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Abstract
It is a nontrivial task to manage crowds in public places and recognize unacceptable behavior (such as violating social
distancing norms during the COVID-19 pandemic). In such situations, people should avoid loitering (unnecessary moving out
in public places without apparent purpose) and maintain a sufficient physical distance. In this study, a multi-object tracking
algorithm has been introduced to improve short-term object occlusion, detection errors, and identity switches. The objects
are tracked through bounding box detection and with linear velocity estimation of the object using the Kalman filter frame
by frame. The predicted tracks are kept alive for some time, handling the missing detections and short-term object occlusion.
ID switches (mainly due to crossing trajectories) are managed by explicitly considering the motion direction of the objects
in real time. Furthermore, a novel approach to detect unusual behavior of loitering with a severity level is proposed based
on the tracking information. An adaptive algorithm is also proposed to detect physical distance violation based on the object
dimensions for the entire length of the track. At last, a mathematical approach to calculate actual physical distance is proposed
by using the height of a human as a reference object which adheres more specific distancing norms. The proposed approach
is evaluated in traffic and pedestrian movement scenarios. The experimental results demonstrate a significant improvement
in the results.

Keywords Object tracking · Pedestrian movement · Activity recognition · Loitering · Physical distancing

1 Introduction

Video surveillance systems are becoming an indispensable
part of Smart City infrastructure for ensuring the security
and safety of public places. But they are left with human
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intervention to detect and identify potentially dangerous sit-
uations, which is very error-prone and costly [39]. Thus, an
automatic surveillance system [63] is required, which can
process a massive amount of incoming data and generate
meaningful information by isolating the suspicious events for
ensuring overall safety. Furthermore, detecting certain activ-
ities like loitering and physical distancing violation becomes
undoubtedly crucial in the time of natural pandemic like
COVID-19.1 Thus, an intelligent system must identify such
behavior in public places to ensure safety and security with
law enforcement.

However, detecting such activities requires spatial and
temporal information, which consists of the interaction of
numerous objects in the same frame and the subsequent
temporal frames requiring accurate tracking of the multiple
objects.

Multi-object tracking becomes complex in a dense envi-
ronment where many objects with similar appearances are

1 https://www.who.int/emergencies/diseases/novel-coronavirus-
2019.
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present, leading to object occlusion (due to self or other mul-
tiple nearby objects) and frequent crossing trajectories. In
such an environment, most of the tracking algorithm fails to
perform accurately in achieving robust multi-object track-
ing [37]. Moreover, due to the emergence of Deep Neural
Network (DNN) models, various automatic object detection
approaches likeYolov3 [52], single-shot object detector [36],
etc., showed their applicability with high accuracy in real
time [64,67]. However, occasionally missed detection, false
detection, and multiple detections still occur due to short-
term object occlusion, which causes tracks misleading and
hampering the activity detection. Most of the work in lit-
erature is for pedestrian detectors, using frame by frame
high-quality object detectors [13,18], and then associating
with online and offline trackers [5,67,69]. The majority of
the approaches are used either appearance-based methods
[1,7,9,11,66] or Kalman filter [30], and particle filter [29].
These methods fail where objects targets are too close, or
object movement is nonlinear. Few approaches use tracking
by comparing the trajectories (dynamics similarity) but are
too complex.

The presented study is focused on improving the object
detection method and wrong association of the track, which
normally occurs due to crossing trajectories of multiple
objects. Furthermore, we proposed a method for loitering
detection and physical distancing detection. The proposed
method for finding physical distancing is often sufficient to
comply with norms of the COVID-19 pandemic, where the
norms are relative to the dimensions of the objects. How-
ever, certain scenarios/use-cases may require more specific
distancing norms requiring identification of actual physical
distance. Thus, we proposed an algorithm to estimate the
actual physical distance between adults by using the height
of the human as a reference. The major contributions are
summarized as follows:

– An algorithm for better localization of an object in the
video through a data association approach to estimate
object tracks that alleviate ID Sw. Furthermore, the pro-
posed approach handles short-term object occlusion by
keeping the estimated track alive for a certain number of
frames or until the object is detected again.

– The tracking algorithm to identify suspicious activity
(“loitering”) in a video and assigned a severity level
(high/medium/low) using an online approach.

– Amethod to identify the physical distancing in the crowd
by using reference thresholding.

– A method to estimate actual physical distance using ref-
erence objects.

The proposed approach performs well to improve detec-
tion errors. It is validated by recognizing the activity of
loitering and achieved state-of-the-art results.

The remaining of the paper is organized as follows. The
existing literature work is presented in Sect. 2, the multi-
object tracking methodology, along with a novel algorithm
for identifying loitering and violation of physical distancing
in Sect. 3. Experimental results on various datasets and their
discussion are presented in Sect. 4. Section 5 concludes the
paper by highlighting the possible future directions.

2 Related work

The major focus of the study is online object tracking for
crowd behavior analysis. In this regard, literature discussion
has been categorized into two segments, first with the track-
ing algorithms including object detection and, later, crowd
behavior analysis (loitering and physical distancing).

2.1 Brief survey on object detection approaches

Plenty of Deep Neural Network (DNN) [12,25,28] architec-
tures were proposed to extract the bounding box and further
classification. The object detection methods can be viewed
in two ways. The first set of methods requires the genera-
tion of region proposals where the probability of locating
an object is high. These region proposals of the objects
are passed to a neural network that further classifies the
object in a predefined class. The R-CNN [25] is the first
and state-of-the-art method. Furthermore, many other meth-
ods are proposed, which are incremental development over
the R-CNN which includes spatial pyramid pooling (SPP-
net) [28], region-based fully convolutional network (R-FCN)
[12], feature pyramidnetworks (FPN) [34], FastR-CNN[24],
Faster R-CNN [54], andMask R-CNN [27]. The second type
of detection method extracts the bounding box location of
the object and class of the object. The major approached
are Multi-Box [17], Deconvolutional Single Shot Detector
(DSSD) [23], Attention Net [68], G-CNN [43], Single Shot
Multi-Box Detector (SSD) [36], Deeply Supervised Object
Detectors (DSOD) [59], Yolo [50], and yolov2 [51]. The
YOLOv3 [52] has been used in the proposed work as it is a
robust and accurate method for object detection with bound-
ing box extraction.

2.2 Recent works on object tracking

The track of the object and the temporal relations between
the objects spanning over multiple frames is widely used for
behavior analysis of the crowd at public places ([2,49]). Tu et
al. [62] highlighted the inability of CNNs for modeling tem-
poral information, and they proposed an action stage that
emphasized spatiotemporal vector created by aggregating
local feature descriptors. Basly et al. [4] proposed a Residual
ConvolutionalNetwork-based deep temporal residual system
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for recognition day to day activities. They have used LSTM
for extracting temporal features from the video. However,
detecting unusual and abnormal behavior is still challeng-
ing as it requires tremendous training data. Dawn et al. [14]
surveyed the various spatiotemporal interest points (STIP)-
based techniques for human action recognition which uses
spatiotemporal information. Mabrouk et al. [38] proposed a
method for violence detection by utilizing global and local
features (optical flowandSTIP). Ramfrez et al. [20] proposed
recognition of group social behavior based on Individual
Profiles (IP) to classify as Equally Interested (EI), Balanced
Interest (BI), Imbalance Interests (UI), and Chatting (CH).
The IP is categorized as Exploring/Interested/Distracted or
Disoriented by ranking the features (trajectory, distance,
speed, and gaze) using centered kernel alignment.

Feng et al. [19] proposed a unified MOT algorithm by uti-
lizing long-term and short-term cues. It classifies potential
user and causer using a Switch Aware Classifier (employ fea-
tures of the target and switcher), sub-net-based single object
tracking by capturing short-term cues, and a re-identification
based subnet for extracting long-term cues. Furthermore,
many approaches for multi-object tracking are proposed by
generating detections and associating them to establish the
track hypothesis. However, two approaches are followed for
associating detections with the track. First, associate detec-
tions frame by frame locally, while others follow a global
approach. Wu et al. [65] followed the approach of associat-
ing detections with object hypotheses locally by defining an
affinitymeasure based onposition, color, and size. Jeany et al.
[60] proposed a tracking algorithm by associating detections;
using Quad-CNN, which performs the association of objects
across subsequent frames by learning quadruplet losses and
the appearances of the target object (including their tempo-
ral adjacencies). The quadruplet loss adds an extra constraint
that forces proximate detections to locate near compared to
the target, which has a significantly sizable temporal gap.
Bewley et al. [8] proposed a real-time MOT approach by
using a robust detector for object detection and then assign-
ing the track based on the Hungarian method and Kalman
filter by considering the velocity of the objects. Wojke et
al. [64] improved their previous approach [8] by integrating
appearance information to handle the object occlusion and
reduce the number of identity switches.

Dicle et al. [16] proposed an algorithm that employs
the motion dynamics to distinguish targets having a similar
appearance, minimize target identification error, use Gener-
alized Linear Assignment (GLA) for identifying dynamics.
The approach is independent of track length and power-
ful to capture the motion dynamics of the target. However,
it is computationally costly. Bae et al. [3] discussed an
online algorithm for multi-target tracking using discrimina-
tive appearance learning. Firstly, the confidence of the track
is calculated using continuity and detectability. The track

grows incrementally by associating with detections, and lin-
ear discriminant analysis selects the target where appearance
is similar. It shows track confidence estimation is compu-
tationally costly and also highly dependent on the quality
of detectors, fails to handle object occlusion and crossing
trajectory. The frame-by-frame association suffers from the
drift when multiple objects are too close. This problem is
addressed by optimizing multiple trajectories in [53], and
joint probabilistic data association filters [22] by generating a
single state hypothesis for association likelihood. It is further
improved in [31,55] tracking and demonstrated substantial
results. Leibe et al. [32] used quadratic Boolean program-
ming to perform association globally (processed the entire
video as a batch). Zhang et al. [69] introduced network flow
formulations to perform multi-target data association. How-
ever, these algorithms are not applicable in online real-time
scenarios.

To the best of our knowledge, no work has been sighted
that uses the direction of the objects to handle crossing tra-
jectories. It is also worth exploring frame interleaving to
improve the detections errors. The major focus of the work
is the estimation of accurate tracking information for activity
recognition to analyze crowd behavior.

2.3 Crowd behavior analysis survey

Anomalous crowd behavior analysis is challenging in intel-
ligent surveillance systems due to the lack of a standard
definition of anomaly and limited generalized examples.
Chang et al. [10] proposed a technique employing deep
autoencoder and k-means clustering to detect anomalies in
video. The spatiotemporal information is divided into two
sub-processes; one autoencoder for spatial information and
the other for temporal information. The consecutive frames
are processed on temporal auto-encoder while spatial auto-
encoder processes the last individual frame. The optical flow
is constructed by utilizing the RGB difference by taking the
last frame while the temporal part process the consecutive
frames. As a result, abnormal events tend to have distinctive
spatial and temporal characteristics that produces significant
reconstruction error. Furthermore, deep k-means clusters are
designed to extract the common factors of variation on the
dataset trained on general events. The anomaly is detected
by computing the deviation of the representation with the
cluster along with reconstruction error.

Loitering is one of the most common unusual behaviors
from the perspective of surveillance systems [39]. Thus, in-
time identification of such loitering (anomalous behavior)
can mitigate many potential dangerous scenarios. Nam [44]
proposed an algorithm for loitering detection by associating
tracks in the crowded scene using a histogramof oriented gra-
dients. Consequently, versatile loitering [57] is proposed by
Arivazhagan et al. by using wavelet transformation for blob

123



2130 A. S. Patel et al.

detection and further classifying them as pedestrian tracks
using an SVM classifier. However, such methods suffer in
the presence of multiple pedestrians in the vicinity. Loiter-
ing detection through frame-by-frame tracking is efficient,
but it predominantly depends on the tracking accuracy [42].
The misses can occur due to object occlusions and detection
errors, especially in crowded scenes. The proposed tracking
algorithm can recover the missed tracks and handle object
occlusion. Recent works on loitering detection rely on the
trajectory and duration of stay of the person, but it is insuffi-
cient, as the stay duration depends on various parameters like
the environment of the place, number of people in the place,
or a visual salience place. In such cases, a person can spend
significantlymore time than just crossing the place. Thus, the
proposed work has given the major focus on loitering detec-
tion and further assigned a severity level as low, medium, or
high based on the time spent. The initial threshold is assigned
and updated online after the end of each track.

2.3.1 Brief survey on physical distance estimation
approaches

It is worth to note physical distancing in public places is a
must to protect against the various infectious diseases that
spread through the air. However, physical distancing viola-
tion is common in public places like malls, railway stations,
airports, etc. Mercaldo et al. [40] proposed a simple method
for physical distancing estimation using object detection
with YOLO and Euclidean distance between the centroid
of the detected object. However, a predefined threshold is
not effective as the dimensions of the object and threshold
depend on the position of the camera. Sugianto et al. [61]
proposed to identify the physical distancing by performing
a homographic transformation. However, the homographic
transformation has certain limitations and may not work
accurately in crowd surveillance scenarios. Saponara et al.
[58] introduced a system for real-time crowd behavior anal-
ysis for tackling from COVID-19 pandemic. The method
estimates physical distancing using the Euclidean distance
between the centroid of the detected bounding box of the
objects. However, Euclidean is only effective in very lim-
ited planar scenarios. Zuo et al. [70] proposed a method to
calculate the real-time distance by finding a “box” with four
hyper-planes; two pedestrians belong to two of the hyper-
planes, and the other two hyperplanes are perpendicular and
intersect with the pedestrians. The distance is estimated by
calculating the rate at which the height of the object in
pixel changes. However, the different locations usually have
different views of perspective andmaybe re-positioned at dif-
ferent places. So, it is not always possible to find a box with
such conditions. Furthermore, themethod is computationally
costly to perform in real time. Gupta et al. [26] discussed a
novelmethod to calculate the actual physical distance of each

object to the camera by considering the focal length and dis-
tance with the bounding box of the objects. Furthermore,
the distance between the objects is estimated by the absolute
horizontal pixel distance. However, such a method is only
effective in planar scenarios where the object size remains
the same at all positions, often infeasible in a real-time envi-
ronment.

Thus, we propose an algorithm for analyzing crowd
behavior by identifying anomalous behavior of loitering and
detecting violation of physical distancing by object detec-
tion and utilizing the tracking information. The threshold
for physical distancing is set adaptively, independent of the
viewpoint, and proportionate to the size of the object.

3 Proposed work

The major contribution and methodology have been catego-
rized into four problems: object detection/tracking, loitering
classification, adaptive threshold-based, and actual physical
distance estimation. Moreover, an adaptive threshold-based
method iswell suitablewhere norms are relative to the dimen-
sions of the objects. However, certain scenarios/use-cases
may require more specific distancing norms (actual physical
distance). Thus, an algorithm to measure the actual physical
distance is also proposed. The framework of the proposed
tracking-based activity detection and behavior analysis is
subdivided into three parts: object detection, object tracking,
and crowd behavior analysis as depicted in Fig. 1. In the first
part of the figure, the object detection algorithm (YOLOv3
[52]) details are presented by including the layered model.
Further, the information on the tracking algorithm is pre-
sented, which involves the prediction step followed by data
association. The tracking information is additionally utilized
for crowd behavior analysis to identify the activity of loi-
tering and physical distancing with actual physical distance
estimation presented in the third part. The key features and
parameters employed in crowd behavior analysis are also
given under each step. The key feature contains the adaptive
threshold techniques for assigning a severity level and adap-
tive threshold for physical distancing based on the size of the
bounding box with the actual physical distance by taking the
height of the human as a reference in the case of adults.

Figure 2 demonstrates a better understanding of the pro-
posed object tracking approach. Firstly, the objects in each
frame of the videos are identified using a detection algo-
rithm. The tracking information of the objects is generated
by combining the predictions (motion compensation) and a
data association algorithm. The proposed motion estimation
approach can handle short-term object occlusion, including
detection error (missing, double, and false detections). The
identity switches (due to crossing trajectories) are handled by
including the direction of the motion. The proposed tracking
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Fig. 1 A proposed framework
for activity detection and crowd
behavior analysis

approach consists mainly of object detection, track predic-
tion, and association of detections with tracks. However, the
physical distance estimation approach has been discussed
separately at last.

3.1 Object detection

An object is first identified and then extracted along with its
bounding box using theDNN-based object detectionmethod.
YOLOv3 [52] was employed for object detection, which is a
Fast RCNN [24] based framework, pre-trained to detect 80
classes of Microsoft Coco dataset [35]. It is worth mention-
ing that various similar methods were tested in this scenario
and found YOLOv3 is outperformed. However, there may
have a chance to see performance variation with respect to
other datasets and scenarios. Themodelworkedwell to detect
the car, person, and bus but was found less effective for the
truck. In this regard, a separate training has been carried out
explicitly with 5000 images of the truck (learning rate was

set to 0.02). The batch size was set to 100 with ten epochs
and 50 iterations per epoch (500 iterations in total). Further-
more, few MOT benchmark datasets have public detections,
consisting of pre-existing detections for benchmarking the
results. However, object detectionmethods have some limita-
tions and may not perform accurately due to detection errors,
which are summarized as below:

– Missed Detection—When an object in an image goes
undetected. It usually happens due to lack of training
or object occlusion.

– Small Detection—A small portion of the object (small
bounding box) is detected along with the full part of the
object due to object occlusion, lack of clear visibility, or
poor image resolution.

– Large Detection—A bigger bounding box is also gener-
ated when two objects are close by along with individual
detections.

Fig. 2 Object tracking approach
workflow
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– Double Detection—Two bounding box of the object is
generated; one of each type may occur due to mis-
classification.

The proposed tracking algorithm handles such errors by
employing frame interleaving.

3.2 Object tracking

The tracking algorithm is based on the Kalman filter [30]
which can handle the continuous variable for estimating state
variables from noisy observations over time. For example,
looking for a bird movement so that we do not lose its sight.
Kalman filter uses linear Gaussian distributions, such that
the subsequence state is a linear function of the present state
with some Gaussian noise. The algorithms predict the state
variables comprising the width, height, and location of the
object of the next state based on the previous states. The new
state of the object is used in the data association algorithm. It
consists of three steps: predict, data association, and update.
The new trajectory is initialized in a case where detection of
the next frame does not match with existing trajectories. The
old trajectories are terminated only when associations do not
occur with new objects for a certain number of frames (frame
interleaving). The pixel coordinate of the center of the object
in the current frame is calculated using an extracted bound-
ing box, denoted by (xt and yt ). The predicted and actual
coordinate of the object in the subsequent frame is denoted
by x̂ , ŷ„ xt+1, and yt+1. The track of the object is assigned
with an identifier denoted by track_id (referred to as tracks).
Prediction of the object in the next frame is performed using
Kalman filter-based estimator. It has a horizontal and a ver-
tical component denoted by xδ and yδ . The bounding box
of the object is represented with left, top, width and height
of the object (denoted by ol , ot , ow and oh). The horizontal
and vertical coordinates of the center of the object are given
by ox and oy . The state equation of Kalman filter is given by
Eq. (1) of m components. Each state has four components,
width, height, horizontal, and vertical pixel positions. After
each iteration, we get a new set of q number of observa-
tions denoted by y containing quantities denoted by h(x).
The h(x) depend non-linearly on the state, with observation
errors ý having a square covariance matrix (Co) of size qxq.
The initial estimate of the model state X , matrix of error,
and covariances C between the estimated state variables are
measured by multiple iterations of the algorithm. It will have
blended in enough observations to make it reasonably insen-
sitive to have precise initialization details.

X = [ox , oy, ow, oh]T (1)

3.2.1 Prediction

The state variables of the object in the subsequent frame are
predicted by the estimator function as shown in Eq. (2) and
(3). X p

n and C p
n denote the estimated state and covariance

matrix at the nth frame, while X̂n−1 and Ĉn−1 represent the
state variable and covariance matrix of the previous frame.
Fn−1 matrix is of dimension mxm, calculated as Jacobian
matrix of the non-linear function f by linearizing the model
which is used to predict the state nth using the previously
estimated state (n − 1) state. Thus, the bounding box of the
object is estimated using the predicted state variables.

X p
n = f

(
X̂n−1

)
(2)

C p
n = Fn−1Ĉn−1F

T
n−1 (3)

3.2.2 Direction and IoU based data association

The existing tracks are associated with the detections in the
next frame by calculating intersection over union (IoU) with
each object and matching the direction of the track. Each
track is assigned with a direction as shown in Table 1. Dx

and Dy represent the difference between horizontal pixel and
vertical pixel of the object in the current frame and previous
frame. The direction is calculated by obtaining the differ-
ence (Dx and Dy) followed by the assignment of direction
based on Table 1. The direction of the track is only updated
when there exists a unique match based on the IoU matrix.
In the case of multiple matches, the direction is calculated by
associating the track with both the detections. Finally, a track
where direction remains the same is selected for the object.
Consequently, a new track id is assigned to the detected
object If an association is not successful with any detections.
The threshold value for IoU is denoted by I oUth . The asso-
ciations are successful if Eq. (4) is satisfied. The association
algorithm is demonstrated in Fig. 3 which works based on
the following cases:

1. Uniquematch - In case of only one match on IoU greater
than I oUth , then the object is included in the track, and
the direction of the track is updated as in Table 1.

2. Multiplematches with no direction update - In the case
when there exists more than one match on I oU greater
than I oUth , then the direction is calculated by associat-
ing the object with each track in from the list of tracks
in which I oU is greater than I oUth . The direction of the
track is updated based on Table 1. In this case, one or
more tracks exist when the updated directions remain the
same after associating the object with the tracks. If there
is only one track where the direction is not changed, that
track is selected; if multiple such tracks are found, then
the track that resulted in maximum I oU is selected. This
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Fig. 3 Association of objects based on IoU threshold

scenario corresponds to the possibility of crossing trajec-
tories. However, in the case of multiple tracks with no
change in direction, it may occur when tracks are moving
very close with almost in a similar direction.

3. Multiple matches with direction update - When there
exists more than one match on I oU greater than I oUth ,
then the direction is calculated by associating all the
matched tracks, and the direction of the track is updated
as in Table 1. However, for all associations, the direction
is updated, which leads to a change in the direction of the
track. In such cases, the track which results in maximum
I oU is selected.

4. No Match - A new track is created with a track_id and
direction id is set to 0.

I oUn < I oUth (4)

I OUth and threshold for substantial distance is set to 0.6
and 5 (obtained experimentally for all scenarios).

The inclusion of direction while assigning tracks to detec-
tions reduces the number of ID Sw due to more than one
object being too close, dominant in case of crossing trajec-
tories, shown in Fig. 4.

The direction of each track is calculated based on the rules
below also listed in Table 1.

1. North East: If Dx and Dy are positive and magnitude is
substantially high then this direction is assigned with id
1.

2. East: If Dx is positive and only Dx have substantial mag-
nitude, then this direction is assigned with id 2.

3. South East: If Dx is positive while Dy is negative, and
both have substantially highmagnitude then this direction
is assigned with id 3.

4. North: If Dy is positive and only Dy have substantial
magnitude, then this direction is assigned with id 4.

Table 1 Direction assignment of the track

Dx Dy Direction

Sign Substantial Sign Substantial Name Id

+ Yes + Yes NorthEast 1

+ Yes + No East 2

+ Yes − Yes SouthEast 3

+ Yes − No East 2

+ No + Yes North 4

+ No + No No change previous

+ No − Yes South 5

+ No − No No change previous

− Yes + Yes North West 6

− Yes + No West 7

− Yes − Yes SouthWest 8

− Yes − No West 7

− No + Yes North 4

− No + No No Change previous

− No − Yes South 5

− No − No No Change previous

5. South: If Dy is negative and only Dy have substantial
magnitude, then this direction is assigned with id 5.

6. North West: If Dx is negative while Dy is positive, and
their magnitude is substantially high then this direction is
assigned with id 6.

7. West:If Dx is negative and only Dx have substantial mag-
nitude, then this direction is assigned with id 7.

8. South West: If Dx and Dy are negative and their magni-
tude is substantially high, then this direction is assigned
with id 8.

9. No Change: If both Dx and Dy have substantially low
magnitude, no change in direction is performed.
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Fig. 4 Handling crossing
trajectories by including
direction of motion

3.2.3 Frame interleaving for handling detection errors and
object occlusion

It has been observed that the majority of the detection algo-
rithms miss the object in a few frames due to changes in
intensity and luminosity. Thus, frame interleaving is pro-
posed to keep the tracks active even direct association is not
possible. This is predominant and useful in case of miss-
ing detection for a certain number of frames. Furthermore,
the missing detections may also occur due to short-term
object occlusion. In this regard, the existing track will be
kept active till those many frames where the detection error
probability is high. The optimal value of the hyper-parameter
(γ ) is obtained experimentally by repeating the experiment
for a certain number of trials. The value of hyperparame-
ter depends on the environment, speed of the vehicle, etc.
The proposed optimization of keeping tracks active (frame
interleaving) handles short-term object occlusion and miss-
ing detections, giving the object more precise tracking.

3.2.4 Estimator update

The velocity estimators are updated in case of successful
association with the pre-existing tracks by adjusting the vari-
ation between actual and predicted detection using Eqs. (5),
(6), and (7). The predictions is combined with actual obser-
vations at instant n to update the estimated state Xn and
covariance matrix Cn . Here C p[mxm] is the covariance
matrix of the prediction at time instant n, Ĉ is the covariance
matrix of the update,Co[qxq] is the covariance matrix of the
observations, and K [mxq] is the Kalman gain matrix. The
measurement matrix Hn[qxm] relates the prediction uncer-
tainty ýp in the measurements to the prediction uncertainty
x́p in the state.

X̂ = X p + K (yo − h
(
X p) (5)

K = C pHT
n

(
HnC

pHT
n + Co

)−1
(6)

Ĉn = (I − K Hn)C
p (7)

3.3 Evaluationmetric

An ideal tracking algorithm should correctly detect all the
objects and estimate their position precisely with their track-
ing information over time by assigning a unique identifier
for each tracked object sequence. Furthermore, it should
generate only one trajectory per object. Thus, the following
parameters are considered to evaluate its effectiveness.

– False Positive - The number of tracks which do not asso-
ciate with the real object.

– False Negative - The number of target detections which
are not associated with any tracks, but in actual have a
valid association. It also referred as missed targets.

– ID Sw [33] - The number of identity switches for all the
objects by counting the total number of association of the
same object with different tracks.

– IDF1 [56] - The ratio of correctly identified detections
with the average of ground truth and computed detec-
tions.

– MOTA [44] -MultipleObjectTrackingAccuracy (MOTA)
is the measure combining false-positives, missed targets,
and the number of identity switches given by (8),mt , f pt ,
gt , andmmet are the number of misses, of false positives,
ground truth, and mismatches, respectively, with time t.

MOT A = 1 −
∑

t (mt + f pt + mmet )∑
t gt

(8)

– MT - Mostly tracked targets. It is the ratio of ground truth
trajectories covering more than 80%.

– MOTP [6] - Multiple Object Tracking Precision (MOTP)
specified in (9), ct is the number of matches over the time
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period t, and dit represents the distance between the object
and its corresponding hypothesis.

MOT P =
∑

i,t d
i
t∑

t ct
(9)

3.4 Enhanced loitering classification through
dynamic thresholding

Atime-stamp-based approachhas been introduced to identify
loitering. The time spent by a person is calculated using the
function of the length of track and frames per second of the
captured frame, given by Eq. (10). To refers to the time spent,
and the number of frames per second is denoted by f ps. The
threshold parameters are calculated for initial n sample tracks
only (training phase of threshold parameters). The value of n
controls the parameter for detecting the activity of loitering.

To = Lt

f ps
(10)

The initial value of the threshold is set to 10, 20, and 30 sec-
onds for low, medium, and high severity levels, respectively.
The threshold for severity is updated after each iteration by
calculating the deviation from the time of stay of a current
person with the average time of stay. Mean is given by μ and
calculated using (11) and updated after every iteration.

μn+1 = μn + To
n

(11)

Thus, threshold values are denoted by ThL , ThM , and ThH ,
given by (12), (13), and (14) for low, medium, and high level
of severity, respectively.

ThL = max (2μn+1, 10) (12)

ThM = max (3μn+1, 20) (13)

ThH = max (4μn+1, 30) (14)

The thresholds are measured experimentally and very rea-
sonable for a given environment as it depends on the basic
principle of unusual behavior.

3.5 Adaptive threshold based physical distancing
detection

Monitoring public places to ensure physical distancing in a
real-time environment is considered one of the most chal-
lenging tasks. It comes with an enormous challenge as
estimating physical distance is almost infeasible without a
reference object. Furthermore, the size of the object varies
with pixel location as the viewpoint of the camera changes.
However, the dimension of the object is correlated in close

proximity (a small region of interest) having similar dimen-
sions. The region of interest is defined as a small area where
the dimension of a type of object is relatively similar. Thus,
our proposed algorithm exploits this property and utilizes
the dimensions of the target object to identify if physical
distancing. We propose an algorithm to detect the physical
distancing violation both spatially and temporally. The algo-
rithm identifies physical distance by calculating the physical
threshold as a function of the object’s size, as demonstrated
in Fig. 5. The visualization and idea of the algorithm are
shown in Fig. 6. Two possible scenarios are demonstrated
with different viewpoints. It is evident that the number of
pixels required by a reference object varies according to the
angle, which is captured by the variation in objects’ size. The
description of the algorithm 1 is as follows:

Algorithm 1: Physical Distancing Detection
Input: Bounding box of detected person along with the frame id

and track id
Output: Set the Physical Distancing parameter of objects and

tracks
1 for f ← 1 to F do
2 for i ← 1 to n do
3 oix = oile f t + oiright−oile f t

2 ;

4 oiy = oitop + oibottom−oitop
2 ;

5 oiwidth = oiright − oile f t ;
6 oiheight = oibottom − oitop;
7 Th pd = oiwidth + oiheight ;
8 for j ← 1 to n do
9 if (i ! = j)&&(oipd == 0) then

10 o jx = o jle f t + o jright−o jle f t
2 ;

11 o jy = o jtop + o jbottom−o jtop
2 ;

12 EDi j =
√

(o jx − oix )2 + (o jy − oiy)2;

13 if EDi j <= Th pd then
14 oipd = 1;
15 break;

16 else
17 oipd = 0;

18 for t ← 1 to T do
19 for i ← 1 to n do
20 if oipd == 1 then
21 trackpd = 1 ;
22 break ;

– The set of frames of a video scene with tracked objects
along with its bounding box are given as input.

– The flag is set for the objects which do not follow the
social distancing as per the algorithm 1.

– The threshold for physical distancing is adaptive based
on the width and height of the object. The objects which
are near from camera have a larger size as compared
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Fig. 5 Demonstration of
adaptive physical distancing
threshold based on the
dimension of the object

Fig. 6 Demonstration of adaptive physical distancing algorithm in two possible scenario

to farther objects due to changes in camera viewpoint.
Thus, a common threshold cannot fit all the objects in
a frame. However, the size of the person is proportional
to the width and height of the object, irrespective of the
location in the frame.

– The violation in physical distancing is calculated by find-
ing the Euclidean distance with all other objects denoted
by EDi j and comparing it with the adaptive threshold
based on the size of the object.

– The threshold is kept as the sum of height and width of
the person as the height of the person is around 5–6 feet,
and width is 3 feet, sufficient and adaptive based on the
location of the objects in the image.

– Violation of physical distancing at temporal level is iden-
tified by identifying the physical distancing flag of all the
objects included in the track. If even a single object in a
track has a flag as set, the track is classified as violated
physical distancing.

– Total number of objects present in the frame is also cal-
culated to identify the overall level of crowding of the
place.

– The objects that violate the physical distancing have the
value of flag as one, while for others that follow physical
distancing, the flag value is zero.

The tracking id of an object is represented by t and goes up to
T . The total number of frames is F , and a frame is represented
using f . The number of objects in a frame is n and given by
O . The pixel value of the center of the object is given by ox
and oy . Thewidth and height of the object are given by owidth

and oheight . The bounding box of the object is represented
by ole f t , otop, oright , and obottom . The flag representing the
physical distancing of an object and track is denoted by opd
and trackpd .

3.6 Actual physical distance estimation

The proposed method for finding physical distancing can
identify the activity to safeguard from COVID-19 pan-
demic where the norms are relative to the dimensions of the
objects. However, certain scenarios/use-cases may require
more specific distancing norms requiring identification of
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actual physical distance. Thus, we propose to calculate the
actual physical distance between person i and j is calculated
using Eq. (15) denoted by PDi j is a function of the average
height of the human being, the height of the person in the
frame, and the Euclidean distance between them, calculated
in meters.

At each pixel, the number of pixels contained by the refer-
ence object varies depending on the viewpoint angle. As the
object goes farther from the viewpoint, the viewpoint angle
and number of pixels contained by the object also decreases;
thus, the size of the reference object is directly proportional
to the viewing angle. This is evident in Fig. 6, in scenario B,
the viewing angle is less than the viewpoint angle in scenario
A. Thus, the proposed algorithm is adaptive and calculates
the actual physical distance at each pixel change based on
Eq. (15). The average height of the person (adults) acting
as a reference from the real world is a constant and kept as
1.65 m [45] for this experiment which is consistent with our
dataset as well. However, the bounding box height is a little
larger than the actual object. Thus we have kept the height of
the bounding box to 1.8 m as a reference for our calculation.

In the case of another type of object, such as a car that
has similar dimensions, the actual physical distance can be
estimated using its dimension as a reference. Furthermore, in
the case of the objects whose real-world dimensions are not
known, then a normalized physical distance can be calculated
by using the height of the object in one location of the image
to the other. This distance can be converted to real-world
metrics like (meters, inches) when height in the real world is
established.One such scenario is a school environmentwhere
the height of the children is less and has variation but has a
common height in a group (a particular class/age group). In
such cases, the normalized physical distance is estimated as
the children belonging to the same group will possess similar
height.

The proposed algorithm is adaptive and calculates the
actual physical distance between two persons, given by
Eq. (15). The Euclidean distance between the center of the
objects is calculated at each pixel value, by varying the value
of y by 1 after each instant keeping Δy to 1 and calculating
the corresponding value of x at that position using Eq. (16),
whereΔx refers to a change in the values of x after changing
the y by 1. This is repeated fromvertical coordinate of object i
to vertical coordinate of object j (oiy to o jy) to get the distance
from object i to object j . The distance after each iteration is
normalized with the ratio of half of the human height and the
number of pixels denoting half of the height at that instant
as the upper half of the objects is only considered from the
center.

Equation (16) is derived from the equation of the line
between two points, joining the center of the ith and jth
object, m is the slope between two points oix , oiy , and
o jx , o jy given by Eq. (17), and c is a constant. The constant

c in Eq. (16) is calculated by assigning x with oix , y with
oiy andm from Eq. (17) in Eq. (16). The vertical point of the
bounding box of the person after each update is denoted by
yt , which is calculated by putting the value of x fromEq. (16)
in line joining the coordinated of top of the ith object and jth
object. The algorithm is demonstrated in Fig. 7. The ratio of
human height and number of pixels spanned by the height at
that instant normalizes the distance after each iteration, mul-
tiplied by two as only one-half of the object is considered.

PDi j =
o jy∑

y=oiy

√
Δx2 + Δy2 ∗ 1.8

(y − yt ) ∗ 2
(15)

x = y − c

m
(16)

m = oiy − o jy

oix − o jx
(17)

Thus, our approach finds the actual physical distance
between the people using the height of the person as a refer-
ence.

4 Results and discussion

The proposed approach is evaluated on different datasets
in various scenarios of the public domain along with the
specifically tailored PETS2006 and PETS2016 datasets for
performance evaluation for tracking and surveillance. The
effectiveness of the object tracking approach is demonstrated
by detecting the activity of loitering, which uses the tracking
information as a baseline. Thus, the proposed approach is
evaluated in three basic steps from the perspective of activ-
ity detection; object detection, object tracking, and loitering
detection. A comparison with current methods is performed
on the benchmark dataset, demonstrating the effectiveness
of the proposed approach. Furthermore, the performance of
the physical distancing algorithm is demonstrated on various
benchmark datasets.

4.1 Dataset

In this work, various datasets are used as listed in Table 2
consisting of traffic environment, warehouse environment,
crowd scene, and parking environment for demonstrating
the applicability of the proposed approach in broad scenar-
ios. The PETS dataset is also used, a benchmark dataset
for performance evaluation of object tracking, and con-
sists of various activities such as loitering. Furthermore, the
proposed tracking and physical distancing approach includ-
ing the estimation of actual physical distance is validated
on MOT benchmark datasets [41] (PETS09-S2L2, ETH
Crossing, AVG-TownCentre, TUD-Stadmitte, and Venice-2)
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Table 2 Detail description of various datasets used in this paper

Dataset Description Snapshot

IIIT-NR Parking Lot (D1) [46] Various scenarios of crowd move-
ment nearby parked car containing
trimmed activities

Warehouse Dataset [47] (D2) Contains the CCTV surveillance
data recorded from a warehouse of
Chhattisgarh state storage center,
comprising the movement of trans-
port vehicles.

PNNL2 [68] (D3) Small sequence of parking lot sce-
narios published by University of
Florida consisting of movement
of crowd around parked cars for
benchmarking multi object track-
ing.

Square Dataset (D4) It contains the traffic movement of
the cars in a traffic environment of
a city captured in near a square.

PETS-2006 [21] (D5) (sequence
S1-T1-C(S1), S2-T3-C (S2) andS3-
T7-A (S3))

The dataset consists of a left lug-
gage scenario with varied complex-
ity consisting of the multiple mov-
ing person in public places. Each
sequence contains a calibrated sce-
nario of person(s) with abandoned
luggage and loitering.

PETS-2016 [48] (D6) (sequence
03_06 and 14_05)

A multi-camera dataset contains
various scenarios around a parked
vehicle. In total 22 different scenar-
ios of various abnormal activities
were recorded to identify various
potential threats. However, in this
work we have used only a part of
dataset with sequences containing
the activity of loitering.
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Fig. 7 Demonstration of
estimation of actual physical
distance by using reference
object (person) between two
persons

demonstrating the effectiveness of the approach. The MOT
benchmark datasets already have object detections, thus iso-
lating the bias on object detection method for measuring
tracking performance.

4.2 Object detection

The objects are detected on each image of the video frame
using Yolov3 [52], which detects the objects along with its
bounding box. The proposed model can detect and extract
bounding box of vehicles (car, bus, truck including rear, front,
and side) and person. The effectiveness of the detection algo-
rithm is demonstrated by calculating precision and recall as
shown in Table 3.

– Dataset D1 does not contain truck and bus.
– Dataset D2 does not contain any car and bus.
– Dataset D3 does not contain any truck and bus
– Dataset D4 does not contain any truck.
– Dataset D5 and D6 contain person only.

Trained model performs well over different dataset cov-
ering multiple scenarios and domain. The trained model is
capable of detecting objects to generate tracking information.

4.3 Tracking

The detections of each video sequence frame are passed as
the input to the object tracking framework. The detections
are associated with a track; subsequently, the algorithm adds
the tracking id. The benchmark parameter is calculated using
motmetrics2 which is a python library.

The proposed object tracking approach achieves high
accuracy on benchmark parameters on different datasets. The

2 https://github.com/cheind/py-motmetrics.

Table 3 Precision and Recall of detections on various datasets

Dataset Metric (%) Truck Car Person Bus

D1 Precision – 98.5 97.3 –

Recall – 97.6 96.1 –

D2 Precision 96.7 – 97.7 –

Recall 97.6 – 97.7 –

D3 Precision – 98.5 98.1 –

Recall – 97.9 97.4 –

D4 Precision – 98.2 97.7 98.4

Recall – 98.3 97.5 92.4

D5 Precision – – 100 –

Recall – – 100 –

D6 Precision – – 100 –

Recall – – 100 –

Table 4 Evaluation of the approach on benchmark parameters

Dataset Evaluation Metric

MOTA MOTP MT IDSw

D1 80.7 87.2 93.4 6

D2 98.3 95.6 94.1 11

D3 91.4 61 92.5 4

D4 94.6 92.3 93.7 12

tracking results on sequences of PETS2006 and PETS2016
dataset is entirely accurate, laying the strong foundation
for activity detection. The results of the proposed tracking
approach are demonstrated in Table 4.

A comparison is also performed with the recent object
tracking approaches on the dataset D3 (PNNL2) in Table 6.
Our proposed method gives better accuracy and also reduces
the total number of ID Sw significantly.
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Table 5 Effect of γ on MOT benchmark parameter over Dataset D4

Hyper parameter (γ ) MOTA MOTP MT IDSw

0 81.4 84.4.2 71.6.4 58

5 98.3 95.6 94.1 11

10 91.4 61 92.5 4

15 94.6 92.3 93.7 12

20 94.6 92.3 93.7 12

25 92.5 91.2 90.3 17

Table 6 Performance of the proposed algorithm on dataset D3
(PNNL2)

Approach Evaluation Metric

MOTA MOTP MT ID Sw

CMOT [3] 80.7 58 85.9 6

IHTLS [16] 78.8 57 87.5 5

GMMCP [15] 87.6 58 90.6 7

SORT [8] 84.6 59 88.3 6

Proposed Work 91.4 61 92.5 3

Table 7 Analysis of the proposed approach on benchmark dataset with
public detections

Dataset Approach MOTA IDF1 MT IDSw

PETS 09 S2L2 SORT [8] 49.6 33.4 38.5 289

Proposed Work 57.7 44.6 59.2 123

ETH Crossing SORT [8] 54.2 59.7 30.7 12

Proposed Work 61.6 63.4 72.3 3

The number of ID Sw is significantly reduced as the
proposed approach employs direction and IoU based data
association along with the frame interleaving, which is very
useful in case of crossing trajectories and detection errors.
The hyper-parameter (γ ) further enhances the tracking by
configuring the frame interleaving. (γ ) is set experimentally,
keeping the tracks active even in case of no association is
possible, primarily due to short-term occlusion and detection
errors. The effect of maintaining the tracks active is shown
in Table 5 on dataset D4. The D4 dataset has 15 frames per

second. The duration is kept in terms of a number of frames
with a variation of 5, ranging from 0 to 25. It is evident
that the best results are obtained at γ = 20, found after
experimenting through multiple possible values and itera-
tions. Furthermore, the hyper-parameter value depends on
the target environment, datasets, and detection method, so it
needs to be set experimentally.

Moreover, to demonstrate the effectiveness of the pro-
posed approach on benchmark datasets that have public
detections is shown in Table 7. The proposed approach out-
performs method [8] producing less number of ID Sw and
tracking the objects more accurately. Both the methods are
evaluated on the dataset having public detections (detections
already provided with the dataset). This way, the dependency
of the detections is eliminated as certain detection algorithms
maybebetter than the other, thus avoiding ambiguity in track-
ing accuracy making difficult to analyze the performance of
the tracking algorithm.

4.4 Loitering detection

We have demonstrated the loitering detection with various
sequences of PETS 2006 and PETS 2016 dataset as shown
in Table 8. The value Yes corresponds to Loiter while No is
marked when it not classified as Loiter. For each sequence,
first of all, objects are detected using YOLOv3 [52]. Subse-
quently, the track is assigned to detections using our proposed
tracking algorithm. The time spent by the person is calculated
using Eq. (10), which is further classified as a loiter based on
the threshold values, calculated adaptively.

The existing approach is better than the versatile loitering
because it worked on GAIT feature. A person can still be a
loiter if he walks fast and moves around the same place. In
this case, it would not be classified as loiter because detection
is based on GAIT feature corresponding to slow walk. Fur-
thermore, the area under trajectory can be less when he still
moves to and from along a straight line. Thus, the proposed
approach of loitering detection based on the time of stay is
superior to other methods of classifying by calculating the
shape of the trajectory and GAIT features.

Figures 8 and 9 demonstrate the loitering behavior in the
sequence 03–06 and 12–05 with high severity as the time

Table 8 Analysis of loitering
detection with versatile loitering
[57]

Dataset Sequence Actual Approach [57] Proposed Severity

D5 S1 Yes Yes Yes Low

S2 Yes Yes Yes High

S3 Yes Yes Yes High

D6 0306 TRK1 Yes No Yes Low

0306 TRK2 Yes No Yes High

1405 TRK3 Yes No Yes High
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Fig. 8 Demonstration of
loitering detection based on the
length of the track of the person
on PETS 2016 0306 TRK2
dataset

Fig. 9 Demonstration of
loitering detection based on the
length of the track of the person
on PETS 2016 1405 TRK2
dataset

Table 9 Evaluation of the
physical distancing on various
dataset including MOT 16
benchmark datasets [41]

Dataset Evaluation Metric

Precision Recall Track (%) Avg. Person Count

AVG-TownCentre 92.3 94.6 56.1 11

PETS09-S2L2 71.4 61.4 95.5 30

TUD-Stadtmitte 80.7 87.2 93.4 6

Venice-2 87.6 82.3 93.7 16

D3 97.6 92.3 73.4 12

D5 100 100 66.6 2

Fig. 10 Demonstration of
physical distancing and actual
distance on AVG-TownCenter
Dataset
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Fig. 11 Demonstration of
physical distancing and actual
distance on PETS09 Dataset

spent by the person is more than the threshold which was set
adaptive. In the first part of the figures, the key-frames of the
sequence are shown at the interval of two seconds involving
loitering. In the second part, the track of the person is plotted.
The approximate center positionof the person inhalf a second
is shown with a dot.

4.5 Physical distancing

The proposed algorithm for violation of physical distancing
detection is evaluated on four benchmark datasets as shown in
Table 9. The table presents precision and recall in the spatial
direction, i.e., in a single video frame. However, the results
significantly depend on the detection accuracy. The percent-
age of track that has violated physical distancing presents the
overall idea about following the norms in a temporal direc-

tion. The average count of the person present in a video frame
is also listed, giving information about the occupancy of the
crowd in a public place.

The dataset D5 only has one sequence with multiple per-
sons, while dataset D3 (PNNL2) has multiple persons.

The physical distancing and actual distance of the various
MOT 16 benchmark dataset also listed in Table 9 are shown
in Figs. 10, 11, 12, and 13. The first image in the figure
shows the status of the person. If the distance is maintained
larger than the threshold, the bounding box is labeled green,
otherwise red. Furthermore, a physical distancing violation
is shown with a red line drawn between the objects.

The second set of the image shows the actual physical
distance in meters from one specific object with others. It is
assumed that the height of the objects (person in this case)
has similar dimensions. Furthermore, while estimating the
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Fig. 12 Demonstration of
physical distancing and actual
distance on TUD-Stadmitte
Dataset

actual physical distance between the objects, the real-world
size of the object needs to be known.

In some cases, for identifying the physical distancing
when both the target objects and the camera lie on the same
line of sight, the distance between the objects will not give
accurate results. This type of scenario cannot be solved using
a single camera. Thus, multiple cameras need to be installed
to get more precise results.

4.6 Runtime

The proposed framework uses detected objects along with a
bounding box for generating tracking information and crowd
behavior analysis. The objects are detected on an input video
frame which is passed to the online tracking algorithm in the
pipeline, which assigns a track-id in real time. The objects

with the bounding box and track-id are further passed to
the crowd behavior analysis. The object tracking algorithm
works in three parts where prediction thorough Kalman fil-
ter have linear bound, data association have polynomial time
complexity on O(t2) and update step requires linear time
proportional to the number of active tracks. The loitering
detection involves linear computational complexity propor-
tional to the number of active tracks (t) followed by updating
threshold for severity level. The physical distancing detection
has time complexity with O(n2) as for each bounding box,
it calculates distance with all other existing bounding boxes
in a frame. The actual physical distance estimation also has
the time complexity of O(n2) is the distance between two
objects are estimated where n is the number of objects.

The whole framework is tested on systems with varied
configurations and performs in real time on an HD stream
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Fig. 13 Demonstration of
physical distancing and actual
distance on Venice-2 dataset

Table 10 Average runtime of the framework in different configurations for one input frame

CPU Memory (GB) Processing time (milliseconds)

System GPU Object Detection Tracking Loitering Physical Distancing Actual physical distance

Intel i5 (2.4Ghz) 8 2 955 3.2 ≈1 <1 <1

Intel i7 (2.5Ghz) 16 4 340 2.4 ≈1 <1 <1

Intel Xeon (1.7Ghz) 32 11 23 ≤1 <1 <1 <1

(1280 × 720 resolution) with 30 fps on a system with 3rd
generation Intel Xeon processor and NVIDIA Titan 1080 Ti
GPU (11GB). Table 10 demonstrates the computation time
taken for tracking and crowd behavior analysis along with
the object detection. It is to be noted the time taken by object
detection significantly depends on the GPU and outperforms
with NVIDIA Titan 1080 Ti GPU achieving the performance
required for real-time scenarios for HD video. The runtime
for tracking and crowd behavior analysis is independent of
GPU. It only depends on the CPU and performs reasonably
well with 8GB of RAM and 10th generation Intel i5 and i7
processors.

5 Conclusion and future work

In this paper, we have explored the approach for multi-object
tracking to handle short-term object occlusion, detection
errors, and IDSw togenerate accurate tracks of the objects for
analyzing crowd behavior in public places. Firstly, the object
bounding box is extracted using a detection algorithm. The
bounding box of the objects in the subsequent frame is pre-
dicted using a linear velocity estimate of the object based on
Kalman filter, which is later on compared and replaced with
actual detections in case an association is found. Whenever
data association is not feasible, the existing predicted tracks
are kept alive for some time, handling the missing detec-
tions and short-term object occlusion. ID Sw are handled
by explicitly considering the motion direction of the objects
at the time of association with the detections, which mainly
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occurs due to crossing trajectories. The proposed approach
is evaluated in traffic environment and pedestrian movement
scenarios and achieves high accuracy,which can be explicitly
used for event detection. A trajectory-based method to detect
the activity of loitering is also proposed capable of classify-
ing the loitering at three levels of suspicion (low, medium,
and high). Furthermore, the accuracy of the proposed loiter-
ing detection approach demonstrates the fruitfulness of the
proposedwork.Moreover, an adaptive algorithm for identify-
ing physical distancing is proposed, which utilizes the object
detection and tracking information to calculate the actual dis-
tance between the persons and the statics about the place if
it is too much crowded by counting the average number of
persons present at the moment.

The proposed work opens up a plethora of use-cases
for detecting usual and unusual activities/events by using
the tracking information of the objects in a surveillance
environment. In future work, the work can be extended to
track multiple types of objects simultaneously and handle
long-term object occlusion. The use of context and tracking
information can be vital in detecting activities in real-time
and complex scenarios. Furthermore, due to the lack of a
standard benchmarking dataset with the labeled actual dis-
tance between the objects, complete validation will be taken
up as future work.
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