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Abstract
Automated crowd behaviour analysis and monitoring is a challenging task due to the unpredictable nature of the crowd within
a particular scene and across different scenes. The prior knowledge of the type of scene under consideration is a crucial
mid-level information, which could be utilized to develop robust crowd behaviour analysis systems. In this paper, we propose
an approach to automatically detect the type of a crowded scene based on the global motion patterns of the objects within
the scene. Three different types of scenes whose global motion pattern characteristics vary from uniform to non-uniform
are considered in this work, namely structured, semi-structured, and unstructured scenes, respectively. To capture the global
motion pattern characteristics of an input crowd scene, we first extract themotion information in the form of trajectories using a
key-point tracker and then compute the average angular orientation feature of each trajectory. This paper utilizes these angular
features to introduce a novel feature vector, termed as Histogram of Angular Deviations (HAD), which depicts the distribution
of the pair-wise angular deviation values for each trajectory vector. Since angular deviation information is resistant to changes
in scene perspectives, we consider it as a key feature for distinguishing the scene types. To evaluate the effectiveness of the
proposed HAD-based feature vector in classifying the crowded scenes, we build a crowd scene classificationmodel by training
the classical machine learning algorithms on the publicly available Collective Motion Database. The experimental results
demonstrate the superior crowd classification performance of the proposed approach as compared to the existing methods. In
addition to this, we propose a technique based on quantizing the angular deviation values to reduce the feature dimension and
subsequently introduce a novel crowd scene structuredness index to quantify the structuredness of an input crowded scene
based on its HAD.

Keywords Crowd behaviour analysis · Crowd collectiveness · Crowd scene analysis · Machine learning · Video surveillance

1 Introduction

The rapid advances in technology combined with the contin-
uous growth in the human population have increased the need
to develop efficient automated video surveillance-based tech-
nologies.As a result, automated crowdvideo surveillance has
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become a popular research area with the motive of ensuring
crowd safety. Crowd behaviour analysis [1–3], crowd density
estimation/crowd counting [4–6], crowd anomaly detection
[7–9], and group detection [10–12] are some of the widely
researched areaswithin the crowdvideo surveillance domain.
In most of these research areas, the performance of the pro-
posed approaches is primarily dependent on the nature and
type of the crowded scene [13]. In other words, an approach
that performs well for one scene does not guarantee the same
performance for a different scenario, especially when the
scene dynamics changes.

Analysing the pattern of object motion (people/traffic)
within a given crowded scene is one of the effective meth-
ods to understand the changes in scene dynamics. According
to [14] and [15], crowded scenes can be categorized into
structured and unstructured based on the motion patterns
of objects within the scene. A structured scene consists of
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Fig. 1 Examples of : a
structured scene and its motion
patterns, b semi-structured
scene and its motion patterns,
and c unstructured scene and its
motion patterns. Note that, the
motion patterns are represented
in the form of trajectories, with
each colour representing
different motion patterns (best
viewed in colour)

uniform spatio-temporalmotion patterns generated by coher-
entlymoving objects across the entire scene (Fig. 1a). In other
words, in a structured scene, each spatial location contains
the samemotion pattern, and the direction of motion remains
constant formost of the time. In contrast, non-uniform spatio-
temporal motion patterns generated by random or chaotically
moving objects with unpredictable and frequently varying
motion directions make up an unstructured scene (Fig. 1c).
However, the scenes with motion patterns that are neither
uniform nor chaotic are called semi-structured (Fig. 1b).

Identification of the type of a crowded scene is a crucial
mid-level information about the scene under consideration.
This information helps in the development of an efficient
crowd behaviour analysis model. Additionally, this prior
knowledge could be applied for crowd monitoring within
a particular scene by re-assessing the scene type at particular
intervals of time to keep track of the stable-unstable changes
in state of the crowd. This paper proposes an approach to
classify a given crowded scene into either structured or semi-
structured or unstructured based on the motion patterns rep-
resented in the form of trajectories. The proposed approach
is an extension of our previous work [11] related to crowd
motion pattern segmentation using spatio-angular features
of the trajectories and an improvised density-based cluster-
ing algorithm. Compared to [11], the proposed approach
utilizes only the angular features obtained from the trajec-
tories (computed using the gKLT tracker [16]) to compute
pair-wise angular deviations between the trajectories. In this
work, we additionally compute the histogram of the angular
deviations (HAD) which depicts the global motion struc-
ture of a scene. To evaluate the HAD-feature’s ability, to
classify a given scene into either structured, semi-structured
and unstructured, we use the publicly available Collective
Motion Database to train different classifiers and compare
our classificationmodel with the state-of-the-art crowd scene
classification approaches which are based on the collec-

tiveness measure. Furthermore, we perform experiments on
reducing the original feature dimension by quantizing the
angular deviation values into different levels. Finally, using
the proposed HAD-based feature vector and a reference his-
togram for a structured scene, we introduce a measure to
quantify the structuredness of a given input scene. The fol-
lowing are the contributions of the proposed work: (i) a novel
HAD-based feature vector combined with a robust classi-
fier for efficient crowd scene classification, (ii) an effective
quantization-based feature reduction technique for the pro-
posed HAD-feature vector, and (iii) a novel crowd scene
structuredness index to quantify the structuredness of a given
scene based on its HAD.

2 Related works

While numerous works have been done on motion pattern-
based crowd analysis [3,12,17–20], only a few of them
focus on classifying a scene into the aforementioned three
categories (structured, semi-structured, and unstructured).
Among them, Zhou et al. [16,21] introduced a descriptor to
quantify a crowded scene based on its ‘collectiveness’, which
is defined as “the degree of individuals acting as a union
in collective motion”. Three types of collectiveness mea-
sures were introduced in their work, namely high, medium
and low collectiveness. From their definition, a high degree
of collectiveness is a typical characteristics of a structured
scene, low degree of collectiveness is seen in unstructured
scenes, and semi-structured scenes have medium degree
of collectiveness. Since the concepts of high, medium and
low collectiveness matches the characteristics of a struc-
tured, semi-structured and un-structured crowded scenes,
respectively, we compare our work with the collectiveness-
based crowd scene classification approaches in the literature.
In Zhou et al.’s approach [16,21], a k-Nearest Neighbour
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Fig. 2 Block diagram of the proposed approach, where a generalized KLT (gKLT) Tracker [16] is used to extract a set of n trajectories (represented
as {ti }, where i = 1 : n) from the input video. Average angular orientation features (represented as {θ ti }) computed from the trajectories is then
used to compute angular deviation information between each pair of average angular features θ i and θ j . The histogram of angular-deviation (HAD)
information is subsequently used to train a classifier to predict the scene type

(k-NN) graph is initially constructed with the edge-weights
representing the velocity correlation between trajectory vec-
tors. To capture the global behaviour between the trajectory
points, the concept of path-based similarity within the
weighted graph is employed. Finally, the crowd collective-
ness descriptor is computed by aggregating the individual
path-based similarities between the nodes in the graph. As
a part of this work, Zhou et al. introduced the Collective
Motion Dataset (refer Sect. 4.1) for validating the perfor-
mance of their descriptor. In a similar work, Ren et al. [22]
refined the technique for aggregating the topological path-
based similarity (introduced in [16]) by using an exponent
generating function to produce an improvised collectiveness
measure. In another work, Shao et al. [23,24] used a Markov
chain-based approach and proposed a Collective Transition
(CT) Prior to model the crowd group behaviour. The CT-
prior is then used to define group-level collectiveness of the
crowd. In contrast, Li et al. [25] used a point selection strat-
egy to refine the features points which are tracked, followed
by a manifold ranking approach to compute the crowd col-
lectiveness. In an extended work, Li et al. [10,26] modelled
the motion intention of individuals in a scene by proposing
an intention-aware model which is combined with a man-
ifold ranking strategy to compute the collectiveness of the
crowd.Recently,Roy et al. [27] proposed an approach to clas-
sify a given crowded scene into structured, semi-structured
and unstructured based on the definitions presented in [15].

Roy et al. [27] used the direction property of the crowd and
divided each frame into non-overlapping blocks to compute
angle/orientation histograms for each block from the trajec-
tory data. Before combining all the block-level orientation
histograms, aGaussian averaging and an angular value-based
quantization approach are used to refine each of them.

Most of the aforementioned approaches measure frame-
by-frame collectiveness value and subsequently average
them (for all the frames) to compute the total collectiveness
of a given video. Such frame-by-frame approaches lead to
huge variations in the measured collectiveness because of
the continuous change in the motion patterns of the trajec-
tory key-points between frames. Also, these approaches are
heavily dependent on their model initialisation parameters
and are computationally complex. In contrast, we propose a
multi-frame approach by simply averaging the trajectory data
for fixed set of frames, which not only enables to capture the
history of motion but also produces a more stable feature
vector (to quantify crowd collectiveness) as compared to the
frame-by-frame approaches. Furthermore, even though our
approach is similar to [27] in using histogram based on the
direction property of the crowd, the essential difference lies
with the use of a more robust and distinctive histogram of
angular deviation instead of histogram of angular orientation
(explained in Sect. 3). Finally, our approach is parameter-free
and is computationally inexpensive.
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(a) (b) (c) (d)
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Angular orientation 

Angular deviation
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Fig. 3 Histogram of Angular Orientations versus Histogram of Angular Deviations. Each row represents data related two different structured
scenes: a Frames from each of the two scenes, b Averaged displacement vectors overlaid on the frame, c Histogram of angular orientations, d
Histogram of angular deviations

3 Crowd scene classification using
Histogram of Angular Deviations

According to [16,28–30], from the macroscopic point-of-
view, the moving crowd has a high degree of collective or
structured behaviour if majority of the participants in the
crowd move together uniformly in the same direction. Based
on this property of the crowd, we propose an approach
to classify a given crowded video into either structured,
semi-structured or unstructured by computing the angular
orientation information of the moving crowd. The proposed
approach is detailed in the following paragraphs according
to the block diagram shown in Fig. 2.
Extract Trajectories(Tracking): Given an input crowd video,
the first step is to capture the motion of the crowd. This
is done by using an accurate and computationally efficient
generalized KLT (gKLT) tracker introduced by Zhou et
al. [16], which detects and tracks key-points (corner fea-
tures) between consecutive frames of the video. Factors
like occlusion and illumination variations can produce noisy
trajectories with very short length or instances of zero-
displacement values for the major part of a trajectory. Such
noisy trajectories are discarded using pre-defined thresholds
(determined empirically).
Compute Average Angular Orientation: A trajectory is a set
of 2D coordinate points that depict a key-point (belonging to
an object in the scene) movement across a set of consecutive
frames. An effective approach to capture the direction of the
moving crowd from the trajectory data is to first compute the

average of frame-by-frame displacements for each trajectory.
The average angular orientation θ ti for each trajectory is then
obtained from the already computed average displacement
vector by projecting it onto a unit vector in the horizontal
direction (along x-axis), as demonstrated in [11].
Compute Histogram of Angular Deviations (HAD): For each
trajectory, the average angular orientation value signifies the
history of the trajectory movement for a period of time. If all
the averaged trajectory vectors in the scene approximately
point towards the same direction, then the scene is said to be
structured. If the trajectory vectors are scattered in different
directions, then it characterizes an unstructured scene. There-
fore, analysing the distribution of orientation values or the
histogram of angular orientation gives a clear picture of the
global movement characteristics of objects within a scene.
However, as shown in Fig. 3c, even though the histogram
of angular orientations for two different structured scenes
clearly characterizes the structured behaviour, it produces
peaks at different locations of the histogram. Therefore, the
values of the histogramof angular orientations cannot be con-
sidered as a distinguishing feature in its original form.Hence,
in this work, we compute a robust histogram of angular devi-
ations instead. The angular deviation (Δθ ti j ) between two
averaged trajectory vectors θ ti and θ t j is defined as follows
[11]:

Δθ ti j = min(|θ ti − θ t j |, 360 − |θ ti − θ t j |) (1)

123



Motion pattern-based crowd scene classification using HAD of trajectories 561

(a) (b) (c)

Angular deviation Angular deviation Angular deviation

Fig. 4 a Structured scene and its HAD, b Semi-structured scene and its HAD, and c Unstructured scene and its HAD

where the range of θ ti j is between 0◦ and 180◦ (inclusive of
both). Computing the histogram of pair-wise angular devi-
ation values (for each trajectory vector with every other
trajectory vectors) provides a global/scene-level picture of
correlation of the trajectory vectors in terms of angles. If the
histogram is peaked close to the angular deviation value of
0◦, it means that themajority of trajectory vectors in the scene
move in the same direction (structured scene). Therefore, as
shown in Fig. 3d, the HAD produces consistent peaks for dif-
ferent scenes of the same type as compared to the histogram
of angular orientations. Given an input scene, we compute
theHADand consider the values of theHADas a feature vec-
tor representing the type of scene. Since the range of Δθ ti j
is [0◦, 180◦], the dimension of the HAD-feature vector is
181. The HADs for three different types of scenes, shown in
Fig. 4, justifies the discriminative capability of the proposed
HAD feature vector.
Classification: The HAD-features are used to build a super-
visedmachine learningmodel for classifying agiven crowded
scene into either of the three categories. For this purpose,
we use the Collective Motion Database [16] (refer section
4.1, for more details of the dataset). Since this dataset con-

tains less data (413 videos) and the proposed HAD-feature
vector dimension is large, we choose the nonlinear classi-
cal machine learning algorithms for our experimentation.
Based on exhaustive experimentation over different classical
machine learning algorithms, we observe that the proposed
HAD feature vector can efficiently discriminate most of
the scenes in the Collective Motion Database. The results
of this experimentation are presented in Sect. 4, where for
the sake of simplicity, we have selected the best-performing
classical machine learning algorithms, namely Weighted k-
NearestNeighbours (Weighted k-NN) [31], ν-SupportVector
Machines (ν-SVM) [32], and Tree ensembles based on an
efficient implementation of gradient boosting called eXtreme
Gradient Boosting (XGBoost) [33].

4 Experimental results & discussion

4.1 Dataset

The Collective Motion Database (introduced by Zhou et
al. [16]) is used for evaluating the effectiveness of the pro-

Table 1 Statistics for the
Collective Motion Database

Scene type (Label-ID) No. of scenes

Structured (2) 90

Semi-structured (1) 107

Unstructured (0) 216

Total 413
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Table 2 Comparison of binary classification performances (measured using the performance metrics—Precision (P), Recall (R), and F1-Score) of
the proposed approach with the state-of-the-art on the Collective Motion Database (The best score is marked in bold)

Approach Structured- Unstructured Structured-Semi-structured Semi-structured- Unstructured

P R F1- Score P R F1- Score P R F1- Score

Zhou et al. [16] 0.81 0.58 0.51 0.76 0.57 0.48 0.74 0.47 0.40

Shao et al. [24] 0.88 0.60 0.58 0.79 0.55 0.52 0.73 0.49 0.44

Li et al. [10] 0.92 0.71 0.75 0.87 0.70 0.69 0.83 0.72 0.65

Proposed HAD (Weighted k-NN) 0.94 0.92 0.93 0.87 0.88 0.87 0.86 0.85 0.85

Proposed HAD (ν-SVM) 0.95 0.94 0.95 0.89 0.88 0.88 0.84 0.84 0.84

Proposed HAD (XGBoost) 0.95 0.95 0.95 0.86 0.85 0.85 0.84 0.84 0.84

posed approach. The dataset contains a total of 413 crowd
video sequences, with each video containing 100 frames. The
dataset also contains ground truth labels for each scene (the
labels belong to the set {0, 1, 2}) , where ‘0’ refers to scenes
with low-collectiveness (unstructured scenes in the context
of ourwork), ‘1’ refers to sceneswithmedium-collectiveness
(semi-structured scenes) and ‘2’ refers to scenes with high-
collectiveness (structured scenes). The ground truth labels
are generated by major voting the manually decided labels
by 10 human subjects, for each scene. Data statistics in Table
1 shows that 52% of the dataset consists of unstructured
scenes, while 22% are structured and the rest 26% are semi-
structured, which means that the dataset is imbalanced.

4.2 Experimental set-up

For each scene of the Collective Motion Database, a set of
3000 key-points (as per [16]) are detected and tracked for
entire duration of the video using the gKLT tracker. The
average displacement is computed for each set of 30 consec-
utive frames. For the ease of evaluation we experimentally
choose 30 consecutive frames from the entire trajectory data
which best represents the crowd behaviour (as per [24]).
The noisy trajectories are then filtered by discarding the
trajectories with total length less than 5-frames, and zero-
displacement throughout the trajectory’s span (occurring due
to tacking/motion estimation errors). After computing the
HAD, the count values of the histogram are normalized in
the range [0, 1]. Since the dataset is imbalanced, classifier’s
performance is evaluated by employing a stratified 10-fold
cross-validation with Precision, Recall and F1-Score chosen
as the evaluation metrics [34]. The essential hyperparame-
ters (determined empirically based on repeated experiments)
used to configure the three classifiers are: (i) Weighted k-NN
model uses Bhattacharya distance measure [35] with optimal
results obtained for the k-value of 10, (ii) the ν-SVM model
uses a Radial Basis Function (RBF)-based kernel with an ν

value of 0.3, and (iii) XGBoost-based tree ensemble model

uses 30 trees for each ensemble with maximum depth set to
3 and a learning rate of 0.1.

4.3 Results & discussion

Firstly, we compare the classification performance of the
proposed HAD-based approach with the state-of-the-art
approaches [16], [24], [10], which reports only binary classi-
fication results for the pair-wise combinations of structured
vs. structured, structured vs. semi-structured, and semi-
structured vs. unstructured scenes. The results shown inTable
2 (results for the existing approaches are obtained from the
paper [10]) clearly indicates the superior performance of
the proposed HAD-based approach, which is also able to

Table 3 3-Class Classification (Structured, Semi-structured, and
Unstructured) performance for the proposed HAD-based approach
using the selected classifiers (The best score is marked in bold)

Classifier Precision Recall F1-Score

Weighted k-NN 0.84 0.82 0.82

ν-SVM 0.83 0.80 0.81

XGBoost 0.82 0.80 0.80

Table 4 Confusion matrix for 3-Class Classification (0: Unstructured,
1: Semi-structured, 2: Structured) using the Weighted k-NN classifier

Actual class

Predicted class
199 14 3

0

20 74 13
1

3 10 77
2

0 1 2
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perform consistently well for each of the selected three clas-
sifiers. The state-of-the-art approaches work by modelling
complex interactions among the trajectories to generate a
collectiveness measure. Since this measure is a single value
and is heavily dependent on the scene dynamics and sub-
sequently the model parameters, a small amount of anomaly
can adversely effect the collectiveness value,which is amajor
reason for the lowscores formost state-of-the-art approaches.

On the contrary, the proposed HAD-based approach depends
only on the accuracy of the tracker (which is applicable
to the state-of-the-art approaches as well) and comprises
of a multi-valued feature vector where a small amount of
anomaly does not create a drastic change in the overall fea-
ture vector. It is also observed that the proposed approach
is most effective in classifying structured and unstructured
scenes. This is because, as demonstrated in Sect. 3, the dif-

Fig. 5 Visualization of the HADs for each level of quantization of the
angular deviation values. Each row represents the HADs for structured
(top-row) and unstructured scenes (bottom-row). From left to right:
Frames from the input scene with trajectory vectors, the original HAD

with feature vector dimension 181 (bin width = 1), and some of the
quantized HADs with feature vector dimensions: 36 (bin width = 5), 18
(bin width = 10), and 6 (bin width = 30)
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Fig. 6 Binary and 3-class classification performances of the proposed approach for varying feature dimension using Weighted k-NN classifier,
where the feature dimension is varied by quantizing the angular deviation values (the F1-scores for all the approaches are highlighted in red-font
for easier interpretation)
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ferent possible values for angular deviations for a structured
scene is very less and is close to 0◦. Whereas, an unstruc-
tured scene contains objects moving in different directions
due to which a variety of values are possible for the angular
deviation. However, there are instances of several misclas-
sification in the case of structured vs. semi-structured and
semi-structured vs. unstructured classifications, due to the
close resemblance of the semi-structured scenes with both
structured and unstructured scenes. This is also evident from
Tables 3 and 4, where we list out the three-class (structured,
semi-structured, unstructured) classification performance of
the proposed approach for the selected classifiers. Further-
more, since Roy et al. [27] uses a different proportion of
scenes for each class (as compared to Table 1) and their
binaries are not available, we are unable to quantitatively
compare their results. Nonetheless, the dimension of the pro-
posed HAD-based feature vector is 20-times lesser than the
feature vector proposed by Roy et al. [27]. More importantly,
the proposed HAD-based approach uses the angular devia-
tion measure, which is not only globally consistent within a
scene but also consistent across different scenes (Figs. 3 and
4), as compared to the angular orientation-based feature used
in [27].

Secondly, we examine the effect of reducing the feature
dimension by quantizing the angular deviation values. For
this purpose, we choose the weighted k-NN classifier based
on the Bhattacharya Distance measure [35], since it gener-
alizes well to reduction in feature dimension. The original
angular deviation values in the range [0◦, 180◦] (having 181
levels with bin width = 1) are quantized into different lev-
els, viz. 90, 60, 45, 36, 18, 12, 9, and 6 with each level having
a histogram bin width of 2, 3, 4, 5, 10, 15, 20 and 30, respec-
tively (the last bin will have bin width = bin width + 1).
As a result of this quantization, adjacent angular deviation
values within a particular range (defined by the bin width
corresponding the quantization level) contribute to a single
histogram bin count. The visualization of the changes in the
HAD structure after the quantization operation (for different
levels) can be realised from Fig. 5. It is observed that the
HADs, for all levels of quantization, retains the same global
structure. Figure 6 shows the performancemetrics for each of
the reduced feature vector applied over the CollectiveMotion
database, where it is observed that increasing the bin width
does not drastically decrease the classification performance.
More importantly, the reduced feature vectors can distinguish
the structured and unstructured scenes effectively. This is pri-
marily because of the nature of the two scenes. In structured
scenes, the pair-wise angular deviation between the majority
of trajectory vectors is minimal, resulting in a peak close to
the 0◦ bin in the histogram.Whereas, in unstructured scenes,
the pair-wise angular deviation between the trajectory vec-
tors is notminimal and can take up any values, resulting in the
values distributed across the histogram with no clear peaks.

Fig. 7 a The reference structured scene chosen from the Collective
Motion Dataset (scene name: “startRunning5”), and b its HAD with
feature dimension = 90, bin width = 2

Hence, increasing the bin width does not effect the major
trend in HAD and thus the capability for discriminating the
structured and unstructured scenes. However, it can be also
be observed that decreasing the feature dimension limits the
capability of the classifier in discriminating subtle variations
in the scenes, especially in the case of some semi-structured
scenes whose HADs are either similar to that of unstructured
or structured scenes. Since, reduction in feature dimension
results in faster computations, we focus on choosing a feature
dimension from Fig. 6 which does not significantly reduce
the classification performance. Based on the data in Fig. 6,
we make the following two conclusions: (i) the classification
performance of the reduced feature vector with dimension
equal to 90 (binwidth = 2) is equivalent to overall perfor-
mance of the original feature vector (for 2-class and 3-class
classification). Thus, the HAD with feature dimension equal
to 90 is considered as an optimal choice for crowd classifi-
cation. (ii) the HAD with feature dimension equal to 9 can
be used for structured-unstructured scene classification.

4.4 Crowd scene structuredness index

Based on the Collective motion dataset and its HAD data
(for each scene), we empirically define a measure, termed as
the crowd scene structuredness index, to quantify the struc-
turedness for a given scene (in the scale of 0 to 1). For this
purpose, we consider a reference histogram to be one of the
scenes (shown in Fig. 7) within the Collective motion dataset
which is closest to an ideal structured scene. Now, for a given
input scene, we compute the HAD (here, we use the HAD
with feature vector dimension 90) and then, compare it with
the reference histogram using the Bhattacharya coefficient
measure as shown in Eq. 2.

φ(r , q) =
∑

x∈B

√
r(x)q(x) (2)

where, the crowd scene structuredness index is represented
using the function φ, which quantifies the amount of struc-
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Fig. 8 Box plot of the crowd scene structuredness index (φ-value) for
structured, semi-structured and unstructured scene categories (the φ-
value is computed for all the scenes of the Collective motion dataset
and the box plots are computed category-wise)

turedness of the computed HAD (denoted as q) when
compared to the referenceHAD(denoted as r ), and B denotes
the set of all bins in the histogram. The entire term in the
right hand side of Eq. 2 represents the Bhattacharya coef-
ficient, a part of the Bhattacharya distance metric, which is
widely used to measure the similarity of two distributions.
The statistical details of this experiment are shown in Fig. 8,
which clearly indicate the separability between the structured
and unstructured classes. The following can be concluded
from Fig. 8: (i) the scenes with φ-value greater than 0.55
have structured motion patterns (greater the φ-value, more
the structuredness), (ii) the scenes with φ-value less than or
equal to 0.55 have unstructured motion patterns (lower the
φ-value, greater the unstructuredness), and (iii) the scenes
with values between 0.40 and 0.65 are semi-structured with
values greater than 0.55 indicating a small amount of struc-
turedness within the scene and values less than or equal to
0.55 indicating a small amount of unstructuredness within
the scene.

5 Conclusion

In this paper, a feature vector based on the histogram of
angular deviations (HAD) of averaged trajectory vectors
was proposed to classify a given crowded scene into struc-
tured, semi-structured and unstructured, based on global
motion patterns. The proposed HAD-based feature vector
is composed of values which depict the count of each pos-
sible angular deviation value between 0◦ and 180◦. Since a
structured scene contains objects moving uniformly in the
same direction, the pair-wise angular deviations between the
majority of trajectory vectors will be minimal. This creates
a well distinguishable peak in the HAD close to the 0◦-bin.

Whereas, for an unstructured scene, the angular deviations
values are distributed across various bins of HAD, due to the
motion of the objects in different directions. Based on this
notion, the experiments performed on the publicly available
CollectiveMotionDatabase using classicalmachine learning
algorithms prove the robustness of the proposed HAD-
feature in distinguishing different scene types, specifically
structured and unstructured scenes. Furthermore, the pro-
posed approach outperforms the state-of-the-art approaches
in binary classification of different combinations of the var-
ious scene types. The experiments conducted on quantizing
the angular deviation values to reduce the feature dimension
proved that the reduced feature vector with dimension equal
to 90 (bin width equal to 2) performs as good as the original
feature vector of dimension equal to 181, making it an opti-
mal feature dimension for classifying crowded scenes based
onmotion patterns. Finally, based on comparing the proposed
HADwith a referenceHADwhich depicts an ideal structured
scene, we define a crowd scene structuredness index (based
on Bhattacharya coefficient) which quantifies the amount
of structuredness in a given scene. As a future work, we
intend to improvise the computation of HAD by introduc-
ing a penalty function that penalizes unstructured behaviour,
thereby improving the 3-class classification performance and
increasing the separation between the three classes. Further-
more, in order to distinguish between all the three types
of crowded scenes even better, we intend to explore about
the possibility of including additional features other than the
angular deviation feature.
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