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Abstract
Chest radiography (X-ray) is the most common diagnostic method for pulmonary disorders. A trained radiologist is required
for interpreting the radiographs. But sometimes, even experienced radiologists can misinterpret the findings. This leads to
the need for computer-aided detection diagnosis. For decades, researchers were automatically detecting pulmonary disorders
using the traditional computer vision (CV) methods. Now the availability of large annotated datasets and computing hardware
has made it possible for deep learning to dominate the area. It is now the modus operandi for feature extraction, segmentation,
detection, and classification tasks in medical imaging analysis. This paper focuses on the research conducted using chest X-
rays for the lung segmentation and detection/classification of pulmonary disorders on publicly available datasets. The studies
performed using the Generative Adversarial Network (GAN) models for segmentation and classification on chest X-rays are
also included in this study. GAN has gained the interest of the CV community as it can help with medical data scarcity. In this
study, we have also included the research conducted before the popularity of deep learning models to have a clear picture of
the field. Many surveys have been published, but none of them is dedicated to chest X-rays. This study will help the readers
to know about the existing techniques, approaches, and their significance.

Keywords Deep convolutional neural network · Computer vision · Lung segmentation · Multiclass classification · Nodule,
TB, COVID-19, Pneumothorax detection · GAN

1 Introduction

The medical science branch can be categorized into two
classes: anatomy and physiology. Information based on
visual appearance comes under anatomy, while physiologi-
cal information might not be visible, for example, diet, age, a
parameter from the blood test. Medical imaging comes under
the anatomy class. Magnetic resonance imaging (MRI),
computed tomography (CT) scan, X-rays are few clinical
examinations used for probing pulmonary disorders. X-rays
hold a valued position and is a primary diagnostic tool for
many medical conditions because of its ease to use and low
cost.
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The first X-ray of small animals is reported back in 1895
[113]. It is an imaging technique that uses radiations to pro-
duce images of organ tissues and bones. It is a very common
clinical examination used by the radiologist for diagnosing
pulmonary diseases. The chest radiograph is captured by
passing the X-ray beam through the body. It is done in two
ways: in posterior–anterior (PA) the beam is passed from
back to front, and anterior–posterior (AP) where the beam
is passed from the front to back. It appears black and white
depending on the X-ray absorption because of the different
density body parts. Bones are of high density so it appears
white, while muscles and fat appear gray. The air in the lungs
appears black because of its low density. Chest X-ray cap-
tures the lungs, heart, rib cage, airways, and blood vessels.
It is a common diagnosis for pneumonia, tuberculosis (TB),
pulmonary nodule, lung tissue scarring called fibrosis, and
others. It provides the thorough examination of the patient’s
chest but requires interpretation by a qualified radiologist.
Variation in shape-size and overlapping of organs such as
lung fields with the rib cage, fuzzy intensity transitions near
the boundary of heart and lung, makes the interpretation
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difficult even for an expert. Therefore, the discrepancy is
reported in the interpretation of X-rays among radiologists
and physicians in an emergency [4,129]. Further, the rapid
rise in workload and complexity increases the chances of
wrong interpretation.

In the 1960s, with modern digital computers, X-rays were
getting analyzed.Almost twodecades later, the research com-
munity was focusing on CAD to assist the radiologist [45].
In the late 90s, using training data for the development of
automated supervised system were becoming popular. From
deformable models (used in segmentation) to statistical clas-
sifiers were developed for diagnosing medical conditions.
There are fourmain components ofCADsystems: image pre-
processing, segmentation, extraction of the region of interest
(ROI), and classification. Inmedical imaging, pre-processing
steps like enhancement technique (histogram equalization)
and rib cage suppression can help in the identification of
abnormality in the chest. Lung segmentation helps in remov-
ing the non-lung part from the computation as ROI lies inside
it and helps in better analysis of clinical parameters. Segmen-
tationmay decrease the false positive (FP), as any knowledge
outside the lung is irrelevant. Lung segmentation is a chal-
lenging task as there is variation in shape, size (due to age),
gender, and the overlapping of clavicles and rib cage. Many
different segmentation methods were developed such as sim-
ple rule-based [28,40,94] to adapting deformable models
[32,82], but since the popularity of complex deep learning
architectures [12,141], most of the segmentation studies are
using them. The convolutional neural network (CNN) is the
most used technique for image analysis. The first CNNmodel
was Neocognitron [41]. CNN was used for the first time in
lung nodule detection [100]. LeNet [91] was the first real-
world CNN application where it recognized the handwritten
digits, but CNN gained popularity with AlexNet [87] which
is a deep CNN. Many research studies for multi-class pul-
monary classification [53,185], lung nodule detection [93],
TB detection [49] using deep CNN are published. Apart from
the medical diagnosis, CNN can be used on handwritten text
segmentation [69], facial emotion [2,80], and face detection
[138]. Further,GANmodels are used for generating synthetic
imaging data that can reduce the dependency for collect-
ing medical image datasets, as it involves legal and privacy
issues. In recent years, a significant research on segmentation
and classification involving GAN has been published.

With the resurgence of DL in CV from 2012, most of the
research work published in medical imaging is using it. DL
models require a large dataset for the training. Research labs
and groups working in the field have collected and anno-
tated large medical image datasets. These groups have made
datasets public for research in the deep learning field. Some
publicly available chest X-ray datasets are Japanese Society
of Radiological Technology (JSRT) [151], Chest X-ray-14
(CXR-14) [175], CheXpert [71]. Advancement in hardware

such as graphical processing unit (GPU) and release of large
annotated medical datasets has increased the pace of work in
themedical imagingfield.Many surveys have been published
on medical image analysis and deep neural networks. One of
the most recent and detailed are [98] and [50], respectively.

In this study,we have tried to obtain insight into the field of
deep learning in medical image analysis. The intention is to
collect and present the research done in the last three decades
on concerning topics. An attempt has also been made to col-
lect and discuss the publicly available chest X-ray datasets.
To the best of knowledge, no survey has been published
which together studied the segmentation, classification, and
GAN model application involving chest X-rays. Surveys on
these topics are published, but none of them is dedicated to
chest X-rays only. These surveys are mostly conducted for
CT scans [104,187,191]. This paper is categorized into eight
sections. Section 2 discusses the most commonly diagnosed
pulmonary disorders with X-rays. Section 3 provides a brief
overview of the deep neural networks. Section 4 lists some
of the publicly available datasets of chest X-rays. Section 5
discusses the work done in lung segmentation, and Sect. 6
deals with pulmonary disease detection along with multi-
class classification. Section 7 followed by Sect. 6 discusses
the segmentation and classification work done on X-rays
using the GAN models. And Sect. 8 concludes the whole
exercise. The categorization of the paper is given in Fig. 1.

2 Diagnosis with chest radiographs

ChestX-rays can help in the diagnosis of different pulmonary
disorders such as nodules, tuberculosis (TB), pneumothorax
andmanyothers. Pulmonary disorders canbe life-threatening
if not diagnosed at an early stage. In the following, we have
given a brief overview of the diseases that can be diagnosed
with chest X-rays.

TB is a deadly disease that is responsible for a million
death according toWorld Health Organization Global Tuber-
culosis report [124]. Mantoux tuberculin skin tests (TST) or
TB blood tests are conducted to detect it, but these tests are
expensive. Chest X-rays are cheap and fast that can help
in pulmonary TB detection. A lung nodule is another life-
threatening condition that can cause cancer if not detected
at an early stage. The five-year survival rate of the cancer
patient is very low [153]. CT scans are most useful for early
detection [57], but the low cost associated with the chest X-
rays makes it popular for nodule detection.

Other pulmonary conditions that can be diagnosed with
X-rays are pneumonia, atelectasis, cardiomegaly, pneu-
mothorax, consolidation, emphysema, fibrosis, hernia and
COVID-19. Atelectasis is a collapse of complete or partial
lung area because alveoli within the lung is filled with alveo-
lar fluid or becomes deflated. The airspace between the lung
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Fig. 1 Categorization of the paper

and the chest wall causes pneumothorax. Cardiomegaly is
due to the enlargement of the heart. It can be the result of
stress on the body, abnormal heart rhythms, or kidney-related
diseases. On the other hand, emphysema is a chronic obstruc-
tive pulmonary condition that results in chronic cough and
difficulty in breathing. The viral/bacterial infection can be
the reason of pneumonia. While COVID-19 is also a kind of
pneumonia caused by coronavirus. Chest X-rays can help in
early detection and isolation of patients.

3 Overview of deep learning

DL algorithms are a subset of machine learning that are
designed to recognize or extract the patterns. It consists of
artificial neurons that store the weight and help in extracting
the unseen patterns.DLperformsmuch better than traditional
CV algorithms, but it is data-hungry and also requires more
computational power. Improvement in computing power and
availability of large annotated datasets has increased the
acceptability ofDLmodels.Unlike traditionalCValgorithms
that use conventional feature extraction techniques, DLmod-
els extract the feature vectors directly from the data. The
workflow of CV and DL models is described in Fig. 2.

3.1 Evolution of neural network to deep learning

The neural networks can be traced back to 1943 when
neuro-physiologist Warren McCulloch and mathematician
Walter Pitts wrote about possible neuron functioning. Then,
Rochester et al. [139] and Rosenblatt [142] simulated the
first neural network and proposed the concept of perceptron,
respectively. After the 1960s, research on neural networks
partially halted, but later in the 1980s Fukushima et al. [41]
proposed the first CNN model, and LeCun et al. [90] pre-

sented the first CNN application for digit recognition. Later,
many advanced research models and techniques were pub-
lished [56,70,87,156].A timeline of events from the proposed
theory of neural network to the advanced deep learning archi-
tecture is given in Fig. 3.

3.2 Overview of deep CNN architectures

CNN was introduced with Neocognitron [41], but AlexNet
revolutionizes the CV field after winning the ILSVRC-
12 challenge. LeNet and AlexNet have the same design
methodology but have different network depth, activation,
and pooling function. Architectures proposed in later years
are the AlexNet variations but are effective in classification
results on the ImageNet dataset. In ILSVRC-12, AlexNet
achieved 84.7% and in ILSVRC-17, NASNet [192] achieved
96.2% top-5 accuracy which is quite impressive. In this sub-
section, a brief discussion of popular deepCNNarchitectures
is presented. Figure 4 shows the basic building blocks of few
popular deep learning architectures.

3.2.1 AlexNet

Krizhevsky et al. [87] proposed the eight-layer CNN for
the image dataset classification. It showed that the features
obtained by automatic learning could surpass the conven-
tional methods used in the traditional CV domain. In the
proposed network, there are eight stacked weighted layers
out of which five are convolutional layers followed by fully
connected layers. It used the dropout, data augmentation,
local response normalization, and overlapped pooling for the
first time. It also replaced the tanh activation function used
in LeNet with the ReLU [116] activation function.
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Fig. 2 Workflow of a Computer Vision and b Deep Learning

3.2.2 GoogLeNet

GoogLeNet [159]won the ILSVRC-14 challengewith 6.67%
top-5 error. It introduced a new block called Inception
(Fig. 5(b)). It uses padding to give the same height and width
to the input/output. There are nine inception blocks in the
architecture and at the end; fully connected (FC) layers are
replaced byGlobal Average Pooling(GAP)[97]. The replace-
ment ofFC layerswithGAP reduces the trainable parameters.

3.2.3 VGGNet

Visual Geometry Group from Oxford University introduced
the VGG [152] in the ILSVRC-14 challenge. It became pop-
ular for the introduction of the repetitive blocks consisting
of two/three convolution layers with ReLU activation func-
tion, followed by max-pooling layers. Unlike the AlexNet,
VGGNet has only 3×3 convolutional layers. It achieved sig-
nificant improvement in the results by increasing the network
depth to 16-19 layers.

3.2.4 ResNet

Heet al. [56] introduced theResNetmodel in the ILSVRC-15
challenge and achieved 3.57% top-5 error. The plain network

introduced in the original paperwas inspired by theVGGnets
where all convolutional layers were stacked. However, resid-
ual learning (shortcut connections) was introduced which
turns the plain network into a residual version (Fig. 5(a)).
The introduction of shortcut connection improved the per-
formance of the network.

3.2.5 DenseNet

Huang et al. [61] proposed theDense Convolutional Network
(DenseNet) where the layers are connected in a feed-forward
manner. The proposed network ensures the maximum infor-
mation flow between all the connected layers (Fig. 5(c)).
Except the first layer, all the layers take input from the pre-
ceding layers and pass the feature maps to successive layers.

3.2.6 EfficientNet

Most of the proposed CNN architectures are scaled by depth,
width, or dimension. VGG [152], ResNet [56], andDenseNet
[61] are few architectures that are scaled by depth. Gpipe [63]
uses 557million parameters for the image classification task.
Due to large number of parameters, it needs a parallel pipeline
library andmore than one accelerator for training. To provide
the solution for compound scaling of the network, Tan et al.
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Fig. 3 Event from the theoretical neural network to Deep Learning models

[162] introduced the EfficientNet. It is the first work in the
DL, to empirically quantify the relationship among scaling
dimensions. With compound scaling, they have proposed the
eight variants of EfficientNet (B0-B7).

4 Chest X-ray datasets

Deep learning models require a large dataset for the training.
Collecting such a large medical dataset is a hectic process as
there are legal and privacy issues. However, some research
groups have collected and annotated the chest X-rays and
released them for the research studies. Labeling can be done
in two ways: manual or automatic. Manual labeling requires
experience and expertise which is not a feasible or practical
solution for a large dataset. Automatic annotation is fast but
error-prone. Many researchers rely on these datasets for their
work. A brief details about these datasets are given in Table 1.

JSRT [151] is the most used dataset for nodule detection
and lung segmentation. It has 247 posterior X-rays collected
from fourteen institutions in Japan and the USA. Mont-
gomeryCounty (MC)dataset [73] is available on theNational
library of medicine. It consists of 138 PA radiographs of

which 80 are normal and 58 are infected with TB. Another
such dataset is Shenzhen Hospital X-ray [73] which consists
of 326 normal and 336 abnormal radiographs showing TB.
A COVID-19 dataset [31] comprising more than 600 frontal
X-rays collected from 412 people in 26 countries is released
recently.

In 2017, CXR-14 [175] was made public for the research
community by the National Library of Medicine, National
Institutes of Health (NIH), USA. Initially, it was labeled
with eight pulmonary diseases, but later, updated to 14 dis-
eases. CheXpert dataset released by the Stanford ML Group
is another large dataset. It is labeled with fourteen diseases
namely pneumonia, atelectasis, lung nodule, lung opacity,
edema, pleural effusion, and others. Figure 6 shows the com-
mon eight pulmonary conditions that can be examined in
chest X-rays.

MIMIC-CXR dataset [79] contains 371,920 x-ray images
from 60,000 patients. However, this dataset is not publicly
available. Indiana dataset [35] contains 7470 images with
3955 radiology reports. The dataset is text-mined with eight
disease labels (each image can have multi-labels). It is col-
lected from the various hospital associated with Indiana
University.
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Fig. 4 Basic structure of
different popular deep CNN
architectures

Fig. 5 Basic diagram of a Residual Block b Inception Block c Dense Block
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Table 1 Publicly available
datasets

S. no. Dataset Year Modality Instances Resolution Projection Publicly available

1 JSRT 2000 X-Ray 247 2048 × 2048 PA Yes

2 MC 2014 X-Ray 138 4020 × 4892 PA Yes

3 Shenzhen 2014 X-Ray 762 3000 × 3000 AP Yes

4 Indiana 2016 X-Ray 7470 – PA Yes

5 CXR-14 2017 X-Ray 112,120 1024 × 1024 PA/AP Yes

6 CheXpert 2019 X-Ray 224,316 – – Yes

7 MIMIC 2019 X-Ray 371,920 – – No

8 COVID-19 2020 X-ray 679 224×224 PA/AP Yes

Fig. 6 Diseases diagnosis with chest X-rays [175]

ImageNet dataset [36] is important while discussing deep
learning inmedical image analysis.DLmodels require a large
dataset and enormous computation power for training [89].
If the model is not trained enough, then there are chances of
overfitting. Therefore, many researchers have released pre-
trained deep learning models. These pre-trained models are
used for further fine-tuning the models. This technique is
known as transfer learning. With no other medical dataset
available of ImageNet size, transfer learning is extensively
applied in the medical image domain.

5 Segmentation

Extracting the information from an image with a com-
puter can be termed image processing. Dissecting the image,
depending on the objects or regions present in it is termed
image segmentation. It helps in locating and identifying the
boundaries of different objects. Object detection helps to
differentiate among objects but does not help in identify-
ing the boundaries of objects. It simply puts the square box
around the object to identify it. In chest X-rays, accurate and
automatic segmentation is a challenging problem due to vari-
ation in size of the lung, edges at the rib cage, and clavicle.
Segmentation in chest X-rays is performed for segregation
or separation of lungs, heart, and clavicles. Many methods

are proposed for lung segmentation to determine the ROI
for specific abnormalities such as lung nodules, pulmonary
TB, cavities, pulmonary opacity, and consolidations. Usu-
ally, the whole X-ray is used for training purposes, but the
presence of unnecessary organs can contribute to noise and
false positive (FP). Ginneken et al. [169,170] classified the
segmentation methods into four categories (i) rule-based, (ii)
pixel classification-based, (iii) deformable-based, and (iv)
hybrid methods. This categorization is generally followed in
the academia for writing research or survey papers. Table 2
lists the below-mentioned rule-based and deformable meth-
ods, and Table 3 lists the pixel classification methods for
lung segmentation. In the tables, if the author had calculated
the result for both lungs separately, then the average score
is mentioned. Further, if the author has used more than one
dataset for the performance evaluation, then the best score is
reported.

5.1 Rule-based segmentation

Rule-based segmentation uses prior information such as
shape, position, texture, lung intensity, and imaging features
to formulate the rules. Rule-based segmentation is done using
thresholding, edge detection, and knowledge-based rules.

Intensity thresholding identifies the lung or non-lung
region based on the threshold value, but the challenge is
to find the suitable value. A low value can result in insuf-
ficient lung contour and a high value can merge the contour
between the lung and non-lung region. Using a single gray-
level threshold value based on knowledge of X-ray, Cheng
et al. [28] segmented the left and right lung separately, while
Armato et al. [9] proposed the method based on the combi-
nation of iterative gray-level thresholding (global and local),
contour smoothing using the morphological, and rolling-ball
techniques. Iterative thresholding improves the segmentation
but makes the process computationally insufficient and slow,
while the use of static threshold values can result in poor
segmentation performance with different contrast.

Edge detection depends on the pixel intensity difference
in the lung and non-lung regions. There are sharp changes
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in intensity near the lung edges. Edge detection in lung seg-
mentation does not require any prior knowledge of the X-ray.
Duryea et al. [40] used a heuristic edge-tracing approach
with validation against hand-drawn lung fields. The proposed
algorithm is capable of segmenting both lungs separately.
The proposed lung detection algorithm took 673 seconds to
determine both lungs for 802 images (0.84 second/image).
Powell et al. [131] first used the derivative for rib cage bound-
ary detection that was later improved by Xu et al. [182,183].
Both have used the second derivative for contour detection.
The first-order derivative produces the thicker edges, while
the second-order derivative generates fine details such as thin
lines, isolated points, and noise.

Later, Li et al.[94] used the first derivative which includes
costal and mediastinal edges. The first derivative is sensitive
to noise, thus is unreliable for edge detection, but Li et al.
[94] successfully used it for lung segmentation. Rib structure
hindrance and false contour problem are successfully elim-
inated which remained in Duryea et al. [40]. It took 0.775
second per image to determine the lung contours.

In intensity and edge-based segmentation, it is possible,
not to get the desired results for a deformed anatomical
structure. Prior knowledge of the lung’s spatial, texture, and
shape characteristics can help with this issue. Brown et al.
[15] proposed a knowledge-based approach where anatom-
ical structure information is used for extracting the edges.
Another study which used the knowledge-based approach is
Luo et al. [102]. It used the lung characteristics for construct-
ing an object-oriented hierarchical model for lung regions.
After defining the initial lung contour with knowledge-based
rules, it is further improved with a robust snake model [103].

5.2 Deformable methods

The deformable models define the geometric shape of the
object. The object’s shape can change under internal forces,
external forces, or user-defined constraints. These models
have been used extensively in motion tracking, edge detec-
tion, segmentation, and shape modeling. Initially, they were
used in geometric applications but later found scope in med-
ical imaging. These models can be categorized into two
types: parametric and geometric deformable models. Lung
segmentation applications using the parametric and geo-
metric deformable models are discussed in the following
sub-sections.

5.2.1 Parametric deformable

Cootes et al. [32] introduced the Active ShapeModel (ASM)
in 1995. The method is similar to the Active Contour Model
(ACM) [82] but different in global shape constraint. Many
researchers improved it later [167,189]. Yuan et al. [189]
proposed the gradient vector flow driven active shape model

(GV-ASM). However, this algorithm is not applied to med-
ical datasets. Ginneken et al. [167] extended the ASM and
test the method for lung segmentation in chest X-ray using
the gray-level appearance model. It moves the points along
the lung contour to a better location during optimization.
Pixel classification inside or outside of the lung is determined
through feature selection and a kNN classifier. One advan-
tage that the original ASM has over the proposed scheme
is the speed. The total time for segmentation is 4.1 sec-
onds for the proposed method, while with original ASM is
0.17 seconds. Gleason et al. [46] proposed the deformable
model that optimizes the objective function generated by
global shape and local gray-level characteristics, simultane-
ously. The local shape characteristics that are obtained in the
training are used for boundary detection. Shi et al. [149] pro-
posed the deformable model using the population-based and
patient-specific shape (PBPS) statistics trained using hier-
archical principal component analysis (PCA). Further, they
used the scale-invariant feature transform (SIFT) to improve
the segmentation accuracy. The proposed method took 75
seconds, while the standard ASM took 30 seconds for one
chest radiograph segmentation. The limitation of the ASM
is that it only considers the shape of an object, not texture
or gray-level appearance. This limitation is removed by the
active appearancemodel (AAM) that is an extension ofASM.
It took both shape and appearance into account for segmen-
tation but is computationally expensive.

5.2.2 Geometric deformable

Caselles et al. [20] proposed the geometric deformablemodel
to overcome the parametric model limitations. These models
are based on the level set method and curve evolution theory
[86,146]. Geometric measures evolve the curve and surfaces
that are independent of the parameterization. This results in
the smooth handling of the automatic topology changes. In
parametricmethods, evolution ismappedwith the image data
for recovering the contour.

Annangi et al. [6] used the active contour with the prior
shape knowledge for the lung segmentation. Lungs are seg-
mented with otsu thresholding and level set minimal energy
that uses extracted edge/corner feature with region-based
data. Extracted features along with region-based data help in
the handling of local minima issues. The proposed algorithm
took seven second per image for segmenting both lungs.

Graph cut is another segmentation method where the
objective function is similarly minimized as the level set
method. Candemir et al. [17] proposed the segmentation
model based on graph cut and later expanded the work using
multi-class regularization to detect lung boundary [19] in
chest X-rays. The work done in [17,19] was extended in
[18]. Candemir et al. [17] proposed the graph-cut-based lung
segmentation model. It consists of two stages: in first, the
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average lung shape model is calculated, and in second, the
lung boundary is calculated using graph-cut. It took eight
second for image segmentation of 1024 × 1024 resolution.
The drawback of graph cut segmentation is that it produces
the static shape model and the chest X-rays have variable
lung shape [17]. Another drawback of the graph cut method
is high computation time. In [19], adaptive parameter learn-
ing methodology is described to improve the segmentation
process using amulti-class classifier approach. The proposed
method takes eight second for segmentation using graph cut.
Candemir et al. [18] improved the lung segmentation method
by using the anatomical atlases with non-registration. In this
work, lung contour is detected using non-rigid registration
by applying an image retrieval-based patient-specific adap-
tive lungmodel. The execution time for the proposedmethod
is 20–25 seconds on 256 × 256 resolution.

Segmentation methods (rule-based, parametric) reported
good results for the lung segmentation, but the hybrid
approach can do better. Shao et al. [148] combined the active
shape and active appearance model. In the proposed method,
three models are used for robust and accurate segmenta-
tion. First, the shape initialization model is used to detect
the salient landmarks on the lung boundary, and then the
local sparse appearance model is used to learn local sparse
shapes. Finally, a local appearance model is built for cap-
turing the local appearance characteristics. The computation
time for the proposed method is 35.2 seconds. Xu et al.[181]
proposed amodified gradient vector flow-based ASM (GVF-
ASM) for lung segmentation in X-rays. The experimental
results are 3-5% better than the ASM technique.

5.3 Pixel classification-based segmentation

Lung segmentation in radiographs allows quantitative anal-
ysis of clinical parameters. It is the first step of the CAD
diagnosis. Classifiers such as kNN or support vector machine
(SVM) can extract pixel spatial and texture information from
gray-scale values, and according to it, the pixel is assigned
to the corresponding anatomical structure. Segmentation is
one of the most common topic for researchers applying deep
learning onmedical images [98].With the best of knowledge,
the earliest work for lung segmentation on chest radiography
using convolutional neural networks and neural networks is
Hasegawa et al. [55] and McNittGray et al. [109], respec-
tively. Hasegawa et al.[55] used downsampled chest X-rays
as input for shift-invariant convolutional neural network, and
then post-processingmethods, such as adaptive thresholding,
noise reduction, were applied for lung field segmentation.

Pixel classification can be sub-divided into shallow and
deep learning (DL).DLmodels outperform the shallow learn-
ing models as it extracts the features automatically from
raw data, while later uses the conventional methods. The
disadvantage with DL models is that they need large anno-

tated datasets and have high computational complexity. Few
deep learning architectures have been proposed for the seg-
mentation of medical images only. One such architecture is
UNet proposed by Ronneberger et al. [141] for biomedical
image segmentation. The main highlight of the architec-
ture is an equal number of upsampling and downsampling
layers along with skip connections. Milletari et al. [110] pro-
posed the variant of UNet called VNet. It performed the
3D medical image segmentation using the 3D convolution
layers. Another encoder–decoder-based architecture that is
quite popular for image segmentation is SegNet [12]. The
encoder architecture is similar to that of VGG-16 except fully
connected layers were replaced by the decoder. One major
difference between UNet and SegNet is that U-Net does not
use the pooling indices and transfers the whole feature map
to the corresponding decoding layer [111]. In the following,
lung segmentation in chest X-rays using shallow and deep
learning-based segmentation models is discussed.

5.3.1 Shallow learning

In shallow learning (SL), the features is extracted with con-
ventional methods and the challenge is to find a suitable
class for the extracted features robustly. McNittGray et al.
[109] were first to propose lung segmentation using a neu-
ral network. With kNN, linear discriminant analysis (LDA),
and feed-forward neural network classifiers (FFNNC), chest
X-ray pixels are classified into anatomical classes. Each clas-
sifier is trained using local texture, gray-level-based features.
Among all three classifiers, the neural network outperformed
the other two and predicted more than 76% pixels correctly
on the test set. Vittitoe et al. [173] identified lung region in
X-rays using spatial and texture characteristics with Markov
random fieldmodeling (MRFM). The proposedmethod clas-
sified 94.8% pixels correctly in comparison with 76% pixels
in [109]. Formedical image segmentation, the fuzzy c-means
clustering algorithm (FCM) is often used. It permits a single
data point to belong to many clusters. It is used in pattern
recognition problems. Many research studies have used the
FCM for the MRI image segmentation [3,26,27]. The basic
difference betweenMRI and chestX-ray is that inX-ray there
is the possibility of ribs and nodule overlap, but in MRI both
are separated. Shi et al. [150] proposed an algorithm for lung
segmentation in X-rays using FCM. The proposed algorithm
is based onGaussian kernel-based fuzzy clustering. The orig-
inal c-means algorithm is modified by altering the objective
function using the Gaussian kernel-induced distance metric.
Jangam et al. [78] proposed an algorithm based on a firefly
optimized fuzzy c-means clustering algorithm. The model
combines spatial fuzzy clustering and a level set algorithm
for lung segmentation. Lung region pixels are classified using
a fuzzy clustering algorithm, and then the outcome is applied
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to the level set algorithm for segmentation. The computation
time for the proposed method is 25–30 seconds.

5.3.2 Deep learning

Loss of a lung region while segmentation can be disastrous.
So, the need for an algorithm for accurate segmentation is
very important. The shallow learning-based method relies on
conventional feature extraction methods, while deep learn-
ing models extract the features automatically. So, the deep
learning feature extraction method has a huge advantage
over shallow learning-based methods. To the best of knowl-
edge, Long et al. [101] was the first study to use the deep
fully convolutional neural network for pixel classification
in images. The encoder–decoder architecture is extensively
used for semantic segmentation [120] in which an image is
processed for multiple segmentation. The encoder works as
CNN for feature extraction, while the decoder is used for
upsampling operations to get the final segmentation results.
The studies on lung segmentation can be classified accord-
ing to whether the network uses transfer learning or is trained
from scratch. The pre-trained network has the advantage of
knowledge transfer from a large image classification dataset.

In the following, the studies that have used transfer learn-
ing are discussed. Tang et al. [164] use the pre-trained
ResNet-101 [56] along with the criss-cross attention module
(CCAM) [64]. CCAMcaptures the contextual information to
improve the pixel-wise representation. Further, to deal with
the insufficient data, the image-to-image translation is pro-
posed using the MUNIT [62]. This is the only study that has
performed cross-dataset generalization. The proposed model
has trained on JSRT and MC dataset and tested it on NIH
dataset [164].Kimet al. [85] proposed the self-attentionmod-
ule to capture the global features in input X-ray images. The
proposed attention module is applied to the UNet for lung
segmentation. They have used the pre-trained ResNet-101
[56] as UNet backbone. The training time of UNet is 4 hours
approximately, but when attention modules are added in the
architecture, the training time dropped to 2.5 hours. While
the inference time is 1.4 second per chest X-ray image.

In the following, we have discussed the studies that have
used the training from scratch strategy. One such study is
Hwang et al. [66] that proposed the model for chest X-ray
segmentation based on residual learning [56]with atrous con-
volution layers. The global receptive field of the network can
be increased by stacking the convolutional layer for a larger
context. But this can increase the computational complex-
ity, so the atrous convolution is used with a dilation rate of
3 in the last two residual layers. The proposed method uses
the multi-stage training strategy called network-wise train-
ing. In network-wise training, the output of the pre-stage
network is used as input. The proposed model has 120,672
parameters which are less than the UNet model. Novikov et

al. [121] performed the clavicles, lungs, and heart segmenta-
tion. The proposedmodifiedUNet (InvertedNet) architecture
outperformed the radiologist for lungs and heart segmenta-
tion. In the modified architecture, Gaussian dropout is added
after every convolutional layer. The delayed sub-sampling
has been introduced in the contraction part of the network,
and the exponential linear units (ELU) [30] are used instead
of ReLu to speed up training. The method performed better
even after with ten times fewer parameters compared to the
state of art methods. The proposed InvertedNet took 33 hours
to train and have 3,140,771 parameters. Other studies have
also used theUNet architecture, and one such is Liu et al. [99]
that modified the architecture for the lung segmentation. The
false-positive (FP) region is dealt with using post-processing
techniques after segmentation. External air or intestinal gas
can cause the FP area to appear. The actual segmented lung is
found by measuring the distance between the picture center
and the segmented area centroid.

SegNet [12] is another popular encoder–decoder archi-
tecture for the image segmentation. Kalinovsky et al. [81]
modified the SegNet and segmented the lungs on 354 radio-
graphs with 96.2% accuracy. They used the max-pool index
from the corresponding encoder layer to upsample feature
map in the decoding layer which is not clearly defined in
the SegNet. The proposed network took nearly three hours
for the training. Another study that uses the SegNet for lung
segmentation is Saidy et al. [143]. The model is tested on 35
unseen images and a dice coefficient (DC) or DSC value of
96.0% is achieved. Similarly, Mittal et al. [111] performed
the lung segmentation using the encode-decoder network,
named as LF-SegNet. They performed the segmentation on
the JSRT andMC dataset and achieved 98.73% accuracy and
95.10% Jaccard Index value.

In Souza et al. [155] the weights are initialized using nor-
mal initialization [47]. The proposed method performs lung
segmentation using the reconstruction technique. Initial seg-
mentation is done using AlexNet [87] on lung patches to
generate a segmentation mask. Many false positives gener-
ated in the resultant segmentation mask during the plotting
of lung patches are removed with morphological operations.
In healthy radiographs where no abnormality is present, the
initial segmentation can produce good results, but the lung
regions severely affected by opacities or consolidations can
result in poor segmentation. To provide a general solution, a
second CNN (ResNet-18) is trained for lung reconstruction.
The initial segmentation and reconstruction outputs are com-
bined with binary OR operation for the final segmentation.

Most of the lung segmentation models in chest X-rays
have used the UNet and SegNet architecture or have pro-
posed their modified variants, but in the following, we have
mentioned some recurrent neural network (RNN) models
that have been used for medical image segmentation. The
RNN models have not been exploited for lung segmenta-
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tion in chest X-rays. One such model is Xie et al. [180]
that uses the spatial clockwork RNN for the segmentation
of the histopathology images, while Stollenga et al. [157]
use the 3D LSTM-RNN for membrane and brain segmenta-
tion. Another model that has used RNN is Andermatt et al.
[5]. It has used the 3D RNN for brain segmentation, while
Chen et al. [22] used the bi-directional LSTM-RNN and U-
Net architecture together for tubular fungus and neuronal
structures segmentation in 3D images.

5.4 Discussion

A clear boundary between the lung and non-lung parts is
needed for lung segmentation. Variation in lung shape and
ambiguity in boundary makes it difficult for the rule-based
methods. Later many other methods such as deformable
methods were proposed, and they have shown better results
in comparison with rule-based segmentation. The problem
with deformablemodels is that they are knowledge-based and
do not work accurately on different datasets. Deep learning
methods have given the state of the art results in several image
domains. In deep learning models, the features are auto-
matically extracted, they do not use the handcraft features
or conventional methods. After the introduction of UNet,
SegNet models, many research studies have proposed their
variant architectures for medical image segmentation. In the
above-discussed paper, we can analyze that transfer learn-
ing and cross-dataset generalization has not been exploited
for lung segmentation in comparison with image classifi-
cation. Further, to get the insight of the field, Ginneken et
al.[170] have conducted a comparative study between ASM,
AAM, and pixel classification methods for lung segmenta-
tion and Terzopoulos et al.[108] have done a detailed survey
on deformable models in medical image analysis. Recently,
Tajbakhsh et al. [161] have conducted a detailed survey
addressing the techniques to handle the scarcity of segmen-
tation datasets for deep learning models.

6 Classification

Lung diseases are the primary cause of death in most coun-
tries. The chest X-rays, CT scans, and MRI scans are few
available diagnosis methods for detecting and analyzing the
disease severity. Among the diagnoses stated, X-ray is the
most commonly used modality. The use of medical imaging
with deep learning for classification is the current academic
research direction. After segmentation, classification is the
most common topic for research in medical image analy-
sis [98]. The deep learning model requires a large dataset
for training. It is hard to acquire a large dataset due to pri-
vacy issues. Labeling or annotation is another issue related to
the medical datasets. Many research groups have collected

datasets for their study and made them available publicly.
The size of these datasets is small, ranging from a few hun-
dred to thousands. CXR-14 [175] is the largest X-ray dataset
that is released publicly in 2017. They have collected more
than 100,000 chest X-rays from nearly 30,000 patients. Most
of the multi-class classification studies using deep learning
have used this dataset. In recent years, some new datasets
have been made publicly available. For example, the CheX-
pert dataset is publicly available, whereas MIMIC-CXR is
available only for the credential authors. Other chest X-ray
datasets (e.g., JSRT, Indiana, etc.) are publicly available, and
many studies have evaluated their models on these datasets.
In the below sub-sections, we have discussed the studies that
have used automatic models to detect pulmonary conditions.

6.1 Disease detection

6.1.1 Nodule detection

Commonly referred to as a ‘spot on the lung’, a nodule is
a dense round area in comparison with normal tissue. They
appear as white shadows in the chest X-rays. A lung nodule
is an early stage of lung cancer. According to WHO, 9.6
million people have died from cancer in 2018. The nodule
of size 5-10 mm is visible in X-rays, and less than that is
not likely to be detected. Nodule detection is also difficult
sometimes because itmay be hidden by strong ribs or clavicle
[10,147]. There are no symptoms of the pulmonary nodule.
It can be diagnosed only through screening. In Table 4, we
have enlisted the nodule detection work reported on X-rays.

Lo et al. [100] is the first study to apply CNN for nodule
detection. Here, the proposed CNN is the simplified version
of Neocognitron [41]. The results on the test set demon-
strated the effective use of CNN in nodule detection. Further,
the fuzzy training method is used with CNN to improve
the obtained results. The processing time taken by the pro-
posed model for nodule detection is 15 seconds on a DEC
Alpha workstation. Coppini et al. [33] proposed an approach
based on multi-scale processing and artificial neural network
(ANN) for detecting lung nodules. The feed-forward ANN
uses prior knowledge such as the shape and size of lung
nodules. The proposed method works in twofold: first, the
network narrows down the regions of possibly having the
nodule with high true positive. Second, evaluating the region
for the abnormality presence to detect the nodule. It helps in
reducing the false positive and increasing the detection rate.
The Laplacian of Gaussian (LoG) andGabor kernels are used
to amplify the features of X-rays. The average training time
for the proposed method is 500 seconds.

Schilham et al. [145] proposed a method for nodule
detection and selection to reduce the FP for candidate classi-
fication. To avoid nodules candidates outside the lungs, lung
segmentation is performed using ASM before nodule detec-
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tion. The detection of lung nodules is a multi-scale problem
since nodule size varies. The bright spots help in blob detec-
tion, so the authors use the local maxima to find the candidate
nodule locations with the corresponding radius. The detected
blob is then segmented to separate the nodule from the back-
ground with ray casting procedure [54]. After the candidate
blob detection, features from a multi-scale Gaussian filter
bank are used to classify the nodule with a kNN classifier. It
is employed to locate the k closest candidates in the database.

The detection of lung nodules is challenging since their
size varies, and if they’re under the ribs, they are easily
overlooked. So, Chen et al. [25] proposed the multi-stage
method to improve the nodule detection and to reduce the
false positive. First, the lungs are segmented using the multi-
segment ASM. Then, a gray-level morphological operation
is applied to enhance the nodule, and a line-structure sup-
pression technique to detect the nodules overlapping the rib
cage and clavicles. At the third stage, in a nodule likelihood
map obtained from the second stage, noise is reduced by
using the Gaussian filter to further improve the performance.
After, the candidate nodule detection from the images, the
improved watershed algorithm is applied for nodule segmen-
tation. The features such as texture, shape, gray-level, etc are
extracted, and then a nonlinear SVM with a Gaussian kernel
is used lung nodule classification. The proposedmethod took
70 seconds to detect the nodule in a image.

In their other work, Chen et al. [24] also suppress ribs
to reduce the FP. The same method is applied for the lung
segmentation, but for the ribs and clavicle suppression, they
have used the virtual dual-energy (VDE) X-ray images with
massive training artificial neural network (MTANNs) instead
of subtracting the rib pattern from the enhanced image. The
ribs and clavicles in X-rays can be significantly repressed
with this approach, while soft tissues like lung nodules and
vessels remain preserved. The candidate nodules are detected
byusingmorphological filtering techniques and the nonlinear
support vector classifier. The processing time of the proposed
method for each image is 115 seconds. In comparison with
[25], sensitivity is improved, but processing time is increased.

All the above-mentioned work has produced good sensi-
tivity with decreasing false positive per image (FPPI), but
none of the above-mentioned research has used deep learn-
ing. Li et al. [93] in their proposed work have used the deep
ensemble network for nodule detection and FPPI reduction.
The proposedmethod uses an ensemble convolutional neural
network (E-CNN) and does not employ the lung segmen-
tation procedure as in the above-mentioned methods. The
nodule is amplified using the unsharp mask image sharpen-
ing technique. Patches are cut from the processed image with
the slide-window method before feeding to the CNN. Three
different CNN models with dissimilar input sizes and lay-
ers are trained, and the results of all models are fused using
the logical AND operator. The proposed ensemble network

has outperformed the other state-of-the-art methods. In their
another study, Li et al. [95] have done segmentation and rib
suppression using the modified ASM and PCA, respectively.
Image enhancement is performed using the efficient gray-
level stretching operation and histogram matching. Then,
three CNN with dense blocks is fused with four varying
strategies to find the probability of the selected candidate
nodule. Further, the FP is removed usingmorphological oper-
ations in post-processing steps.

Chen et al. [23] proposed the CAD scheme using the CNN
for nodule detection. They have used the classical method for
candidate detection and the CNN for FP reduction. Authors
termed the methodology as balanced CNN with classic can-
didate detection. First, pulmonary parenchyma is segmented
by using the multi-segment ASM. Then, the gray-scale mor-
phological enhancement technique is applied to improve
the visibility of the nodule. After selecting the nodule from
enhanced images, the watershed algorithm is applied to seg-
ment the candidate nodule. At last, a pre-trained CNNmodel
(GoogLeNet) is used for the classification of nodule candi-
dates. On analyzing Table 4, it can be seen that the deep
learning models provide better sensitivity and accuracy in
comparison with shallow learning methods.

6.1.2 Tuberculosis detection

TB is themain reason formorbidity andmortalityworldwide.
It is the second disease after HIV that has resulted in million
death alone in 2010 [124]. Chest X-rays are the most com-
mon diagnosis for TB examination [92]. With an increasing
number of cases and a handful of trained professionals to
interpret the radiographs, there is a need for automatic detec-
tion. Many research studies are available that has exploited
the deep learning models for tuberculosis detection. These
models need minimum human intervention and give accu-
rate results. We have also discussed few shallow methods for
result comparison with deep models. Table 5 enlists the work
done for TB detection on chest X-rays.

Ginneken et al. [168]were thefirst to propose an automatic
method for TB detection. The lungs are initially segmented
using ASM in the suggested method. Then, the segmented
lung fields are divided into several regions. The texture fea-
tures are extracted from each region using the multi-scale
filter bank and the analysis of these texture features results
in feature vectors. At last, kNN is applied to classify the
feature vector. The proposed method obtained an AUC of
0.82 and a sensitivity of 0.86. Jaegar et al. [74] proposed
the automatic method for TB detection. Initially, they used
three different masks, namely intensity mask, lung model
mask, and Log Gabor mask for lung segmentation. Then, the
shape and texture feature descriptors are used for finding nor-
mal/abnormal patterns. At last, the SVM classifier is trained
to classify the images into normal and abnormal. The over-
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all accuracy reached 75.0% when all three masks are used
together. In their other work [75], they used the graph cut
method for lung segmentation. The object detection inspired
(ODI) and content-based image retrieval (CBIR) based tex-
ture and shape features are applied to the segmented lung
fields for describing normal and abnormal patterns. At last,
the SVM classifier categorizes the computed features into
abnormal or normal classification.

Deep learning is not employed for feature extraction in
any of the above-mentioned three papers. The features are
extracted using conventional image processing methods in
these research papers. These strategies have the drawback
of making the model domain-specific, while deep learning
models are not domain-specific since they can automatically
extract significant characteristics. Hwang et al. [65] were
the first to propose TB detection using the deep learning
model. The pre-trainedAlexNet is used for the feature extrac-
tion, and at the end, Softmax is used for the classification.
The method is validated with the cross-dataset generaliza-
tion technique. Lakhani et al. [88] detected the TB using the
pre-trained CNN with data augmentation techniques such as
rotation and histogram equalization. They evaluated the three
training strategy, i.e., pre-trained and untrained networks,
pre-trained and untrained networks with data augmentation,
and ensemble pre-trained networks with augmented data.
Among all the different training methods, an ensemble pre-
trained network reported the best AUC of 99.0%.

Gozes et al. [49] employedDenseNet-121 network trained
on CXR-14 dataset for classification. The proposed model
(MetaChexnet) is trained in two phases. In the first phase, a
pre-trainedDenseNet-121 learns the dataset-specific features
with the CXR-14 dataset andmeta-data. Then, the network is
fine-tuned for TB detection with Shenzhen and MC dataset.
The proposed model is compared with the ChexNet and pre-
trained DenseNet-121 for the classification. The proposed
model gives a comparable result with the ChexNet [135] and
outperforms the pre-trained DenseNet-121. Rahman et al.
[134] evaluated the nine different pre-trained CNN models
for TB detection. They used two strategies for training the
model. In the first strategy, the lung region is extracted with
UNet architecture [141] and then it is fed as input to the CNN
models. In the second strategy, full X-rays are used as input to
CNN models. Among all the pre-trained models, DenseNet-
201 achieved the highest accuracy for TB detection on the
segmented lungs.

Hooda et al. [59] proposed the CNN with 7 convolutional
layers, 7 activation layers, 2 dropout layers, and 3 fully con-
nected layers for the TB detection. They used the MC and
Shenzhen datasets to validate the proposed model. The pro-
posed CNN does not use transfer learning. Similar to Hooda
et al. [59], Pasa et al. [128] also proposed the model that does
not use transfer learning. The proposed model is faster and
efficient for TB detection compared to the state-of-the-art

deep learning models. With a depth of 5 blocks, the pro-
posed method reported good classification performance. The
proposed network has only 230,000 parameters and took
approximately one hour for the training. The inference time
of the proposed model is five-six milliseconds.

The deep learning models require high-quality images for
training, and the low contrast chest X-ray may impact the
results. Munadi et al. [114] evaluated the effect of image
enhancement for TB detection in chest X-rays. They used
the Unsharp Masking (UM) and High-Frequency Empha-
sis Filtering (HEF) technique for image enhancement. They
used enhanced images to fine-tune ResNet-18, ResNet-50,
andEfficientNet-B4. EfficientNet-B4 outperformed the other
models on UM enhanced images. Training time for the
proposed models was 14 minutes approximately. Ayaz et
al. [11] proposed the CAD for early TB detection using
chest X-rays. They have applied hybrid learning approach
that uses the handcraft feature extraction (Gabor filter) and
deep feature learning (CNN) technique. They ensembles sev-
eral classifiers through logistic regression to achieve the
best classification accuracy. The proposed methodology was
evaluated on Shenzhen and MC datasets with K-fold cross-
validation.

Transformer models are mostly used in natural language
processing and their application in images are very limited.
Duong et al. [39] proposed the hybrid deep learning model
consisting of EfficientNet [162] and Transformer model
[38] for TB detection. Moreover, three different learning
strategies are considered for training the proposed model
to prevent overfitting. The proposed model outperformed
the other state-of-the-art models with 97.72% accuracy and
100%AUC.The proposedmodel has 94,814,915 parameters.
All the research papers discussed above performed the image
classification for TB detection, while Nijiati et al. [119] pro-
posed themodel to detect the TB affected regions in the lungs
to assist the radiologist. For the same, TB-UNetmodel is pro-
posed that uses the ResNext [179] as the encoder for UNet
architecture [141]. Further, they have compared the perfor-
mance of radiologists with and without the proposed model
assistance for TB diagnosis in patients. The obtained results
show that the radiologist performance is improved with the
help of the proposed model.

Many research studies have been proposed for detect-
ing respiratory illnesses such as pneumonia, COVID-19, and
pneumothorax. Table 6 and Table 7 enlist the few works for
these pulmonary conditions on chest X-rays. In the follow-
ing, we have discussed the deep learning models proposed
for pneumothorax, COVID-19, and pneumonia.

6.1.3 Pneumonia

Pneumonia can be life-threatening if it is not diagnosed at the
time. It nearly killed 800,000 children under the age of five-
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year worldwide in 2018. The main reason for pneumonia is
viral/bacterial infections or fungi that result in inflammation
of the lungs. It is normally found in small children or old
age people (above 65). Chest X-rays can help the radiologist
to identify white spots (infection) or fluid surrounding the
lungs. In the following, we have discussed research studies
that haveuseddeep learningmodels for pneumonia detection.

Rajpurkar et al. [135] deployed DenseNet-121 for pneu-
monia detection which exceed the radiologist interpretation.
They compared the test set with the annotation of four
radiologists. The proposed method performed (0.435) bet-
ter than the radiologist (0.387) on the F1 metric. Jaiswal
et al. [77] experimented with a deep neural network based
on mask-region CNN (RCNN) that does pixel classifica-
tion for pneumonia detection. It incorporates global and
local features for pixel-wise segmentation. ResNet-101 and
Resnet-50 are used as backbone detectors in masked-RCNN.
They also experimented with YOLO3 [137] and UNet [141],
but both models failed to give better predictions results on
the test set. Rahman et al. [133] used the different pre-
trained deep learning models for the classification of normal,
bacterial, and viral pneumonia. They trained the AlexNet,
ResNet18, DenseNet201, and SqueezeNet [67] on the aug-
mented dataset to deal with overfitting. The DenseNet-201
achieved the highest accuracy for pneumonia detection.

Gabruseva et al. [43] proposed the model for automatic
pneumonia detection using the deep learning. The pro-
posed model uses a single-shot detector RetinaNet with
SE-ResNext101 [60] encoder that had been pre-trained on
the ImageNet dataset. On the ImageNet dataset, the SE-
ResNext architectures performed best, with a good trade-off
between accuracy and complexity [14]. The images are
resized to 512 × 512 as the proposed model on 256 × 256
resolution yielded the poor performance and 1024 × 1024
increased the computational complexity. Dey et al. [37] pro-
posed thedeep learning system for early pneumonia detection
using chest X-rays. They used the ensemble feature scheme
(EFS) for the feature extraction. They combined the features
extracted with the assistance of ComplexWavelet Transform
(CWT),DiscreteWaveletTransform (DWT), andGray-Level
Co-occurrence Matrix (GLCM) and deep learning models.
They used the pre-trained VGG-19 for the deep feature
extraction. Further, they tested the different classifiers such
as SVM-linear, SVM-RBF, kNN classifier, Random-Forest
(RF), and Decision-Tree (DT) to obtain better accuracy. At
last, VGG-19 with a random-forest classifier achieved the
highest pneumonia detection accuracy. They also compared
their proposedmodelwithResNet50,VGG-16, andAlexNet.

6.1.4 COVID-19

COVID-19 is a kind of pneumonia caused by coronavirus.
This disease has killed more than a million people, with 58

million confirmed cases worldwide. RT-PCR and antigen
tests are recommended for the diagnosis but are expen-
sive. The increasing load of patients can crumble down the
medical infrastructure. Chest X-rays can help in the early
detection and isolation of COVID-19 patients. Deep learning
can assist the medical community with automatic detection.
Many research studies are proposed for COVID19 detection
in chest X-rays, and in the following, we have discussed a
few studies.

Panwar et al. [125] proposed the deep learning-based
nCOVnet for detecting the COVID-19. The model contains
23 layers in which 18 are of pre-trained VGG-16 model
and the rest are fine-tuned on COVID-19 and other datasets.
The total number of trainable parameters in the proposed
models is 14,846,520. Another work reported on COVID-
19 is Marques et al. [107] that have used the pre-trained
EfficientNetB4 for detection. The proposed model is vali-
dated through 10-fold stratified cross-validation. The total
number of trainable parameters in the proposed models is
17,913,755. Jain et al. [76] evaluated the three different mod-
els namely, InceptionNet-V3 [160], XceptionNet [29] and
ResNext [179] model for COVID-19 diagnosis. The images
are downsampled to 128 × 128 for faster training. Further,
data augmentation is used to prevent the models from over-
fitting. Among all three models, XceptionNet outperformed
the other twomodels for accurately detecting the COVID-19.

Hira et al. [58] evaluated the nine pre-trained models
for the COVID-19 detection. Among all the models, SE-
ResNeXt-50 achieved the highest accuracy for binary and
multi-class classification. The total number of parameters in
the SE-ResNext-50 is 27.56 million. Vantaggiato et al. [171]
proposed the ensemble-CNN for the three-class and five-
class COVID-19 classification. They ensemble pre-trained
ResNeXt-50 [179], Inception-v3 [160], and DenseNet-161
[61] networks for the classification. The proposed ensem-
ble network achieves the higher performance for COVID-19
detection in comparison with the other CNN architectures.
Again in Zebin et al. [190] three pre-trained CNN mod-
els (VGG16 [152], ResNet50 [56], EfficientNetB0 [162])
are used for COVID-19 detection. In this paper, synthetic
images are generated with CycleGAN to augment the minor-
ity COVID-19 class. Among all these three CNN models,
EfficientNetB0 achieves the best accuracy for COVID-19
detection. Thenumber of parameters inEfficientNetB0 archi-
tecture is 5.3M, while in ResNet50 is 26M.

The transformer is a deep neural network based on a
self-attention mechanism that produces very wide receptive
fields. It was first introduced in the field of natural language
processing (NLP) [172]. Because it allows modeling long-
range dependency inside images, it has spurred the vision
community to examine its applications in computer vision
after attaining spectacular results in NLP. Park et al. [127]
proposed the Vision Transformer model for diagnosing the
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COVID-19 in chest X-rays. In the proposed model, the trans-
former uses the low-level chestX-ray feature corpus obtained
from the backbone network trained to extract aberrant chest
X-ray features. The DenseNet-121 is used as backbone net-
work along with probabilistic class activation map poling is
used to extract low-level features from an image. The pro-
posedmodel outperformed the state-of-the-art models for the
COVID-19 detection.

6.1.5 Pneumothorax

Pneumothorax can be life-threatening if not diagnosed at
a time. The airspace between the lung and the chest wall
causes pneumothorax. It can be diagnosed by X-rays, but
the interpretation requires an expert radiologist. This can be
time-consuming, so Sze-To et al. [158] proposed a tChexNet
for the automatic detection. The proposed model is 122 lay-
ers deep and uses a training strategy to transfer knowledge
learned in CheXNet [135] to detect the pneumothorax. The
AUC obtained by the tCheXnet on the test set is 10% better
than CheXNet.

In the literature, most papers perform the image classifi-
cation for pneumothorax detection. But, Wang et al. [176]
employed the two-stage model for the pneumothorax seg-
mentation using deep learning models. In the first stage,
image classification is done using the pre-trained encoder
backbone of UNet [141]. If the image is predicted as pneu-
mothorax positive, then in the second stage pneumothorax
segmentation is performed to identify the affected regions.
They have also performed different ablation studies to show
the design benefits of a two-stage network. In this study, the
proposed model obtained the 0.88 DC value.

Similarly, Abedalla et al. [1] also performed the pneu-
mothorax segmentation using the two-stage using the mod-
ified UNet architecture. Wang et al. [176] use the SE-
ResNext50, SE-Resnext101 [60], EfficientNet-B3, and
EfficientNet-B5 [162], while Abedalla et al. [1] employed
the ResNet-34 [56] as CNN backbone for UNet architecture.
It trained the five different modified UNet architecture with
two different image size and three binarization thresholds.
Obtained results show that two-stage training improves the
results and DC value of 0.8356 is obtained.

6.2 Multi-class classification

Chest X-rays are commonly used low-cost clinical examina-
tions for pulmonary disease detection. Interpretation of X-
rays needs a radiologist with years of experience. Therefore,
CAD is needed to automatically detect different pulmonary
diseases. CAD can improve efficiency and reduce the error
in interpretation. Deep learning methods need a large dataset
for training, otherwise, there is the possibility of model over-
fitting. With the availability of the CXR-14 [175] dataset,

many models have been proposed for multi-classification
using chest X-rays. Table 8 enlists the multi-classification
studies for comparison. In the following, we have discussed
some multi-classification studies performed on chest X-rays
using the deep learning models.

Wang et al. [175] released the largest chest X-ray dataset
in 2017 and as well performed the multi-classification. They
used pre-trained DCNN for identifying the diseases with
an average AUC of 69.62%. In the proposed method fully
connected layers are replaced with transition, global pool-
ing, prediction, and a loss layer. Yan et al. [185] proposed
a weakly supervised deep learning method for the clas-
sification. They have used the DenseNet-121 with three
modifications. First, using the squeeze and excitation (SE)
block in between the convolution-pooling operator for fea-
ture recalibration. Second, using the multi-map layer by
replacing the fully connected layers. At last, using the max–
min pooling operator tomulti-maps spatial activations for the
final prediction. The results obtained show that these modi-
fications have made an impact on the results. The proposed
model outperformed the [175] on AUC mean by 10%.

The randomdata split can influence the performance of the
models as the same patient may appear in both training and
test set. So, Guendel et al. [53] have demonstrated the effect
on the result by using the patient-wise split and random split
for disease classification on the CXR-14 dataset. Further,
they combined the CXR-14 [175] and PLCO [166] to have
the dataset of 297,541 medical images with 86,876 patients.
They created the location-aware Dense Network (DNetLoc)
by using the location information available for pathologies.
DNetLoc outperformed theWang et al. [175] on the CXR-14
test set on mean AUC by 5%.

In all the papers discussed above, none have performed
the lung segmentation before the disease classification. They
have performed the image resizing, normalization and data
augmentation to prevent the model from overfitting, but
Guendel et al. [52] have demonstrated that additional spatial
knowledge (localization), normalization, and segmentation
can increase the classification performance. They do the
patient-wise splitting to train and test the proposed model.
When the additional features are used, the AUC increased
by 2.4%. Further, they also studied the relation between the
accuracy and the number of patients in training data.

Another research study that has done lung segmentation
before classification is Liu et al. [99]. It has proposed a
segmentation-based classification model. Using the JSRT
dataset, the lung segmentation model (UNet) is trained for
extracting the lung regions. After lung segmentation, two
fine-tuned DenseNet-121 are used for the feature extraction.
First DenseNet is fine-tuned on whole X-rays, while the sec-
ond is on the segmented lungs. At last, both are concatenated
for the final prediction. Park et al. [126] proposed the method
consisting of two steps. First, regional patterns of abnormal-
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ity are identified by learning with patch images, and second
by fine-tuning the model to detect the disease pattern on the
entire X-ray image. Unlike other studies, they evaluated the
model on Asan Medical Center (AMC) and Seoul National
University Bundang Hospital (SNUBH) datasets.

In chest X-rays, the region of interest (ROI) is very
less, while the entire X-ray may contain noisy areas. Fur-
ther, irregular lung boundaries can affect performance. So,
Guan et al. [51] proposed the model integrating the global
and local cues to classify the thorax disorders using the
attention-guided convolutional neural network (AG-CNN).
The proposed model is divided into three parts: global, local,
and fusion branches. The global branch is fine-tuned using
the entire image; then, the local branch uses the lesion area
for classification. The fusion branch combines the output of
the global and local branches. Both local and global branch
uses the variant of ResNet-50 architecture. They have also
evaluated their method with DenseNet-121 and compared it
with the other state-of-the-art models. They have also com-
pared the localization accuracy for the different values of
T(IoU), but the achieved results are not good as obtained by
Li et al.[96]. The training time taken by the local and global
branches is approximately 6 hours. Cai et al. [16] proposed an
attention mining (AM) model related to adversarial erasing
scheme [177]. The difference is that AM drops the corre-
sponding pixels in the activationmap tomaintain the original
radiographs. AM helps the model to localize abnormalities,
but the model may overfit because of learning from the spe-
cific region, not from the actual pattern. This is prevented
using the knowledge preservation method where a part of
the dataset is used for the AM and while the remaining for
knowledge preservation.

Themajor issue with deep learning is that themodel needs
a large dataset for training. Few large medical datasets are
available, but all are not publicly available. Using the small
datasets can lead to the overfitting [188]. Transfer learning
can be used to prevent overfitting. It uses the learned knowl-
edge from one task and then applies it to other but related
tasks. All the pre-trained models are generally trained on the
ImageNet dataset. Romero et al. [140] have reviewed, eval-
uated, and compared the state-of-the-art training techniques
on the small datasets. Deep CNN model performance has
been checked on small datasets for emphysema detection,
pneumonia detection, hernia detection, and CXR-14 classifi-
cation with or without transfer learning. They have used two
training strategies to train the models: regular training, and
one-cycle training.

Ge et al. [44] proposed an error function based on the Soft-
max concept named multi-label softmax loss (MSML) and
correlation loss to dealwith themulti-disease and imbalanced
data. Further, they have used the bilinear pooling scheme to
increase model discrimination. MSML captures the charac-
teristics ofmulti-label learning,while bilinear pooling allows

the end-to-end training with image labels. They have eval-
uated the proposed function on various pre-trained models
such as ResNet, DenseNet, and ensemble variants. Rakshit
et al. [136] used the pre-trained ResNet-18 model for label
classification. The pre-trained model first extracts the feature
from theX-rays. These features are used by the coming dense
layers for classification. Dense layers take the feature vector
as input from the pre-trained layers and produce the vector
of size 14 (equal to the number of labels in the dataset). The
proposed model has 11,183,694 trainable parameters.

Wong et al.[178] proposed a deep neural network for
finding the normal/healthy radiographs. They had used the
pre-trained Inception-ResNet-v2 model for finding the fea-
tures which are further used for training the model on X-rays
labeled by the radiologist. A total of 3000 AP images are
used of which 1300 are normal/healthy and the rest have one
or more abnormalities labeled. The result obtained by the
model is quite promising. It achieved the ROC-AUC value
of 0.92 and the precision–recall curve AUC value of 0.91.
The main issue that remains with deep learning is domain
shift. Domain shift is an artificial intelligence problem that
means the difference between training and testing data distri-
bution. Chest radiography data also have the same problem
because different machines with various parameters gener-
ate the data, and it results in high heterogeneity distribution.
In Pooch et al.[130] they have shown the same by exper-
imenting on three publicly available chest X-ray datasets.
Experiments show that cross-data generalization (e.g., train
withMIMIC-CXR and test with CheXpert) affects themodel
performance.

Souid et al. [154] proposed the automated method for
abnormalities identification from chest x-rays. They used
themodified pre-trainedMobileNet-V2 for feature extraction
and classification. The proposedmodel obtained good results
onAUCmetrics in comparisonwith othermethods.However,
reported the lower sensitivity due to dataset bias (the differ-
ence in the class distribution). The proposed model has 2.11
M parameters. Baltruschat et al. [13] used the pre-trained
ResNet with and without fine-tuning for chest x-ray classifi-
cation. They have also evaluated themodelwith training from
scratch strategy. Further, they trained a multi-layer percep-
tron (MLP) classifier with non-images features to improve
the classification results. For this, they concatenated the
image feature vector with the new non-image feature vector.
When integrated with the non-image features, the proposed
ResNet-38 achieved the best results.

6.3 Discussion

Training on large datasets brings the computation problem.A
large dataset requires high computation power for the train-
ing. Transfer learning plays important role in deep learning
projects where it prevents computational cost and overfitting.
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Fig. 7 GAN Architecture

Pre-trained and fine-tuned networks are two different trans-
fer learning used in deep learning models. Kim et al.[84]
and Antony et al.[7] has given conflicting results about the
performance of both transfer learning approaches. Recently,
Oakden-Rayner[122] investigated that the CXR-14 dataset
does not accurately reflect the correct labeling. It has 10-30%
less positive predictive values than presented in the published
document [175]. So, data-generating procedures and labeling
rules should be included in the documentation of the dataset.
In this section, we have discussed the various deep learning
models for nodule, TB, pneumonia, COVID-19, pneumotho-
rax detection. Further, multi-class classification studies have
also been discussed. The nodule detection with deep learning
needs exploration as very few studies has been reported. In
COVID-19 detection, most of the research studies has used
the same dataset source. More diversified COVID-19 dataset
is needed to truly explore the COVID-19 using DL. We have
also discussed the models that do not employ deep learning,
so the readers can have a deeper insight into the field.

7 Generative Adversarial network

Goodfellow et al.[48] proposed a generative model via an
adversarial setting called Generative Adversarial Network
(GAN). It is based on two neural network models that com-
pete to analyze, capture and copy the variations within a
dataset. It has received huge attention from the research
community, and there are various variants proposed for
the generation of natural images [132]. Few GAN applica-
tions are the image to image translation [72,118] and image
inpainting [186].

Many works have been proposed on medical image anal-
ysis using the GAN, such as lung and heart segmentation
[34], brain tumor segmentation [184], and for the image to
image translation [118]. Nie et al. [118] trained a GAN net-
work for the translation between brain CT and MRI images.
One of the major problems in deep learning is to train the
network with a large dataset. A study done by Madani et al.

[105] shows that semi-supervised GAN can be trained with
a less amount of data, and gives better results than conven-
tional supervised CNN networks. One of the advantages of
the GAN is its resistance to overfitting, but the problem is its
instability during the training process because of the Nash
equilibrium between generator and discriminator. DCGAN
[132] and WGAN [8] architecture have reported the stable
training phase. Figure 7 shows the GAN architecture and
Table 9 enlists the mentioned segmentation and classifica-
tion research studies.

7.1 Segmentation

There is a scarcity of datasets for segmentation in medical
image analysis. The ground-truth preparation needs exper-
tise and is a laborious task. So, Neff et al. [117] modified the
DCGAN architecture that generates new synthetic images
and the segmentation mask from random noise. The discrim-
inator has to decide whether the image and segmentation pair
are real or synthetic. This helps both the generator and the
discriminator to learn about the ground-truth structure. The
use of real imagesmakes the discriminator improve the image
quality [144], and the authors claim that it is the first of its
work that has generated synthetic images as well ground-
truth masks. The proposed method is evaluated by threefold
cross-validation, and each fold took approximately 24 hours
for training. At last, separate modified UNet architecture is
used for the segmentation results.

Both registration and segmentation methods are support-
ive of each other, and using both methods side by side can
improve the results. Mahapatra et al. [106] proposed a deep
learning GAN network that performs registration and seg-
mentation on chest X-rays. The proposed method does not
need to train a separate network for segmentation. GAN is
used to register the floating and referenced image by com-
bining the segmentation and conventional feature maps. The
proposed model took 36 hours for training on the augmented
dataset. Dai et al. [34] have proposed the lung and heart
semantic segmentation using theGANdiscriminativemodel.
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The model consists of two networks: segmentation and critic
network. The segmentation network is the fully convolutional
network (FCN), and it works as the generator. The critic net-
work is the mirror of the segmentation network that does
the discrimination between the ground truth and segmenta-
tion network masks. It learns the high order structure for
needful discrimination and produces accurate segmentation
without using any pre-trained models. The model is vali-
dated through cross-data generalization. The prediction time
for the proposed model is 0.84 second for each X-ray. The
segmentation architecture has 271,000 parameters and the
critic architecture has 258,000 parameters.

Chen et al. [21] proposed a segmentation with unsuper-
vised domain adaption for medical images. The proposed
unsupervised domain shift approach uses the semantic aware
generative adversarial network. The proposed method sep-
arates the segmentation neural network from adapting the
domain and does not need any label from the test dataset. It
does the image-to-image translation to generate the source
dataset images. Model is tested on two public datasets: the
MC dataset and the JSRT dataset are used as source and
target, respectively.Modified ResNet-101 is used for the seg-
mentation where convolution layers are replaced by dilated
convolutions in high-level residual blocks. CycleGAN is
improved to preserve the information with a novel semantic-
aware loss.

Munawar et al. [115] trained and evaluated the GAN-
based lung segmentation method using four different dis-
criminators. The generator used in the proposed model is
similar to UNet architecture. They have trained the discrimi-
nators with different patch sizes to determine the best match.
Discriminator (D3) outperformed all others with 70 × 70
patch-GAN. Gaal et al. [42] used the attention-based UNet
architecture to generate the segmentationmaskwith a resolu-
tion similar to input images. The use of attention gates results
in the reduction of false positives, and better segmentation
accuracy. Further, to improve evaluation they used adversar-
ial techniques. They created the adversarial network similar
to [34], where the FCN is replaced by the proposed architec-
ture. Moreover, they have not introduced any modifications
to the critic network. The proposed model outperformed the
other state-of-the-art models on different datasets.

7.2 Classification

Labeling or annotating the image dataset is the first and most
important task for classification. Manual annotation is most
accurate, but it is time-consuming and expensive. The auto-
matic annotation takes less time but is error-prone. In this
regard, Tang et al. [163] proposed a model to transfer the
informationgained from labeleddata to unlabeleddata. Itwill
avoid the labeling of the new dataset. The proposed model
can maintain the micro-level details along with high-level

semantic information. During the image to image translation
process, it also maintains the mid-level feature representa-
tion to accurately recognize the target disease, and enhance
the function of generalizing the unlabeled target domain. The
proposed TUNA-Net model is tested on two datasets which
consist of a subset of adult X-rays from CXR-14 (source
domain) and pediatric X-rays obtained from Guangzhou
Women and Children Medical Center (target domain). The
TUNA-Net performance has been comparedwith other states
of the art models including the supervised models. The pro-
posed TUNA-Net in cross-domain X-rays for the pneumonia
classification outperformed the other models.

GAN models are gaining popularity as these can learn
from real data distributions. Imran et al. [68] proposed a
model for combined segmentation and classification from
a limited labeled dataset. The proposed method consists of a
segmentor and discriminator. Segmentor is made of a pyra-
mid encoder and modified UNet decoder. The encoder helps
the model to learn the locally aware features. The decoder
generates the side output at different levels and combines it
for the final segmentation. They applied the proposed model
in a semi-supervised setting for the classification. The dis-
criminator takes the image labels for classification. Madani
et al. [105] proposed the model to show that semi-supervised
GAN requires less data than conventional deep CNN. The
proposed semi-supervised GAN takes advantage of both
labeled and unlabeled data as it is capable of learning from
both types of data. They have used the PLCO [123] dataset
and the Indiana dataset [35] for cardiac classification.

Tang et al. [165] proposed the generative adversarial one-
class classifier that takes input only the healthy radiographs,
unlike the other approaches. The three deep neural networks
(UNet autoencoder, CNN discriminator, and encoder net-
work) competes with each other to produce the structure
of healthy X-rays. The approach is that since the network
has seen only the normal radiographs it will not recon-
struct the abnormal x-ray correctly. Thus, it will help in the
identification of abnormal X-rays. Waheed et al. [174] pro-
posed CovidGAN to improve the COVID-19 detection. They
developed the Auxiliary Classifier Generative Adversarial
Network (ACGAN) for synthetic image generation to over-
come the scarcity of small datasets. They used the fine-tuned
VGG-16 for the COVID-19 detection. The COVID-19 detec-
tion accuracy increased when the synthetic images were used
in comparison to the real images. The proposed CovidGAN
has 24 million parameters, and it took nearly 5 hours for the
training.

7.3 Discussion

Collecting and annotating a large image dataset is a tedious
task. It also increases the computation when used on deep
learning models. Not much work had been done in the label
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transferring from labeled data to unlabeled data. GAN mod-
els are effectively used for some time to create synthetic
images. The same has also been used for creating chest X-
rays. One problem associated with the GAN is its instability
during training, while they also avoid overfitting. Many pub-
lished studies have used the synthetic chest dataset and using
them for segmentation and classification purpose.

8 Conclusion

In traditional CV algorithms, feature extraction is done via
handcraft methods, while the deep learning methods extract
features automatically which is extremely effective com-
pared to the models that manually extract features. Recent
advancements in large datasets and computational power
have made possible the training of deep learning models.
As a result, the focus of most research is turning to deep
learning. A standard dataset is a salient requirement for the
evaluation of various models designed for the segmenta-
tion and disease classification in chest X-rays. Therefore, we
have given a description of the various publicly available
datasets which has been used by various research stud-
ies.

In this paper, we have conducted a study for lung seg-
mentation and disease detection using chest X-ray images in
three phases: segmentation, classification, and GANmodels.
In the first phase, a detailed review of the lung segmentation
studies is performed. The majority of papers have trained,
validated, and tested their models on the same dataset. It is
generally seen that the model trained on one dataset fails
on a different test dataset. Therefore, the model should
be evaluated using the cross-dataset for generalization. In
the second phase, the nodule, TB, pneumonia, COVID-19,
pneumothorax, and multi-class classification research stud-
ies have been reviewed. Most of the classification studies
have done image-level classification except nodule detec-
tion. There are very few studies that have identified the
disease-affected regions in the lungs. In the third phase, lung
segmentation, and disease classification studies involving the
GAN models are reviewed. These models are attracting a lot
of attention. The requirement of large labeled data is the
biggest challenge for the deep learning community. GAN
models can generate synthetic data to overcome scarcity.
Some studies have also shown that GAN requires less data
for learning than conventional CNN. There is a lot of scope
for improvement in segmentation and classification using
GAN. Our aim for this study is to provide an integrated,
synthesized overview of the current state of knowledge of
lung segmentation and disease classification in chest X-
rays.
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