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Abstract
With the advent of the big data era, the application of artificial intelligence represented by deep learning in medicine has 
become a hot topic. In gastroenterology, deep learning has accomplished remarkable accomplishments in endoscopy, ima-
geology, and pathology. Artificial intelligence has been applied to benign gastrointestinal tract lesions, early cancer, tumors, 
inflammatory bowel diseases, livers, pancreas, and other diseases. Computer-aided diagnosis significantly improve diagnostic 
accuracy and reduce physicians’ workload and provide a shred of evidence for clinical diagnosis and treatment. In the near 
future, artificial intelligence will have high application value in the field of medicine. This paper mainly summarizes the latest 
research on artificial intelligence in diagnosing and treating digestive system diseases and discussing artificial intelligence's 
future in digestive system diseases. We sincerely hope that our work can become a stepping stone for gastroenterologists and 
computer experts in artificial intelligence research and facilitate the application and development of computer-aided image 
processing technology in gastroenterology.
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1  Introduction

The diagnosis of digestive tract diseases depends on gastro-
intestinal endoscopy, imaging, and pathology. Deep learning 
(DL) has been widely applied in these fields. It can automati-
cally establish an image recognition system without manipu-
lating image features and achieve high diagnostic efficiency. 
In recent years, various advanced algorithms and models of 
computer-aided diagnosis (CAD) have been proposed, which 
is expected to reduce doctors’ workload and misdiagnosis 
rates (Fig. 1).

Artificial intelligence (AI) can be defined as the intel-
ligence displayed by machines that mimic human cognitive 
functions [1, 2]. Machine learning (ML), a subdomain of AI, 
is an algorithm trained from data to perform a task rather 
than directly executing an explicit program. Representation 

Learning (RL) is a sub-category of ML, which can master 
core features and implement algorithms through the auton-
omous classification of data [3]. DL is a kind of RL. DL 
acquires feature combinations that reflect the hierarchical 
structure of data structures to provide detailed image classi-
fication output. At present, DL represented by convolutional 
neural networks (CNN) is the most widely used AI in medi-
cine [4]. DL technology can extract pathological features 
through active learning of massive clinical data without pro-
viding features in advance and make a CAD through these 
pathological features. CAD can significantly reduce clini-
cians’ workload and assist doctors in making more accurate 
and rapid diagnoses. Besides, advanced diagnosis and treat-
ment technologies can be shared across a wider region, and 
medical resources can be rebalanced through CAD.

2 � Application of DL in gastrointestinal 
endoscopy

Digestive endoscopy is an essential method for diagnosing 
and treating digestive tract diseases and plays a vital role in 
screening precancerous lesions and early cancers. The detec-
tion rate of early precancerous lesions under endoscopy is 
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relatively low, so it is of great significance to improve the 
endoscopic detection rate of early tumors for improving the 
prognosis of patients with digestive tract tumors. AI-assisted 
endoscopic diagnosis is expected to strengthen gastrointes-
tinal lesions’ detection rate by endoscopic physicians and 
reduce misdiagnosis or missed diagnosis [5]. With the con-
tinuous iteration of computer technology and the arrival of 
the big data era, the research on the diagnosis of endoscopic 
diseases assisted by AI technology is flourishing.

DL has been applied in the endoscope-assisted diagnosis 
of tumors and precancerous lesions of the esophagus [6, 7], 
stomach [8], small intestine [9], and colorectum [10, 11]. 
The vast majority of scholars use endoscopic photographs or 
videos to carry out DL. The number and size of training sets 
adopted by different studies vary greatly, but most CAD sys-
tems’ accuracy in diagnosing tumors or precancerous lesions 
can exceed 80%.

Due to the lack of large-scale public authoritative data 
sets, studies often used single-center endoscopic data. The 
number of patients is usually less than 100, limiting DL’s 
accuracy and universality, leading to selection bias. There-
fore, a study enhances data utilization and improves Barrett’s 
esophagus diagnostic accuracy by establishing an adver-
sarial network [12]. Multi-center randomized controlled 
trials are the most compelling studies. However, there have 
been few multi-center prospective studies of AI in gastro-
intestinal endoscopy so far. Wu and Xu et al. Conducted 
two randomized controlled trials to verify the effectiveness 
of ENDOANGEL, a CAD system, in white-light imaging 
(WLI) and image-enhanced endoscopy (IEE) examination 
of early gastric cancer [13, 14].

CNN in fully supervised is challenging for endoscopes 
because it is challenging to obtain depth maps directly cor-
responding to authentic endoscope images. Weakly anno-
tated images may be a cost-effective approach in future. 

Weakly supervised convolutional neural network (WCNN) 
can identify abnormal video frames and detect specific 
pathological points from video frames [15]. In this way, 
images can be marked only by image-level annotations 
instead of detailed pixel-level annotations. The system 
can automatically analyze detailed lesion areas by roughly 
dividing, thus achieving favorable detection and localiza-
tion performance. Mahmood et al. put forward an unsu-
pervised reverse domain adaptation framework to avoid 
excessive comments [16]. Their system worked by using 
confrontational training to remove patient-specific details 
from real endoscopic images while preserving diagnostic 
details. It is a pity that their research was limited to static 
image recognition, unable to adapt to endoscope videoed 
in poor light or unknown depth scenes. Ozyoruk et al. pro-
posed an unsupervised monocular visual odometry and 
estimated depth to solve the problem of frequently chang-
ing lighting conditions and scale inconsistency between 
consecutive frames [17]. The algorithm was optimized by 
mixed loss functions, using spatial attention modules to 
instruct the network to focus on tissue areas. Besides, the 
system detected photometric loss to improve the robust-
ness of fast inter-frame illumination changes in endoscope 
videos. Itoh et al. performed unsupervised DL by introduc-
ing the lambert reflection model as an auxiliary task for 
domain conversion between real and virtual colonoscopy 
images. The system can accurately extract 3D information, 
reducing the impact of specular reflection and colon wall 
texture on depth estimation [18]. Hwang et al. proposed 
a self-supervised monocular depth estimation method to 
assess Spatio-temporal consistency in the colonic envi-
ronment by detecting depth differences between adjacent 
frames [19]. They used loss function and depth feedback 
network to estimate depth information in the next frame 
from previous frames’ data.

The diagnostic accuracy of esophageal disease by narrow-
band imaging (NBI) is higher than WLI, but there are few 
DL studies on NBI at present. Compared with traditional 
WLI, NBI images have no significant difference in AI diag-
nostic efficiency because NBI improves lesion detection 
sensitivity and increases the possibility of overdiagnosis, 
leading to reduced diagnostic specificity. However, NBI is 
beneficial to enhance histological diagnostic grading accu-
racy [6]. Moreover, NBI can enhance the ability to differen-
tiate squamous cell carcinoma microvessels [20]. A multi-
center study shows that magnifying endoscopy narrow-band 
imaging (ME-NBI) reached senior endoscopic physicians’ 
predictive performance in early gastric cancer. Nevertheless, 
the system, which used images rather than videos for the 
study, requires an endoscopic magnification of the suspected 
lesion site before the CAD system can be used. Moreover, 
the system cannot distinguish the depth of tumor invasion 
[21].

Fig. 1   Mind map
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Colorectal cancer is the third most common cancer in 
the world [22]. Colorectal adenomas have a 50% chance of 
malignant transformation, so early detection plays a crucial 
role in reducing mortality. About a quarter of adenomas are 
missed during standard colonoscopy [23]. DL’s study identi-
fies and classifies colorectal polyps with excellent applica-
tion value. Bora et al. collected WLI and NBI images of the 
colorectum to settle the complex problem of systematic visu-
alization [24]. He used Generic Fourier Descriptors (GFD) 
to quantify shapes, Nonsubsampled Contourlet Transform 
(NSCT) to extract texture and color features and performed 
variance analysis to confirm that the GFD and NSCT fea-
tures of tumors and non-neoplastic polyps were significantly 
different. After constructing the CNN model, Lai et al. found 
that both full-color NBI and red-green dual-channel NBI 
had better sensitivity than WLI in detecting polyps under 
colonoscopy [25].

Endoscopic ultrasonography (EUS) can improve imaging 
function and provide various methods for treating biliary 
tract diseases. Its steep learning curve and over-reliance 
on operators limit its clinical application in remote areas. 
Seven et al. predicted the mitotic index of gastrointestinal 
stromal tumors (GISTs) in EUS by DL. The system was able 
to automatically determine the prognosis of patients by EUS 
images [26]. The DL model designed by Yao’s research team 
can accurately identify the bile duct in EUS and automati-
cally calibrate the anatomical position to measure the bile 
duct’s diameter, thus significantly improving the accuracy 
of the operator. The ability to identify lesions needs to be 
further developed in future [27].

The practical application of AI in gastrointestinal endos-
copy is strongly time-sensitive, so it is necessary to integrate 
CAD into the working process of gastrointestinal endoscopy. 
The uneven light, gas, liquid, and surgical scars are the criti-
cal factors affecting the real-time application of AI in the 
endoscope. Manually filtered or standardized images for DL 
may reduce the system’s robustness. Gutierrez et al. col-
lected clinical endoscopic videos of patients with ulcera-
tive colitis from hundreds of different sites using different 
equipments, significantly increasing the area under the 
receiver operating characteristic curve (AUROC). Besides, 
these videos do not need to be marked by professional endo-
scopic physicians. The system automatically preprocesses 
and screens the original endoscopic videos and automati-
cally carries out CNN system training, significantly reducing 
clinicians’ workload and reducing the deviation caused by 
artificial selection [28].

Confocal laser endoscopy (CLE) can detect various focal 
lesions with accuracy even close to pathological detec-
tion. CLE can also dynamically observe lesions under a 
microscope, so it has great application value in diagnosing 
and treating inflammatory bowel disease(IBD). However, 
CLE requires accurate image interpretation, which only 

experienced endoscopic physicians can do. Udristoiu’s team 
designed the DL system can distinguish between ulcerated 
and healed Crohn’s disease patients in CLE pictures [29]. 
Still, the algorithm was unable to determine active ulcers 
from inactive ulcers.

Wireless capsule endoscopy (WCE) can move along the 
entire digestive tract to identify gastrointestinal polyps and 
other lesions and allow patients to avoid the discomfort of 
traditional endoscopes. At present, there are two research 
hotspots: one is how to use the DL models to accurately find 
the lesion site from thousands of pictures taken by WCE; 
the other is how to control the active recognition of capsule 
endoscopy, the arrival of the lesion, and the administration 
of drugs or biopsy. Up to now, DL has been able to identify 
intestinal vascular dilatation [30], hemorrhage [31], polyps 
[32], colorectal tumors [33], and ulcers caused by Crohn’s 
disease [34] from tens of thousands of photographs taken 
during each WCE. However, current researches are mainly 
retrospective studies, and most of the data sets are com-
posed of still images. Therefore, multi-center prospective 
studies with large samples are required to verify CNN’s 
effectiveness in WCE image recognition. IncetanK et at. 
introduced VR technology into WCE. His group used com-
puted tomography (CT) images to create a 3D organ model 
and then remove interference such as bone, fat, and skin 
[35]. The system can precisely generate the same organ as 
the patient’s real organ, with mucosal texture and vascular 
network images, to locate the capsule accurately through DL 
technology. Furthermore, the capsule containing magnets is 
controlled by an external robotic arm, making it possible for 
physicians to observe and perform relevant tasks with the 
help of WCE (Table 1).

3 � Application of DL in digestive system 
imaging

3.1 � Computed tomography

Patients with cirrhosis were proposed for screening esoph-
ageal and gastric varices by gastroscopy. The invasive 
procedure may bring bleeding and other risks. Therefore, 
some studies suggested that platelet count, spleen length, 
and platelet count ratio to spleen length should be used to 
determine the shunt degree of esophageal varices to evaluate 
the risk of varices in patients as a non-invasive examination 
[36]. Ma’s team used DL to assess the CT volume of the 
liver and spleen in patients with hepatitis B virus-related 
cirrhosis, combined with patients’ platelet ratio, to perform 
a computer-intelligent assessment of patients’ varicose veins 
risk [37].

Zhang et al. established a 3D learning network to evalu-
ate models from a data set of CT images collected from 
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three medical centers, achieving promising performance in 
gastric tumor edge segmentation and lymph node classifica-
tion [38]. Another study established a dual-energy computed 
tomography (DECT) radiology DL model [39]. The predic-
tive value of its response to chemotherapy was analyzed to 
predict patients’ treatment response during chemotherapy, 
which may help adjust treatment strategies in time through 
semi-automatic segmentation of advanced gastric cancer. 
Due to the small sample size, performing a performance 
analysis for each chemotherapy regimen was impossible. 
The DL system developed by Jiang’s research team can 
predict occult peritoneal metastasis of gastric cancer pre-
operatively by analyzing CT images, thus reducing the risk 
of blindly performing extensive total gastrectomy [40]. The 
next research direction may be the judgment of peritoneal 
metastasis after neoadjuvant chemotherapy and the DL of 
3D images of other tumors.

DL also plays a role in the interpretation of CT in 
patients with cystic pancreatic lesions [41], pancreatic 

neuroendocrine tumors [42], and pancreatic cancer [43]. 
It can also achieve automatic localization and boundary 
segmentation of the pancreas in CT [44]. Due to the high 
degree of malignancy, patients with pancreatic cancer pre-
sent irregular contours and unclear periphery in CT, lead-
ing to difficulties in demarcation with surrounding tissues. 
Besides, it is challenging to label CT images manually 
because of the complex anatomy around the pancreas. Liu 
et al. artificially labeled CT images of pancreatic cancer 
enhanced the data exploitation degree by moving and flip 
images and reduced the number of convolutional layers to 
reduce the model’s complexity [43]. Besides, he limited 
the pixel size to 50 × 50 to avoid too small plaques to con-
tain sufficient information about the relationship between 
the tumor and adjacent tissue or too large to increase the 
unrelated image interference. As a result, the diagnosis of 
pancreatic cancer in patients of different races has a high 
AUROC.

Table 1   Application of DL in 
gastrointestinal endoscopy

Sens, sensitive; Spec, specificity; Acc, accuracy; WLI, white-light imaging; NA, not available; NBI, nar-
row-band imaging; ME-NBI, magnifying endoscopy narrow-band imaging; WCE, wireless capsule endo-
scope; IEE, image-enhanced endoscopy; CLE, Confocal laser endoscopy; GIST, gastrointestinal stromal 
tumor; EUS, Endoscopic ultrasonography; UC, ulcerative colitis; AUC, area under curve; GI, gastrointesti-
nal tract

Author year Organ Imaging modality Study design Best results: 
Sens/Spec/
Acc%

Iakovidis [15] GI WLI Retrospective AUC 0.96
De Souza [12] Esophagus WLI Retrospective NA, NA, 85
Zhang [8] Stomach WLI Retrospective 94.5, 94.0, 94.2
Hu [21] Stomach ME-NBI Prospective 79.2, 74.5, 77.0
Saito [9] Small intestine WCE Retrospective 90.7, 79.8, NA
Tsuboi [30] Small intestine WCE Retrospective 98.8,98.4,NA
Klang [34] Small intestine WCE Retrospective 96.8, 96.6, 96.7
Yamada [33] Colon CCE Retrospective 79.0,87.0,83.9
Laiz [32] Colorectum WCE Retrospective 51.2, 99.5, 99.4
Zhou [10] Colorectum WLI Retrospective 99.0, NA, NA
Lee [11] Colorectum WLI Retrospective 96.7, NA, NA
Wang [6] Esophagus WLI NBI Pilot 96.2, 70.4, 90.9
Struyvenberg [7] Esophagus NBI Retrospective 88, 78,84
Wang [6] Esophagus WLI NBI Pilot 96.2,70.4,90.9
Uema [20] Esophagus NBI Retrospective 86.2, 97.8, 86.3
Wu [13] Stomach WLI Prospective 100, 84.3, 84.7
Xu [14] Stomach IEE Prospective 96.7, 73.0, 87.8
Bora [24] Colon WLI NBI Retrospective 95.3, 95.0, 95.7
Udristoiu [29] Colon CLE Retrospective 94.6, 92.8, 95.3
Lai [25] Colorectum WLI NBI Retrospective 93, 100, 95
Gutierrez [28] UC WLI Retrospective AUC 0.85
Seven [26] GIST EUS Retrospective 99.7, 99.7, 99.6
Yao [27] Bile duct EUS Retrospective 89.5, 82.3, 93.3
Caroppo [31] GI WCE Retrospective 98.7, 97.3, 98.2
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3.2 � Magnetic resonance imaging

Compared with CT, there are few DL studies on magnetic 
resonance imaging (MRI). Most current research has focused 
on the diagnosis of liver, pancreatic, and rectal diseases, 
such as liver cancer [45], liver fibrosis [46], liver fat seg-
mentation [47], pancreatic tumors [48], rectal cancer [49], 
etc. Abdominal organ segmentation and fat segmentation are 
the advantages of MRI. Automatic segmentation of high-
risk organs has important application value in MRI-guided 
radiotherapy. The robotic abdominal multi-organ segmenta-
tion technology developed by Chen’s team can accurately 
segment the nine abdominal organs with fewer parameters, 
and the duodenum segmentation should be further improved 
[50].

The quantification of human adipose tissue depots can 
help doctors understand a patient’s health. Belly fat has 
been linked to high blood pressure, inflammation, and type 
2 diabetes [51]. Langner’s multi-center study demonstrated 
the robustness of their DL model in fat quantification [52]. 
In recent years, studies have found interactions and patho-
logical similarities between IBD and metabolic disorders, 
including metabolic tissue disorders, inadequate immune 
response, and inflammatory response [53]. Patients with 
non-alcoholic fatty liver diseases (NAFLD) or a high body 
fat percentage are at higher risk for IBD [54, 55]. Combined 
with the patient’s clinical symptoms, MRI fat quantification 
could be applied to CAD of IBD and diabetes in future.

3.3 � Positron emission tomography

Positron emission tomography (PET) imaging is commonly 
used in clinical oncology for diagnosis, staging, restaging, 
and monitoring of treatment response [56]. Image quality 
is crucial for visual interpretation and quantitative analysis 
[57]. Outside the receiving energy window, Scattered pho-
tons can be ignored and cause attenuation. In the receiving 
energy window, the path variation of photon scattering needs 
to be corrected. Attenuation or scattering events result in 
local decrease or increase of detection count, which leads to 
underestimation or overestimation of tracer uptake, respec-
tively. Resulting in decreased image contrast and quantiza-
tion error. Thus, image contrast is reduced, and quantization 
error is caused. In PET imaging analysis, CNN has been 
applied to image reconstruction [58] and image denoising 
[59]. These technologies will help radiologists produce more 
accurate PET images without obtaining CT images. While 
earlier studies were limited to the brain, current studies tend 
to look at whole-body scans. Shiri and Mostafapour's DL 
model can automatically correct attenuation and scatter in 
PET images [60, 61]. The most conspicuous advantage of 
their systems is that they did not require pre-entry of ana-
tomical information. Nevertheless, they were susceptible 

to artifacts, leading to misjudgment of organ boundaries, 
especially between lungs and livers, abdomen, and pelvis. 
To avoid misjudgment in whole-body dynamic PET, appro-
priate function and kinetic models are required, along with 
whole-body motion correction.

In digestive system, PET images are used to help detect 
lesions in liver CT scans. Using a combination of the gen-
erative adversarial network (GAN) and whole convolutional 
network (FCN) to generate PET images from CT scans, a 
research team reduced the false positive rate by 28% [62]. 
Wang et al. introduced a Gan-based method for generating 
high-quality PET images in low-dose tracers, thereby reduc-
ing the risk of radioactive isotopes [63]. They introduced a 
progressive refinement scheme based on 3D to improve the 
quality of image display.

3.4 � Ultrasound

Although MRI is accurate and non-invasive, the cost of using 
MRI to assess liver fat is high, so some research teams want 
to quantify liver fat by ultrasound. For example, Byra et al. 
used MRI to obtain the proton density fat fraction (PDFF) 
of patients and then matched the ultrasound images for the 
training model, achieving qualified diagnostic accuracy [64].

Ultrasound is the front line of screening for abdominal 
diseases. At present, the research on the application of DL 
in ultrasound is gradually increasing. Yang’s team created 
a mouse model of intestinal inflammation to collect micro-
ultrasound (μ US) images of the cecum, small intestine, 
and colon. Three DL networks were trained to distinguish 
between healthy tissue and early inflammation tissue [65]. 
A prospective five-center study using DL from ultrasound 
videos of biliary atresia achieved higher diagnostic accu-
racy than human experts. The research team has also devel-
oped a mobile APP by DL of ultrasound pictures, enabling 
rural doctors in remote areas to perform CAD by taking and 
uploading photographs of suspected biliary atresia [66].

Hepatic cystic echinococcosis is still endemic in some 
areas. Hepatic cystic echinococcosis has five subtypes [67]. 
The ultrasonic appearance may change naturally over time 
or in response to treatment, making diagnosis difficult [68]. 
Although microscopic examination after surgical treatment 
is the gold standard for diagnosing subtypes and stages of 
hepatic cystic echinococcosis, accurate ultrasound diagnosis 
is of great value for patients who can be cured with medi-
cal treatment [69]. Wu et al. used three types of CNNs for 
DL, and because the architecture and features extraction 
was different, the final result was not wholly consistent. The 
three systems complement each other further to improve the 
accuracy of the model’s accuracy and ultimately enable the 
exact classification of hepatic cystic echinococcosis under 
ultrasound [70].
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Ultrasonography(US) has crucial diagnostic value for 
benign and malignant lesions of the liver. Due to the low 
contrast between lesions and normal liver tissue, the diag-
nosis of solid lesions is a challenge. Ryu et al. used 4309 
US images with focal liver disease, including liver cysts, 
hemangioma, metastasis, and hepatocellular carcinomas, 
for DL and precise segmentation and classification of focal 
liver lesions [71]. Contrast-Enhanced Ultrasound (CEUS) 
can allow real-time scanning and provide dynamic perfu-
sion information, so it has the potential to surpass CT and 
MRI in liver and gallbladder diseases [72, 73]. Hu’s CEUS 
system can assist young ultrasound physicians to achieve 
higher diagnostic sensitivity for liver tumors diagnosis 
[74].

Imaging is an essential method for the diagnosis of 
liver diseases. With CT, MRI, and ultrasound, clinicians 
can accurately determine whether a patient has liver fibro-
sis, cirrhosis, non-alcoholic fatty liver disease (NAFLD), 
benign tumors, or hepatocellular carcinoma (HCC). With the 
development of next-generation sequencing and multi-omics 
tools, precision medicine can help doctors more compre-
hensively understand the health status of patients [75, 76]. 
In future, omics information can be integrated into imaging 
data to facilitate the development of precision medicine, 
provide professional health care strategies for patients with 

sub-health, and design the best diagnosis and treatment plan 
for patients [77] (Table 2).

4 � Application of AI in digestive pathology

Pathology biopsy is the golden standard for diagnosing 
benign or malignant diseases of the digestive tract, but 
the number of pathologists is relatively small, so DL can 
effectively reduce pathologists’ workload. In recent stud-
ies, images at different amplification ratios were extracted 
from standardized HE staining specimens, and affine trans-
formations were used to make up for deficiencies in data 
sets. Then, whole slide image (WSI) learning could be 
done by using these pictures. Standardized images have the 
advantage of removing stained samples, but retrospective 
studies can also lead to selective bias, and different stain-
ing conditions can affect CAD diagnoses. There have been 
retrospective studies on DL in the pathological diagnosis 
and prognosis analysis of Helicobacter pylori gastritis [78], 
rectal cancer [79], pancreatic tumors [80], gastrointesti-
nal, and endocrine tumors [81]. Prospective, multi-center, 
and large-scale trials have also begun to verify these algo-
rithms’ usability [82]. However, these studies generally have 
the problem of low interpretative ability for the results of 

Table 2   Application of AI in 
digestive system imaging

Sens, sensitive; Spec, specificity; Acc, accuracy; CT, computed tomography; NA, not available; DECT, 
dual-energy computed tomography; DSC, dice similarity coefficient; MRI, magnetic resonance imag-
ing; MRE, magnetic resonance elastography; AUC, area under curve; US, ultrasound; CEUS, contrast-
enhanced ultrasound

Author year Organ Imaging modality Study design Best results: 
Sens/Spec/
Acc%

Roth [44] Pancreas CT Retrospective DSC 81.3
Corral [48] Pancreas MRI Retrospective 92, 52, NA
Langner [52] Abdomen MRI Retrospective DSC 0.99
Tan [39] Stomach DECT Retrospective AUC 0.828
Zhang [49] Rectum MRI Retrospective AUC 0.99
Hectors [46] Liver MRE Retrospective AUC 0.99
Liu [43] Pancreas CT Retrospective 97.3, 100, 98.6
Watson [41] Pancreas CT Pilot NA, NA, 88.9
Lee [37] Spleen CT Retrospective 69.4, 78.5, NA
Chen [50] Abdomen MRI Retrospective DSC 0.96
Zhang [38] Liver Enhanced CT Retrospective NA, 61.6, 80.5
Zhang [45] Liver MRI Retrospective 55, 81, 71
Jimenez [47] Liver MRI Retrospective DSC 0.93
Byra [64] Liver US Retrospective 83, 88, 85
Ryu [71] Liver US Retrospective 95.0, 86.0, 89.8
Hu [74] Liver CEUS Retrospective 92.7, 85.1, 91.0
Zhou [66] Gallbladder US Retrospective 88.2, 89.8, 89.4
Huang [42] Pancreas CT Retrospective 86, 100, 91
Jiang [40] Abdomen CT Retrospective 87.5, 98.2, NA
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CAD. The DL system developed by Ma et al. can distinguish 
between normal gastric mucosa, chronic gastritis, and gastric 
cancer. They used visualization techniques to display the DL 
model’s content and revealed how the AI program extracted 
gastric mucosal lesions’ morphological characteristics at 
different stages. Eventually, gastric cancer progression was 
revealed, and the effects of the CAD black box were attenu-
ated [83].

The number of metastatic lymph nodes is an essential 
determinant of the TNM staging of gastrointestinal malig-
nant tumors and is also one of the most critical factors in 
evaluating gastric cancer prognosis. The clinical-pathologi-
cal diagnosis of lymph nodes is influenced by subjective fac-
tors and requires much time and effort [84]. Pan’s and Ding’s 
DL system can quickly detect the number of esophageal and 
rectal lymph node metastases in a large field of vision. How-
ever, as their system only supports rectangular annotation, 
its robustness is deficient in small detection objects or com-
plex contours [85]. Hu’s model was improved on this basis, 
achieved excellent contour segmentation of a single lymph 
node, thus effectively improved the lymph node’s quanti-
fication accuracy [86]. Wang et al. have come up with a 
DL framework to analyze patients’ gastric carcinoma lymph 
node WSI. The system can accurately identify and divide the 
area of lymph nodes, then reveal the tumor area’s ratio and 
mesenteric lymph nodes area to predict patients’ prognosis. 
The system even found several poorly differentiated tumor 
cells missed by pathologists [87]. Kwak’s team also used 
WSI for the DL of lymph node metastasis in patients with 
colorectal cancer. They found that the peri-tumoral stroma 
(PTS) score was a reference for predicting the number of 
lymph node metastases [88].

A large sample of prospective studies recently inves-
tigated the DL system’s application in the pathological 
diagnosis of gastric cancer. The algorithm achieved 100% 
sensitivity and 97% specificity for gastric epithelial-derived 
tumors, and the vast majority of false positives were due 
to ulcers or inflammation [89]. However, the system often 
mistakenly identified GIST as atypical hyperplasia because 
there was no targeted dataset for non-epithelial tumors. 
Therefore, it is still worthwhile to establish a new learning 
model for mesenchymal tumors.

The evaluation of surgical margins is inseparable from the 
prognostic analysis. However, due to the excessively large 
resolution of WSI images, prognostic analysis based on WSI 
is often costly [90]. It is promising to divide the whole WSI 
into small pieces and then automatically analyze the prognosis 
of patients through DL. While the edge between tumors and 
normal tissues can be delineated artificially, labeled tumor 
areas can also contain normal tissues. Pixel-level annotation 
can alleviate this problem, but it is a drain on the pathologist's 
energy. Saillard et al. extracted regions randomly for manual 
marking to patch the DL system. They found that vascular 

spaces, the macrotrabecular architectural pattern, and a lack 
of immune infiltration suggested a poor prognosis of HCC. 
Although highlighting these areas can increase the accuracy 
of their system, it still does not utilize all pathological informa-
tion [91]. Weakly supervised learning (WSL) utilizes easily 
available image-level annotations to infer pixel-level informa-
tion automatically. Pathologists label WSI as cancer as long 
as a small portion of the image contains the cancerous area 
without specifying its exact location, greatly reducing pathol-
ogists' annotation burden and particularly applicable to the 
field of histopathology. Pathologists only need to mark WSI 
lesion types, but do not need to specify the exact location of 
cancer cells [92]. Shao et al. divided WSI into about 1000 
patches with the size of 512*512 pixels and then used WSL 
to conduct DL recognition on all images. So as to fully obtain 
background information of pathological images. The effec-
tiveness of the WSI level inpatient prognosis assessment was 
validated in three cancer datasets from the Cancer Genome 
Atlas (TCGA) [93]. Due to the large size of WSI images and 
the small proportion of lesions in some cases, image-level 
labels make automatic diagnosis difficult. Recalibrated multi-
instance deep learning method (RMDL) can automatically find 
the key instances. The high-precision positioning network and 
recalibrated multi-instance learning were optimized, and the 
accuracy reached 86.5% [94].

Hyperspectral imaging (HSI) is a non-contact, non-con-
trast, non-invasive optical imaging technique that provides 
the analyzed region's pixel spectral and spatial information. 
It has been applied to both gastric and colorectal cancer. 
Jansen-Winkeln combined HSI with AI technology to intel-
ligently distinguish colorectal cancer or adenomas from 
healthy mucosa on specimens. Besides, they used visuali-
zation techniques to help clinicians understand the mind of 
computers [95]. In future, with increased time efficiency, the 
technology may be used in the operating room on freshly 
removed specimens or even integrated into the laparoscope 
to help surgeons determine the extent of lymph node dissec-
tion in real-time.

In one study, 12 specimens of GIST were irradiated 
with near-infrared (NIR). NIR irradiation transparency dis-
tinguished the specific HSI information of GIST, and the 
lesion range of GIST was predicted by ML [96]. This tech-
nique may be utilized in the prediction of all submucosal 
tumors in future. However, light is often affected by the 
specimen’s thickness, and the training set is sometimes too 
small. (Table 3).

5 � Major techniques and Issues

DL is a kind of ML technique that can recognize highly 
complex patterns in large data sets. As mentioned above, 
DL can be broadly divided into supervised learning and 
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unsupervised learning. The most popular architectures 
in supervised learning are CNN and recurrent neural 
network(RNN) (Fig. 2). In addition, there are also spatial 
convolutional network (SCN), temporal convolutional net-
work (TCN), and Spatio-temporal attention convolutional 
network (STACN), which are, respectively, used to extract 
the appearance information of RGB images, capture the 
motion information of flow fields and learn the appearance 
information of areas with significant attention to motion 
[97]. The latter three methods are used relatively infre-
quently in medicine.

CNN is mainly composed of alternating convolutional 
layer and pooling layer, and each layer contains trainable filter 

banks [98]. CNN can continuously learn abstract features and 
integrate them into the full connection layer to calculate local 
weights and generate output values, thus completing tasks 
[99]. In this paper, many studies described above designed 
and optimized systems by modifying the number of cores, 
channels, or filter sizes.

A typical chief underlying mathematical implementation 
expressions of CNN [98]:

(1)y(n) = x(n) ∗ �(n) =

∞∑

m=−∞

x(m)�(n − m),

Table 3   Application of AI in 
digestive pathology

Sens, sensitive; Spec, specificity; Acc, accuracy; HE, hematoxylin ered; WSI, whole slide images; GIST, 
gastrointestinal stromal tumor; GI, gastrointestinal tract; DS, double-immunostained; NA, not available; 
PPV, positive predictive value; NPV, negative predictive value; HIS, Hyperspectral imaging; NIR-HIS, 
near-infrared hyperspectral imaging; AUC, area under curve

Author year Organ Imaging modality Study design Best results: Sens/Spec/Acc%

Pan 2020 [85] Esophagus HE WSI Retrospective 99.2, 93.0, 94.0
Martin 2020 [78] Stomach HE WSI Retrospective 100, 98.3, 98.9
Ma 2020 [83] Stomach HE WSI Retrospective 98.0, 98.9, 98.4
Klimov 2020 [80] Pancreas HE WSI Retrospective 94, 100, 100
Sato 2020 [96] GIST NIR-HSI Retrospective 91.3, 73.0, 86.1
Govind 2020 [81] GI DS WSI Retrospective NA, NA, 98.4
Hu 2021 [86] Stomach HE WSI Retrospective PPV: 93.5, NPV: 98.0
Wang 2021 [87] Stomach HE WSI Retrospective 98.5, 96.1, 96.9
Park 2021 [89] Stomach HE WSI Prospective 100, 97.5, 96.0
Wang 2021 [82] Colorectum HE WSI Retrospective 97.0, 99.2, 96.1
Jansen 2021 [95] Colorectum HSI Retrospective 86, 95, NA
Liu 2021 [79] Rectum HE WSI Retrospective AUC 0.88

Fig. 2   Node graphs of architectures commonly used in medical imaging. a convolutional neural network, b recurrent neural network, c Auto-
encoder, d multi-stream convolutional neural network.(  Adapted from Litjens’ survey)
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RNN are designed for discrete sequence analysis. 
Each point in the sequence generates an internal signal 
fed through the neural network to the next layer. Hidden 
layers preserve information in the observed sequence and 
updates it in real-time [100]. Medical reports are typically 
processed by RNN. To integrate information from medical 
reports, it is often necessary to include a hybrid network 
combining.

A typical chief underlying mathematical implementation 
expressions of RNN [100]:

Although most studies are based on supervised learning 
with per-pixel annotation, WSL with image-level labels and 
even unsupervised learning has high application value. WSL 
uses labeled data to train the entire network and unlabeled 
data to train encoders and decoders [101]. Original data for 
unsupervised learning come in the form of images without 
any expert-annotated labels. A common technique in unsu-
pervised learning is converting input data into low-dimen-
sional subspaces and then grouping. The most common 
method of unsupervised learning is GAN. GAN has been 
widely used in medical imaging, such as denoising, modal 
transfer, anomaly detection, and image synthesis [102]. In 
addition, unsupervised learning also includes Auto-Encoders 
(AEs), stacked auto-encoders (SAEs), restricted Boltzmann 
machines (RBMs), deep belief networks (DBNs), and varia-
tional auto-encoders (VAE) [103]. AEs can reduce nonlinear 
dimensionality reduction, find compressed raw information 
in the network and reenter the low-dimensional space [104]. 
These techniques have rarely been used in medicine, but 
because unsupervised learning allows for network training 
using large amounts of unlabeled data and the best use of 
information, it may have broad applications in future.

A typical chief underlying mathematical implementation 
expressions of GAN [12]:

(2)

Y(i, j) = X(i, j) ∗ �(i, j) =
∑

m

∑

n

X(m, n)�(i − m, j − n).

(3)al(t) = f l
(
nl(t)

)
;

(4)

n1(t) =IW1,1
[
p(t);p(t − 1);… p

(
t − TDLin

)]

+ LW1,1
[
a1(t − 1);… a1

(
t − TDLint

)]

+ LW1,2
[
a2(t − 1);… a2

(
t − TDLint

)]

+ LW1,3
[
a3(t − 1);… a3

(
t − TDLout

)]
+ b1;

(5)

n2(t) =LW2,1a1(t) + LW2,2
[
a2(t − 1);… a2

(
t − TDLint

)]

+ LW2,3
[
a3(t − 1);… a3

(
t − TDLint

)]
+ b2;

(6)
n3(t) = LW2,2a2(t) + LW3,3

[
a3(t − 1);… a3

(
t − TDLint

)]
+ c.

A typical chief underlying mathematical implementation 
expressions of AEs [103]:

A typical chief underlying mathematical implementation 
expressions of RBM [103]:

Transfer learning(TL) can fine-tune or retrain the origi-
nal DL model by using new annotations. Tajbakhsh demon-
strated that pre-trained CNN with fine-tuning is superior to 
CNN trained from scratch CNN [105]. Fine-tuning can sig-
nificantly reduce costs than retraining. When ideal training 
sets are small, TL can bring greater performance improve-
ment. So far, most approaches have started pre-training 
with natural image data. It may be possible to design cross-
domain data sets in future, for example, using TL between 
CT, MRI, ultrasound, and PET.

Active learning (AL) can be learned in an interactive 
environment by selecting learning strategies through trial 
and error. The system tries to achieve its goals based on 
feedback from its own behavior and experience. At present, 
no application of AL in the digestive system has been found, 
which may be due to the high inherent coupling between 
AL selection strategies and the model being trained. These 
results in later data sets that may not be conducive to model 
training [106].

6 � Overview

6.1 � Applications of DL in medicine

AI is becoming increasingly valuable in the early diag-
nosis of digestive tract diseases. DL systems can signifi-
cantly reduce the workload of clinicians and maintain high 

(7)
min
G

max
D

�(D,G) = Ex

[
logD(x)

]
+ Ez

[
log (1 − D(G(z)))

]
,

(8)FBi

(
�j,�

)
= argk minG

(
�j,�k

)
,

(9)S
(
Bi

)
=

1

|Bi|

|Bi|∑

j=1

FBi

(
�j,�

)
.

(10)h = �
(
wx,hx + bx,h

)
.

(11)E(x, h) = hTWx − cTx − bTh,

(12)p(x, h) =
1

Z
exp {−E(x, h)}.

(13)P
(
hj|x

)
=

1

1 + exp
{
−bj −Wjx

} .
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diagnostic accuracy and systematic robustness. As the pub-
lic dataset expands, more and more high-quality algorithms 
will be discovered. However, Large sample prospective stud-
ies are needed to verify the effectiveness of the algorithm. 
Although DL has been extensively studied in the image pro-
cessing of endoscopy, imaging, and pathology of gastroin-
testinal tract diseases, each auxiliary diagnostic method has 
its limitations. At present, there is still a lack of a CAD sys-
tem that can comprehensively recognize the image data of 
different auxiliary examinations. This review lists progresses 
of DL in different auxiliary examinations, hoping that the 
data of different auxiliary examinations can be integrated to 
improve diagnosis accuracy one day.

What AI can bring us better identifying endoscopic 
images or pathological data from a single angle, but per-
haps its most outstanding value is that it can help us break 
through the traditional thinking patterns, transcend the fixed 
diagnosis ideas, and give us a broader explorative space. 
Shortly, AI may help us implement diagnosis and treatment 
methods more flexibly, achieve disciplines integration more 
thoroughly, and evaluate conditions more comprehensively. 
AI can create infinite possibilities for our future.

Aslam studied the characteristics of exhaled gas com-
pounds in patients with gastric cancer through CNN analy-
sis, and the diagnostic accuracy of early and advanced gas-
tric cancer reached 97.3% and 98.7, respectively [107]. With 
the development of computer technology and the iteration 
of CNN, we will use computers to find more non-invasive 
examination items in future.

Xiao led a prospective multi-center study using a slit 
lamp to conduct DL on the fundus and iris of patients with 
several common liver diseases and finally achieved excel-
lent results in identifying liver cancer and chronic cirrhosis. 
In future, ophthalmology imaging may be used as a tool 
for the early screening of liver and biliary diseases [108]. 
This project is innovative because linking two seemingly 
distant organs together, allows this kind of interdisciplinary 
computer-aided research to discover biological phenomena 
that have not been discovered before.

COVID-19 has become a serious public problem, and 
companies are racing to develop drugs. Recently, Li's 
research team used DL models to predict drug-induced liver 
injury, thereby reducing the cost of clinical drug develop-
ment and testing [109]. In future, when facing unacquainted 
sudden diseases, we can also adopt DL technology to input 
disease information and let the computer judge the patient's 
condition, treatment, and prognosis.

AI has shown its superiority in the early diagnosis of gas-
trointestinal diseases. However, if clinicians rely too much 
on AI, the images under a specific condition may be repeat-
edly missed due to the algorithm’s limitations or data set. 
AI will help clinicians discover the potential links between 
diseases and comprehensively assess the patient's condition 

and prognosis, but it also requires clinicians to continuously 
accept, learn, and improve this new technology.

Besides, Wong comprehensively evaluated non-alcoholic 
fatty liver disease severity based on clinical information, 
including electronic health records, liver biopsies, and liver 
images [110]. In future, AI health assessment of patients 
may not be limited to cross-sectional studies. Still, it can 
collect patients’ dynamic data in more detail to conduct 
intelligent analysis to obtain professional suggestions with 
solid persuasion.

6.2 � Characteristics and Challenges of DL 
in medicine

Medical image analysis has three main tasks: disease diag-
nosis, lesions detection, and lesions and organs segmen-
tation. It also includes other related tasks, such as image 
reconstruction, image retrieval, and report generation. The 
digestive field emphasizes the ability to recognize abnor-
malities, such as polyps and early cancer. Since medicine 
is a human-facing science, DL has its own characteristics 
and challenges in medical image processing compared with 
other CV scenarios.

Characteristics

1.	 Physiological structures are often irregular and dis-
ordered, making it difficult to conceptualize them as 
matrices. There are multiple stages, such as precancer-
ous lesions, between the tumor and normal tissue. Medi-
cal judgment is subjective and may vary from doctor to 
doctor, requiring extensive expert annotations to reach 
a consensus.

2.	 Image recognition is obviously interfered with by 
viewpoint, noise, background motion, and illumina-
tion changes [111]. In medicine, diagnosis often needs 
reference background information to achieve higher 
accuracy. The use of implicit information in biological 
systems has attracted great attention.

3.	 The compatibility of the DL system between hospitals 
needs special attention. Different light sources, resolu-
tions, doctors' skills, and examination habits may affect 
judgment accuracy.

4.	 Medicine values the prediction of causal effects in order 
to evaluate the curative effects in time. Genomics will be 
more widely used in future, and DL will become a daily 
tool for analysis [112].

5.	 Medical images require high resolution, which makes 
image analysis costly and time-consuming. DL models 
can be trained using cloud computing in future, with 
instances deployed on different sites and trained on local 
data while sharing standard parameters, enabling the use 
of multiple GPUs at a reasonable cost and promoting 
respect for medical data privacy.
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Challenges:

1.	 Most DL applications are considered to be a "black box". 
Users are tough in explaining, understanding, or correct-
ing how the model makes predictions. The system needs 
to explain prediction conclusions further to gain the trust 
of doctors and patients.

2.	 Where is the application boundary of AI? The abuse of 
DL may infringe personal privacy, disturb natural law, 
and violate ethic. For example, what should a doctor do 
when the AI decides that abandoning treatment is the 
best option?

3.	 In health security, minor errors can lead to catastrophic 
results. How to further improve the accuracy is always 
the challenge and pursuit of engineers.

4.	 In the classification training of rare diseases, overfitting 
will occur if the sample number of one class is much 
larger than another class. Computer vision techniques 
can solve the overfitting problem. However, model 
complexity reduction and data enhancement techniques 
focus only on the target task on a given data set without 
introducing new information into the DL model. Today, 
introducing more information beyond a given medical 
data set has become a promising approach to solving 
the problem of small medical data sets. In addition to 
broader collaboration, enhanced data extraction using 
unsupervised learning and integration using different DL 
techniques are likely to mitigate this problem.

6.3 � Restriction on AI’s clinical application

Currently, restriction on AI’s clinical application has three 
key factors: first, the compatibility of each system; sec-
ond, daily maintenance and fault handling of the DL sys-
tem; third, the legal liability. When the test is false, these 
errors involving computer knowledge are often difficult to 
be explained by doctors’ experience alone, so who should be 
responsible for this during the clinical process? Therefore, 
more multi-center prospective studies should be conducted 
in future. Relevant laws and regulations should be improved 
to translate scientific and technological achievements into 
practical applications.

The current limitation of AI in the digestive system image 
has its particularity:

1. Digestive endoscopy plays a significant role in clinical 
diagnosis and treatment. Inadequate intestinal preparation 
will affect image recognition and misdiagnose debris as the 
tumor.

2. While AI can serve as a second set of eyes for endo-
scopic physicians. There are still misdiagnosis rates to 
overcome.

3. The determination of tumor invasion depth depends on 
EUS, but the accuracy is limited. It is difficult to accurately 

distinguish the origin of tumors, which challenges the selec-
tion of surgical methods.

4. Blind spot is a vital factor leading to a missed diagno-
sis. It is necessary to develop further DL systems that can 
automatically prompt blind spots.

5. Digestive system covers a large number of organs and 
has high requirements for lesion localization in imaging. 
Currently, some systems can accurately achieve organ seg-
mentation, but the localization inside organs is not accurate 
enough.

6. In the endoscopy process, rapid determination of polyp 
or tumor properties has high application value, but there is 
still a long way to go.

7 � Conclusion

DL will be widely used in the medical field in the near 
future, especially for image recognition. CAD can signifi-
cantly narrow the technical gap between physicians, reduce 
work pressure, and improve patients’ experience. However, 
there are many technical, ethical, and legal hurdles to over-
come before AI is finally used in clinical practice.
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