Attention block could make
the image features andmetadata features better fused. Exten-
sive experiments demonstrate that the proposed framework
achieves significant performance in skin disease classifica-
tion. On the private dataset, the proposed model achieved
an accuracy of 0.816, which is better than other popular
networks. On the dataset ISIC 2018, the proposed method
achieves an accuracy of 0.9381 and an AUC of 0.99. Com-
pared with the state-of-the-art methods, the model shows
effective performance and advancement in skin disease diag-
nosis. As for future studies, more work could focus on image
feature extraction. The data collection and data cleaning of
skin diseases are also worthy of attention.
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