
The Visual Computer (2022) 38:4383–4395
https://doi.org/10.1007/s00371-021-02303-2

ORIG INAL ART ICLE

Adapting Game Engines to Curved Spaces

László Szirmay-Kalos1 ·Milán Magdics1

Accepted: 7 September 2021 / Published online: 11 October 2021
© The Author(s) 2021

Abstract
Curved spaces are very un-intuitive to our eyes trained on Euclidean geometry. Games provide an interesting way to explore
these strange worlds. Games are written with the help of modeling tools and game engines based on Euclidean geometry.
This paper addresses the problem of adapting 3D game engines to the rules of curved spaces. We consider the conversion
of Euclidean objects, geometric calculations, transformation pipeline, lighting and physical simulation. Finally, we identify
where existing game engines should be modified.

Keywords Hyperbolic geometry · Elliptic geometry · Transformations · Illumination

1 Introduction

Euclidean, elliptic and hyperbolic geometries share all but
the parallel axiom, i.e. for a given line they postulate exactly
one, none, and more than one non-intersecting line passing
through a given point, respectively. The difference in the par-
allel axiom has significant consequences; thus, each of these
geometries describes a differentworld.Games offer the expe-
rience of strangeworlds; thus, the adaptation of game engines
to non-Euclidean geometries provides an interesting way of
exploring and understanding these geometries.

A game has to support the following main tasks:

– Loading of the modeled objects into the game world.
– Simulating game objects to determine their state includ-
ing their translation and rotation in each frame.

– Animating game objects and the avatar’s camera by
applying the computed transformations to vertices.

– Rendering the game objects determining the visibility
and the radiance of their surfaces and projecting them
onto the screen.

B László Szirmay-Kalos
szirmay@iit.bme.hu

Milán Magdics
magdics@iit.bme.hu

1 Department of Control Engineering and Information
Technology, Budapest University of Technology and
Economics, Budapest, Hungary

These tasks are solved in game engines, e.g. Unity3D [4],
implementing formulas assuming Euclidean geometry. The
objective of this paper is to convert graphics engines devel-
oped for Euclidean geometry to virtual worlds defined by
elliptic or hyperbolic geometry. (Initial concepts related to
the transformations in elliptic geometry were discussed in
our previous paper [25].) The contributions are:

– A general framework and simple formulas with proofs to
set up the transformation matrices according to the rules
of elliptic and hyperbolic geometries.

– A method of converting game objects and worlds from
Euclidean to non-Euclidean geometries.

– Modification of the laws of light propagation, illumina-
tion, and dynamics for curved spaces.

– Review of the possibilities of existing game engine adap-
tation.

We assume unit curvature spaces, i.e. set the unit of length
to the constant curvature of the space. However, it does not
mean that the change of the curvature cannot be demonstrated
since the same effect can be achieved by scaling Euclidean
objects and locations before conversion.

The structure of the paper is as follows: Section 2 surveys
the previous work. In Sect. 3, we summarize the embedding
space model of Euclidean, elliptic, hyperbolic and projective
geometries. Our contributions start with Sect. 4 that presents
formulas to build up the transformation matrices of typical
operations in the animation and rendering pipeline. Section 5
discusses how to convert objects obtained in the framework

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00371-021-02303-2&domain=pdf
http://orcid.org/0000-0002-8523-2315


4384 L. Szirmay-Kalos, M. Magdics

of Euclidean geometry into non-Euclidean spaces and intro-
duces our solution based on the exponential map. Section
6 discusses the adaptation of illumination and physics. In
Sect. 7, we examine the possibilities of game engine integra-
tion and show the shader programs of one particular solution.
Finally, we demonstrate the results.

2 Previous work

Rendering non-Euclidean geometries is a topic in mathemat-
ics, cartography and art [9,14,21]. Visibility determination
in 3D spaces can be based on ray tracing, i.e. image space
rendering, or object space approaches. In ray tracing, only
the ray definition and the intersection calculation should be
altered according to the shortest path, i.e. the geodesics of the
actual geometry [2,27]. If ray marching or its improved ver-
sions like, e.g. sphere tracing, is used instead, non-isotropic
Thurston geometries [6,20] or even geometries with vary-
ing curvature can also be rendered [8]. Visualizing special
and general relativity or black holes are good examples for
these approaches [30,31]. Ray tracing can also take care of
teleporting at fundamental domain boundaries [2].

Object space rendering algorithms can also be adapted
to elliptic or hyperbolic geometry. Visibility computation is
based on the “smaller than” relation of distances on a ray, but
the exact distance values are not needed; thus, the space can
be distorted before this operation if the distortion preserves
lines and the order of distances along the line. The projection
of theKlein’s model meets these requirements; thus, classical
clipping and visibility algorithms are appropriate also for
hyperbolic and elliptic geometries [10,28]. Other Thurston
geometries can also be considered [13], but raysmay become
curved.

Modeling and animation of objects and the camera involve
geometric calculations like the determination of distance,
angle or direction, finding orthogonal directions, and the
determination of the transformation matrices. In Euclidean
geometry, translation makes a transformed line parallel with
the original line, but this would be impossible in non-
Euclidean geometry because of the curvature of the space.

This means that even the identification of the translation
is a problem in non-Euclidean geometry. Rigid motions pre-
serving a sphere belong to the rotation group O(4), and
rigid motions of the hyperbolic space are the Lorentz group
O(3, 1). Thus, subsets of these transformations must be re-
interpreted as translations when the concepts of the classical
rendering pipeline are extended for these geometries. Weeks
[28] answered this problem only if the translation is done
along the coordinate axes. Gunn [22] proposed to execute
translation as two planar reflections. Hart et al [11], on the
other hand, considered only infinitesimal translations. The
transformation matrix of infinitesimal translations can be

generated using the Lie theory [17]. Infinitesimal transla-
tions may be enough in a fly-through animation or physical
animation, but placing the objects in their initial state requires
non-infinitesimal translations.

The first object space 3D graphics system visualizing
spherical and hyperbolic spaces was Geomview [1], which
inspired other systems like jReality [5]. The tiling of the
hyperbolic plane was also exploited in 2D games like
HyperRouge [12]. Note that virtual reality interactions pose
additional challenges since the user’s real body parts in
Euclidean space, the avatar’s body parts in non-Euclidean
space together with their perceived view become inconsis-
tent and require compensation [29]. In our paper, we do not
consider this problem and assume that the avatar is repre-
sented by a virtual pin-hole camera.

3 The embedding spacemodel of geometries

To examine different geometries analytically in a unified
framework, we can take an outsider’s view [15,16]. It means
that the real space is looked at from a space of one more
dimension, i.e. we consider the 3D geometries as subsets of
the 4D embedding space. The embedding space is associ-
ated with a dot product and four orthogonal basis vectors i, j,
k, l, and its elements are characterized by four-element row
vectors v = (x, y, z, w) of the four coordinates.

For 3D Euclidean geometry or 3D elliptic geometry, the
dot product in the 4D embedding space is the conventional
Euclidean dot product

〈v1, v2〉E = x1x2 + y1y2 + z1z2 + w1w2. (1)

However, hyperbolic geometry requires that the embedding
space is of Minkowski type with the Lorentzian definition of
the dot product

〈v1, v2〉L = x1x2 + y1y2 + z1z2 − w1w2. (2)

To handle the different cases uniformly, we introduce curva-
ture signL that is 1 in case ofEuclidean and elliptic geometry,
and −1 in hyperbolic geometry. With this, the general dot
product is

〈v1, v2〉 = x1x2 + y1y2 + z1z2 + Lw1w2. (3)

The basis vectors satisfy the condition of normalization:

〈i, i〉 = 〈j, j〉 = 〈k,k〉 = 1 and 〈l, l〉 = L, (4)

and the condition of orthogonality:

〈i, j〉 = 〈j,k〉 = 〈k, l〉 = 〈l, i〉 = 0. (5)

123



Adapting game engines to curved spaces 4385

Vectors starting at a point represent directions in which
one can tangentially pass through that point, i.e. vectors are
in the tangent space associated with the point.

3.1 Euclidean geometry

Points p = (px , py, pz, pw) of the Euclidean 3D space are
identified by equation pw = 1. As vectors are directions
between two points, vectors v of the Euclidean space have
the property of vw = 0. Different points share the same
tangent space and thus the same set of possible vectors.

A line is a uniform motion of start p and velocity v:

rE (t) = p + vt, (6)

or a combination of two points p and q:

rE (t) = p(1 − t) + qt . (7)

The plane is also a linear structure but unlike the line, it
is two-dimensional and thus is spanned by two vectors a and
b:

rE (t1, t2) = p + at1 + bt2. (8)

A plane is also the union of all lines passing through p and
having a direction vector that is the combination of the two
spanning vectors a and b.

3.2 Elliptic geometry

Point p in the 4D embedding space belongs to the 3D elliptic
geometry if its coordinates satisfy the equation of the unit
hyper-sphere:

p2x + p2y + p2z + p2w = 1 or 〈p,p〉E = 1. (9)

Points of the elliptic geometry are diameters of the unit
hyper-sphere; thus, antipodal points (px , py, pz, pw) and
(−px ,−py,−pz,−pw) are considered to be the same.
Treating points as diameters is needed to keep the validity of
the axiom, stating that “two distinct points unambiguously
define a line” in elliptic geometry as well. Geodesics on the
sphere are the main circles, which would intersect each other
twice. However, declaring the antipodal points identical, two
lines intersect each other in a single point. Elliptic space is
topologically equivalent to the projective space, but it has the
metric of the sphere.

Vectors v are directions that must be in the 3D tangent
hyperplane called the tangent space of the hyper-sphere at
their start. Position vectors of points on an arbitrary dimen-
sional sphere centered in the origin are orthogonal to the

tangent space; thus, vectors should satisfy

〈p, v〉E = 0. (10)

The line is the unit speed uniformmotion starting at p and
of initial unit direction vector v:

rS(t) = p cos(t) + v sin(t). (11)

Distance d between two points is the time needed to travel
from one to the other with unit speed uniform motion:

q = p cos(d) + v sin(d) �⇒ d = cos−1(|〈p,q〉E |). (12)

The absolute value makes the distances to the two equivalent
antipodal points equal.

The line can also be expressed as the spherical combina-
tion of two points p and q being at distance d [24]:

rS(t) = p
sin((1 − t)d)

sin(d)
+ q

sin(td)

sin(d)
. (13)

Similarly to Euclidean geometry, the plane is defined by
a point p and two spanning vectors a and b in the tangent
space of point p. The set of points of the plane is the union
of all lines passing through p and having a direction vector
that is a combination of the two spanning vectors a and b.

3.3 Hyperbolic geometry

Points p of the hyperbolic space satisfy equation

p2x + p2y + p2z − p2w = −1, and pw > 0, (14)

which could be interpreted as the upper part of a two-sheet
hyperboloid if the embedding space were Euclidean. How-
ever, hyperbolic geometry is embedded in Minkowski space
equipped with the Lorentzian dot product; thus, the equation
looks identical to the equation of a hyper-sphere of imaginary
radius

√−1:

〈p,p〉L = −1.

Again, vectors must be in the tangent space of their start-
ing point, defined by equation 〈p, v〉L = 0, which is the
consequence that the hyperbolic space is also a hyper-sphere
similarly to elliptic geometry, but in Minkowski embedding
space.

In hyperbolic geometry, the line, i.e. the unit speed uni-
form motion, starting at p and of initial direction v is

rH (t) = p cosh(t) + v sinh(t). (15)

123



4386 L. Szirmay-Kalos, M. Magdics

Fig. 1 Embedding the 2D projective, Euclidean, elliptic and hyperbolic
geometries in the 3D world where a point has coordinates (x, y, w).
Points of the Euclidean geometry are on a plane of w = 1, points of
the elliptic geometry are on the sphere of equation x2 + y2 + w2 = 1,
and points of the hyperbolic geometry belong to the upper part of the
two sheet hyperboloid of equation x2 + y2 − w2 = −1; thus, they are

2D manifolds of the 3D embedding space. 2D projective geometry is
similar to the Euclidean geometry but establishes a different correspon-
dence between 3D embedding space and 2D projective space, which is
responsible for dimensional reduction. In projective geometry, lines of
(λx, λy, λw) correspond to points in projective geometry.

The distance d between two points is the time needed to
travel from one to the other with unit speed uniform motion:

q = p cosh(d) + v sinh(d) �⇒ d = cosh−1(−〈p,q〉L).

(16)

The line is again the combination of two points p and q being
at distance d, but in hyperbolic geometry weights are defined
by the hyperbolic sine function [7]:

rH (t) = p
sinh((1 − t)d)

sinh(d)
+ q

sinh(td)

sinh(d)
. (17)

The former definition of the plane remains valid, i.e. the
plane is the set of lines passing through p and having a direc-
tion vector that is a combination of the two spanning vectors
a and b being in the tangent space of p.

3.4 Projective geometry

In the geometries discussed so far, their 3D subsets of the 4D
embedding space are identified by equations. When embed-
ding projective geometry, a different strategy can be applied
to reduce dimension. Namely, elements of the 3D projective
geometry are associated with higher-dimensional structures
in the embedding space.

Points of the 3D projective space are represented by lines
crossing the origin in embedding space, i.e. we consider all
4D points (λx, λy, λz, λw) with arbitrary λ �= 0 equivalent.

A line of the projective space is a plane crossing the origin
in the embedding space.

Embedding space lines would intersect an origin centered
sphere at two antipodal points, making projective geometry
topologically similar to elliptic geometry.

Fig. 2 A line defined by points p and q is on the embedding plane
defined by p, q and the embedding origin in all geometries. Note that
lines of different geometries look the same from embedding origin;
thus, points of the line in one geometry can be projected onto the line
of another geometry

3.5 Common ground

Figure 1 shows the 2D projective, Euclidean, elliptic and
hyperbolic geometries, all embedded in the 3D embedding
space. Note that this figure is for analogy only sincewe inves-
tigate 3D geometries embedded in the 4D embedding space,
which would be hard to visualize.

Thepoint of embedding coordinates (0, 0, 0, 1) is included
in all three geometries, which is called the geometry origin
and denoted by g. This point is the origin of the world coor-
dinate system in all geometries. The point of coordinates
(0, 0, 0, 0), on the other hand, is called the embedding ori-
gin. This point is outside of the considered geometries.

Note that in all geometries, the points of a line are
expressed as a combination of points p and q; thus, the line is
in the plane spanned by these two vectors (Fig. 2). Addition-
ally, lines are in their respective geometries; thus, they are
the intersections of their respective geometries and the plane
defined by points p, q and the embedding origin. It means
that lines in the three geometries are projectively equivalent
assuming the embedding origin to be the center of projection.
When visibility is evaluated, they can be projected onto the
w = 1 plane representing Euclidean space, so this task can
be solved uniformly here.

123



Adapting game engines to curved spaces 4387

We have seen that a plane can be interpreted in all three
geometries as the set of lines passing through p and having
a direction vector that is a combination of the two spanning
vectors a and b being in the tangent space of p. Based on this
definition, we can establish an equation for the plane that is
valid in all geometries. Let us consider a line of the plane

r(τ1, τ2) = p + v(τ1)τ2

where v(τ1) = τ1a + (1 − τ1)b is the combination of a and
b.

Suppose we have a normal vector n in the embedding
space that is perpendicular to vectors a, b and p. The scalar
product of perpendicular vectors is zero; thus, multiplying r
with normal n, we get

〈r,n〉 = 〈p,n〉 + 〈a,n〉τ1τ2 + 〈b,n〉(1 − τ1)τ2 = 0.

Thus, 〈r,n〉 = 0 implicit equation describes a plane in all
geometries. Note that this equation can be satisfied also by
those embedding space points that are not part of the given
geometry. So, the points of the plane are the intersection of
the solution of 〈r,n〉 = 0 and the solution of the equation of
points in a particular geometry.

To establish the equation of a plane crossing point p and
spanned by vectors a and b being in the tangent space of p,
we need to find a 4D vector n that is perpendicular to these
three vectors a,b andp. The same problemneeds to be solved
when we are looking for a vector that is perpendicular to two
other vectors a and b that belong to the tangent space of point
p.

For this, we can use a 4D analog of the 3D cross product
[3]:

n =

∣
∣
∣
∣
∣
∣
∣
∣

i j k l
px py pz Lpw

ax ay az Law

bx by bz Lbw

∣
∣
∣
∣
∣
∣
∣
∣

. (18)

To prove that vector n is indeed perpendicular to the three
operands, let us consider the dot product of n and an arbitrary
vector v:

〈n, v〉 =

∣
∣
∣
∣
∣
∣
∣
∣

vx vy vz Lvw

px py pz Lpw

ax ay az Law

bx by bz Lbw

∣
∣
∣
∣
∣
∣
∣
∣

.

If vwere equal to any of p, a, b (or their linear combination),
then according to the properties of determinants, this deter-
minant would be zero, which indicates orthogonality since
two vectors are orthogonal if their dot product is zero.

4 Transformations and isometries

Our goal is to express transformations of the non-Euclidean
space as 4 × 4 matrix multiplications. These matrix multi-
plications must map the geometry onto itself, i.e. the image
of a point of the geometry should also belong to the same
geometry. Isometric transformations preserve the dot prod-
uct and consequently distances and angles. The points of the
non-Euclidean spaces are also identified by a dot product,
namely, point p is in the geometry if 〈p,p〉 = L. It means
that the preservation of the scalar product automatically guar-
antees that points of the geometry are mapped to the same
space. It is easy to show that the scalar product is preserved
if the transformed basis vectors also form an orthogonal and
normalized frame, i.e. to satisfy Eqs. 4 and 5.

4.1 Translation

In Euclidean geometry, translating an object means adding
the translation vector to the position vector of the vertices.
However, in non-Euclidean geometry, the allowed vectors
depend on the point; thus, this interpretation cannot be used
anymore. Points before and after the transformation should
satisfy 〈p,p〉 = L, so they are of the same “distance” from
the embedding origin, i.e. elliptic and hyperbolic geometries
have a spherical structure, where mathematically only rota-
tions and reflections exist. However, location is associated
with translation in our Euclidean mind, so we should sepa-
rate a class of rotations and identify them as translations.

To identify the appropriate class of isometries that can be
called translations in non-Euclidean geometry, we consider
its intuitive properties. The translation

– is an isometry preserving the dot product and the orien-
tation,

– is defined by point q = (qx , qy, qz, qw) to which the
geometry origin g = (0, 0, 0, 1) is translated, and

– should execute parallel transport, i.e. keep the original
and transformed directions parallel as much as possible.

Concerning the requirement of isometry and orientation
preservation, we are left with even number of reflections. In
order to distinguish non-Euclidean translation from rotation,
we can say that translations modify the geometry origin and
keep the directions as parallel as possible while rotations
preserve the geometry origin. We follow the idea of [10]
that expresses translation as appropriately chosen reflections
and derive simple formula with proofs for the game engine
implementation. Reflections can be executed on planes and
lines crossing the embedding origin, i.e. on vectors. We use
here the latter option since it allows a simpler derivation of
the same matrix. The reflection of point p on vector m is:

123



4388 L. Szirmay-Kalos, M. Magdics

p′ = 2
〈p,m〉
〈m,m〉m − p. (19)

To prove that it is indeed a reflection, we note that p′ is in
the plane spanned bym and p and show that the points of the
geometry are mapped to the same geometry and the distance
ofm and p equals the distance ofm and p′. Point p is in the
geometry if 〈p,p〉 = L, so is the transformed point:

〈p′,p′〉 = 4
〈p,m〉2
〈m,m〉2 〈m,m〉 − 4

〈p,m〉
〈m,m〉 〈p,m〉 + 〈p,p〉

= 〈p,p〉 = L. (20)

As the distance is derived from the dot product, the equality
of dot products is shown:

〈p′,m〉 = 2
〈p,m〉
〈m,m〉 〈m,m〉 − 〈p,m〉 = 〈p,m〉. (21)

To guarantee that translation executes parallel transport,
we use two reflection vectors that are in the plane spanned by
geometry origin g and target point q and expect that after two
reflections the geometry origin is mapped to q. We could use
any two vectors meeting these requirements. A convenient
choice is to select the first reflector vector to be the geometry
origin m1 = g and the second reflector to be the halfway
vector between the geometry origin and target point q, i.e.
m2 = g + q. An arbitrary point p is mapped by the first
reflection as

p′ = 2
〈p, g〉
〈g, g〉g − p = 2pwg − p. (22)

The result of the second reflection is:

p′′ = 2
〈p′, g + q〉

〈g + q, g + q〉 (g + q) − p′. (23)

Substituting Eq. 22 and exploiting that q is in the geometry,
i.e. 〈q,q〉 = L, we obtain

p′′ = p + 2pwq − L〈p,q〉 + pw

qw + 1
(q + g). (24)

Evaluating this formula for the four basis vectors, the rows
of the transformation matrix of the translation to point q can
be expressed:

T(q) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 − L qx qx
1+qw

−L qx qy
1+qw

−L qx qz
1+qw

−Lqx

−L qyqx
1+qw

1 − L qyqy
1+qw

−L qyqz
1+qw

−Lqy

−L qzqx
1+qw

−L qzqy
1+qw

1 − L qzqz
1+qw

−Lqz

qx qy qz qw

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

(25)

The last row of the matrix is the target point q; thus, this
matrix indeed translates the geometry origin to this point.
This matrix generates an isometry since its row vectors
are orthogonal to each other and of unit length. We can
see that the matrix executes parallel transport since vector
(qx , qy, qz, 0) pointing into the direction of q from the geom-
etry origin remains parallel with the geodesic between the
geometry origin and target point q during the translation.

4.2 Rotation

Rotation is also an isometry, but unlike translation, it keeps
the geometry origin in (0, 0, 0, 1). From this, the fourth row
of the transformation matrix should also be (0, 0, 0, 1). In
case of isometries 〈l′, i′〉 = 〈l′, j′〉 = 〈l′,k′〉 = 0, which
means that the fourth coordinates of i′, j′, k′ basis vectors
are zero. So, the structure of the transformation matrix in
non-Euclidean geometry is identical to that of the Euclidean
geometry.

4.3 The viewmatrix

The camera is defined by eye position e and three orthogonal
unit vectors in the tangent space of the eye, right direction i′,
up direction j′, and negative view direction k′. The orthogo-
nality can be enforced by Eq. 18. Then, the view matrix can
be expressed as:

V =

⎡

⎢
⎢
⎣

i ′x j ′x k′
x Lex ,

i ′y j ′y k′
y Ley,

i ′z j ′z k′
z Lez,

Li ′w L j ′w Lk′
w ew

⎤

⎥
⎥
⎦

(26)

To prove that this matrix meets the requirements of the view
matrix, we look at the transformation of the eye position e
and the camera basis vectors. The eye position is transformed
as:

e · V = (〈e, i′〉, 〈e, j′〉, 〈e,k′〉, 〈e,Le〉)
= (0, 0, 0,L2) = (0, 0, 0, 1) = g. (27)

since i′, j′, k′ are in the tangent space of eye position e, thus
their scalar product with the eye position is zero, and the eye
position is in the curved space identified by 〈e, e〉 = L.

The transformation of the right direction i′ is:

i′ · V = (〈i′, i′〉, 〈i′, j′〉, 〈i′,k′〉, 〈i′,Le〉) = (1, 0, 0, 0) = i.

The transformation of view direction and up direction can be
examined in the same way.

123



Adapting game engines to curved spaces 4389

Fig. 3 Perspective transformation maps the hyper-sphere to hyper-
ellipsoid preparing the object for GPU clipping and projection, which
interprets embedding coordinates as homogeneous coordinates

4.4 The perspective transformationmatrix

After the view transformation, the camera is at the geometry
origin, looks at the −z direction, and its right direction is
axis x and its up direction is axis y. Using OpenGL, the
GPU assumes that the vertex shader outputs the point in
homogeneous coordinates and the viewing rays are paral-
lel with axis z. A point is inside the frustum if inequalities
−w ≤ x, y, z ≤ w are satisfied. Thus, the perspective trans-
formation should map the selected frustum to the domain
defined by the clipping inequalities.

With a linear transformation of the 4D embedding space,
the 3D hyper-sphere of elliptic and hyperbolic geometries
is transformed to a 3D hyper-ellipsoid (Fig. 3). The frus-
tum is a pyramid defined by inequalities sx z ≤ x ≤ −sx z
and syz ≤ y ≤ −syz , where sx and sy depend on the
field of view. The pyramid is truncated by minimum dis-
tance dmin and by maximum distance dmax on the optical
axis. InEuclidean geometry, these entry and exit points on the
optical axis are (0, 0,−dmin, 1) and (0, 0,−dmax, 1), respec-
tively. In elliptic geometry, the corresponding points are
(0, 0,− sin(dmin), cos(dmin)) and (0, 0,− sin(dmax),

cos(dmax)). In hyperbolic geometry, these points are at
(0, 0,− sinh(dmin), cosh(dmin)) and (0, 0,− sinh(dmax),

cosh(dmax)). The eye position should be mapped to the ideal
point (0, 0, λ, 0) of axis z, the entry point to the front clip-
ping plane defined by −w′ = z′ and the exit point to the
back clipping plane of equation w′ = z′. From these, the
perspective transformation is:

P =

⎡

⎢
⎢
⎣

1/sx 0 0 0,
0 1/sy 0 0,
0 0 α −1,
0 0 β 0

⎤

⎥
⎥
⎦

(28)

In Euclidean geometry, the α and β parameters are:

αE = −dmin + dmax

dmax − dmin
, βE = − 2dmindmax

dmax − dmin
.

Fig. 4 Transporting objects from Euclidean to curved spaces. Stereo-
graphic projection preserves angles and circles, central projection lines,
but both of them strongly distort distances. Our selected approach is the
exponential map of the geometry origin [26], which preserves direction
V and distance d from geometry origin g

In hyperbolic geometry, a similar result can be obtained:

αH = − sinh(dmin + dmax)

sinh(dmax − dmin)
, βH = −2 sinh(dmin) sinh(dmax)

sinh(dmax − dmin)
.

In elliptic geometry, the hyperbolic sine is replaced by the
normal sine function:

αS = − sin(dmin + dmax)

sin(dmax − dmin)
, βS = −2 sin(dmin) sin(dmax)

sin(dmax − dmin)
.

5 Porting objects from Euclidean to
non-Euclidean geometry

The virtual world is usually created with modeling tools
following the rules of Euclidean geometry, and outputting
vertices inCartesian coordinates. Themodels andpoints need
to be “transported” to the curved space with minimal distor-
tions. We assume that our objects are triangle meshes. So,
we need to consider only the porting of points representing
vertices and the vectors, e.g. normals, associated with them.

As the elliptic and hyperbolic geometries have nonzero
curvature, any correspondencewithEuclidean geometry nec-
essarily introduces distortions, such as change of distance,
angle, or type of geometric primitives. There are many pos-
sibilities to establish a correspondence between Euclidean
and curved spaces (Fig. 4). As in games, objects are typ-
ically defined in modeling space, i.e. close to the origin,
and transformed to the actual position by translations, we
prefer a mapping where the distortion diminishes close to
the geometry origin. Stereographic projection, also called
the Beltrami–Poincaré model in hyperbolic geometry, pre-
serves angles and circles, but the distortion of distances grows
rapidly far from the geometry origin. Central projection, also
called the Beltrami–Klein model in hyperbolic geometry,
preserves lines, but distorts both angles and distances even
stronger than stereographic projection.

123



4390 L. Szirmay-Kalos, M. Magdics

We need a projection that introduces less distortions and
looks more natural. Instead of preserving either lines or
angles, we wish to have a compromise which is acceptable
for appropriately tessellatedmeshes. Amappingmeeting this
requirement is based on the recognition that it is worth pre-
serving the distance and the direction of the point from the
geometry origin. Such parametrization is called the expo-
nential map of the geometry origin in differential geometry.
If a point has Cartesian coordinates P = [X , Y , Z ] in
Euclidean geometry, it means that the point is at distance
d = √

X2 + Y 2 + Z2 from the geometry origin and its direc-
tion is defined by unit vector P/d. The natural pair of this
Euclidean point in elliptic space is the point

p = P(P) = (P/d sin(d), cos(d)) (29)

that is also in direction P/d and at the same distance d from
the geometry origin. Replacing the sine and cosine func-
tions with their hyperbolic counterparts, we get the formula
valid in hyperbolic geometry. Note that the tangent of all
three geometries is identical at the geometry origin; thus,
this direction can be ported from one to the other without
any modification.

As sine and cosine are periodic functions, this process
will map multiple points onto the same spherical points. If
the order of objects needs to be preserved, scaling can make
sure that only a single period is covered.

5.1 Porting vectors

Let us consider vector (V, 0) in Euclidean space starting at
point (P, 1). For example, this vector can be the shading nor-
mal of the surface at P. If point (P, 1) were the geometry
origin, then the Euclidean, elliptic, or hyperbolic space vec-
tors would be the same. The vector should follow the point
with parallel transport, i.e. with minimum change, which is
provided by the developed matrix of translation (Eq. 25).
This means that vectors can be transported from Euclidean
to curved space by translating them to their start P(P):

v = (V, 0) · T(P(P)). (30)

6 Physical simulation

Physical simulation calculates the interaction of twomeeting
objects or the effect of a field on an object. Laws describ-
ing only local properties, i.e. depending on the point and
directions in the tangent space of the point, are invariant to
the chosen geometry with the exception of the calculation
of angles between directions, which can be obtained as the
inverse cosine of the geometry dependent dot product. The

underlying geometry can change physical laws via the cal-
culation of directions and their angles, and the dependence
of fields on distances.

Distance d and direction v of source q from affected point
p are expressed differently in the three geometries:

dE = √〈p − q,p − q〉E ), vE = q − p
dE

,

dS = cos−1(|〈p,q〉E |), vS = q − p cos(dS)

sin(dS)
,

dH = cosh−1(−〈p,q〉L ), vH = q − p cosh(dH )

sinh(dH )
. (31)

Aswe can see in the right of Fig. 4, points being at distance
d from the geometry origin are on a circle in 2Dor on a sphere
in 3D, where the radii are d, sin(d) and sinh(d) in Euclidean,
elliptic and hyperbolic geometries, respectively. Thus, the
strengths of a field generated by a point source at distance
d in 3D Euclidean, elliptic and hyperbolic geometries are
inversely proportional to the following attenuation factors:

aE (d) = d2, aS(d) = sin2(d), aH (d) = sinh2(d).

Attenuation factors can also be expressed from the two points
q and p:

aS,H (q,p) =
∣
∣
∣1 − 〈q,p〉2

∣
∣
∣ . (32)

6.1 Illumination

Local light reflection depends on local properties associated
with angles of directions starting at this point. The calcula-
tion of the reflected radiance from the illumination direction,
surface normal, view direction, the BRDF and the incident
radiance is the same in all geometries with the exception
of the angle calculation. Euclidean and elliptic geometries
require the 4D Euclidean dot product, hyperbolic geometry
and the Lorentzian product. In general, the Riemannian met-
ric assigns a bi-linear dot product for each point [19]. Unlike
light reflection, ambient occlusion depends on the curvature,
so it must be re-calculated according to the rules of the geom-
etry.

The radiance of a point light source at distance d falls with
attenuation a(d) differently in the three geometries. Note that
there is no directional light source in non-Euclidean spaces.

In the case of area light sources or indirect illumination
computation, the source surface is decomposed to infinites-
imal areas and their contributions are integrated. A light
source of infinitesimal area �A and isotropic radiance Le

emits power

�� = Le�A cos(θ)�ω (33)

123



Adapting game engines to curved spaces 4391

Fig. 5 Radiance remains constant along a geodesic: the incident radi-
ance Lin at the receiver surface �A′ is equal to the emitted radiance Le

of the source surface �A

in small solid angle �ω, where θ is the angle between the
direction of emission and the surface normal.

Suppose that in this solid angle �ω a light receiver sur-
face is visible at distance d (Fig. 5). The area of the receiver
surface is �A′, the angle between the illumination direction
and the surface normal is θ ′, and the solid angle in which
source �A is visible from the receiver surface is �ω′.

The relationship of the distance and the solid angle is
a non-local property of the geometry. The solid angles are
determined by the projected areas:

�ω = �A′ cos(θ ′)
a(d)

, �ω′ = �A cos(θ)

a(d)
. (34)

The incident radiance of the receiver surface is:

Lin = ��

�A′ cos(θ ′)�ω′ = Le �A cos(θ)�ω

�A′ cos(θ ′)�ω′ = Le. (35)

This means that the two attenuation factors cancel out, mak-
ing the radiance of a light beam originating at a surface
constant along the ray also in non-Euclidean geometries,
which means that the adaptation of the indirect illumination
calculation requires only the modification of the angle com-
putation. For occlusion calculation, the curved path between
the source and the receiver can be processed similarly to
the visibility from the camera, having placed the virtual eye
position in the light source.

6.2 Animation

In games, animation can be specified by different techniques.
In key-frame, script, motion-capture, spline, etc. animation,
the motion is prescribed typically in Euclidean space and
can be modulated with the user controlled speed, environ-
ment properties like terrain elevation, and collision detection.
Terrain elevation and collision detection can be solved in
Euclidean space, resulting in the point of interaction, which
can be converted to non-Euclidean space. Based on the
calculated position, translation matrices should be altered
according to the formulas of Section 4.

In dynamic simulation, however, computed forces update
velocity and position vectors. The magnitude and direction
of the force due to a field can depend on the distance and the
position of the source. Direction and distance are computed
with Eq. 31. Physical forces can depend only on the position
and the velocity. Thus, the resulting force acting upon a point
is automatically in the tangent space of the point, so is the
velocity which is the time integral of acceleration caused by
the force. In numerical simulation, it can happen that points
do not fit into the geometry and vectors into the tangent space
because of numerical errors. This should be solved by pro-
jecting points p and vectors v back to the geometry after
updating them:

p∗ = p√|〈p,p〉| , v∗ = v − L〈p, v〉p. (36)

If the affected object is small with respect to the curvature,
then the local space is approximately Euclidean, so we can
use the rigid body dynamics of Euclidean geometry, which
typically decomposes the motion to a translational motion of
the center of mass and a rotational motion around the center
of mass, and the linear and angular momenta are updated
according to the total force and torque taking into account
the total mass and rotational inertia.

For large objects, rigid body dynamics should be adapted
to the curved space. In Euclidean space, the center of mass
of a system of points q1, . . . ,qn with associated masses
m1, . . . , mn is defined as:

c =
∑

i miqi
∑

i mi
, (37)

or alternatively, as the point where the following function
IE (c) takes its minimum:

IE (c) =
∑

i

d2(qi , c)mi =
∑

i

aE (qi , c)mi . (38)

Salvai [23] has shown that this definition can be kept in
hyperbolic geometry as well, and the point defined in this
way keeps some of the important properties of the center of
mass. For example, there are three independent force-free
rotations around this point. A similar argument works for
spherical geometry as well, so we generalize Eq. 38 for the
center of mass calculation. The center of mass in elliptic and
hyperbolic geometries is the point c that minimizes

IS,H (c) =
∑

i

aS,H (qi , c)mi (39)

with the constraint that this point must be in the geometry, i.e.
must satisfy 〈c, c〉 = L. Plugging in the geometry-dependent

123



4392 L. Szirmay-Kalos, M. Magdics

attenuation factors (Eq. 32), we have to find the critical point
of

∑

i mi 〈qi , c〉2.
Unfortunately, as Zitterbarth [32] pointed out, there is no

guarantee that under a force-free motion the center of mass
moves along a geodesic, so computing the acceleration of the
center of mass from the total force is only an approximation.
Note also that forces attacking the body at points different
from the center ofmass cannot be used directly since the force
must be in the tangent space of the point of action. Forces
can be translated to the center of mass by parallel transport,
i.e. according to Eq. 30.

7 Game adaptation and results

There are three distinct parts of a game that are affected
by the geometry of the game universe: definition of objects,
physics simulation including animation and illumination, and
transformations. Object definition can be adapted according
to Sect. 5. This conversion can happen when the models are
loaded from files or uploaded to the GPU by the engine and
also when vertex information is used in physics simulation
or in the shaders during rendering. The last option is less
efficient since it executes the conversion whenever vertex
data are used, but requires minor modifications, and allows
the interactive modification of the curvature.

The transformation matrices can be set according to the
results of Sect. 4. This operation often requires the calculation
of a vector that is orthogonal to two other vectors. Examples
include Gram–Schmidt orthogonalization finding the coor-
dinate frame, e.g. for the camera transformation matrix, the
Frenet frame, or for the modeling transformation of a bill-
board. In non-Euclidean geometry, the orthogonal vector can
be obtained with the evaluation of the determinant of Eq. 18,
which also includes the point where this computation is exe-
cuted. Note that there are no similarity transformations in
non-Euclidean spaces, so scaling cannot be mimicked with
matrices, but must be the part of object conversion (Eq. 29).

Similarly to vertex data, the modified computation of
matrices can be inserted in the game engine where it
calculates the matrices or also where it uses them for trans-
formation. In the second case, the vertex shader can modify
the matrices calculated by the Euclidean game engine before
the actual transformation takes place. If the game does not
apply dynamics simulation and illumination is calculated in
the GPU shaders only, all changes can be concentrated in the
vertex and fragment shaders.

The following simplified vertex shader can handle a sin-
gle light source and assumes that vertices vtxPos and normals
vtxNorm are defined by Cartesian coordinates in Euclidean
space, themodeling transformation is rigid, i.e. is a combina-
tion of rotationR and translationT. The rotationmatrix can be
obtained with the Rodriguez formula, the translation matrix
with Eq. 25. View matrix V and projection matrix P must be

calculated according to Eqs. 26 and 28. After the projection
transformation, objects are in the normalized device space as
required by the GPU. So clipping, projection and visibility
determination can be executed uniformlywith the fixed func-
tion pipeline elements. In this implementation, thesematrices
are passed as uniform variables, but it is also possible for the
shaders to extract this information from the matrices assum-
ing Euclidean geometry. The scaling factor is scale. The light
source and the eye are defined with embedding coordinates
by uniform variables wLightPos and wEyePos.

For the sake of simplicity, we ignored texturing and
shadowmapping. Parameter curv takes values−1, 0 and 1 for
hyperbolic, Euclidean and elliptic geometries, respectively.

Considering diameters as “points” in elliptic geometry
means that an object is visible in the location mirrored at
the embedding origin as well. This effect is produced by ren-
dering every object twice, once with the original coordinates
and once with negated ones. Parameter anti is 1 for hyper-
bolic and Euclidean geometry and also for the first rendering
pass of elliptic geometry. It only takes value−1 in the second
rendering pass of elliptic geometry.

The vertex shader computes the normal vector wNormal,
view vector wView and illumination vector wLight in the ver-
tex according to the rules of the given geometry. The lengths
of the view and illumination vectors encode the square roots
of the attenuation factors, which can be used in illumination
computations.

uniform mat4 R, T, V, P; // Rotate,Translate,View,Project
uniform float scale; // scaling factor
uniform vec4 wLightPos, wEyePos; // light source and eye
uniform float curv; // curvature: −1, 0, 1
uniform float anti; // −1 in the 2nd pass of elliptic

layout(location = 0) in vec3 vtxPos; // Euclidean vertex
layout(location = 1) in vec3 vtxNorm; // Euclidean normal
out vec4 wNormal, wView, wLight; // transformed

vec4 port(vec3 ePoint) { // port from Euclidean geometry
vec3 p = ePoint ∗ scale; // scaling happens here
float d = length(p); // distance from geometry origin
if (d < 0.0001f || curv == 0) return vec4(p, 1);
if (curv > 0) return vec4(p/d ∗ sin(d), cos(d));
if (curv < 0) return vec4(p/d ∗ sinh(d), cosh(d));

}

void main() {
vec4 wPos = anti ∗ port(vtxPos) ∗ R ∗ T; // location
gl_Position = wPos ∗ V ∗ P;
wNormal = anti ∗ vec4(vtxNorm, 0) ∗ R ∗ T;
wView = direction(wEyePos, wPos);
wLight = direction(wLightPos, wPos);

}

The fragment shader differs from a standard solution only
in the dot product calculation:

123



Adapting game engines to curved spaces 4393

uniform vec4 La, Le, ka, kd, ks; // Light & material
uniform float shininess;
uniform float curv; // curvature: −1, 0, 1
in vec4 wNormal, wView, wLight;
out vec4 fragmentColor; // Computed radiance

void main() {
vec4 N = normalize(wNormal);
vec4 V = normalize(wView);
float atten = dot(wLight, wLight); // attenuation
vec4 L = normalize(wLight);
vec4 H = normalize(L + V);
float cost = max(dotProduct(N, L), 0);
float cosd = max(dotProduct(N, H), 0);
float mat = kd ∗ cost + ks ∗ pow(cosd, shininess);
fragmentColor = ka ∗ La + mat ∗ Le / atten;

}

Both the vertex and the fragment shaders call the custom
dotProduct function that calculates the dot product taking
into account whether the 4D embedding space is Euclidean
or of Minkowski type:

float dotProduct(vec4 u, vec4 v) {
return dot(u, v) − ((curv < 0) ? 2 ∗ u.w ∗ v.w : 0);

}

The computation of the direction vector also depends on
the geometry encoded by the curv parameter. The length of
the returned direction vector is the square root of the atten-
uation factor between the two points, which can be used in
lighting calculations.

vec4 direction(vec4 to, vec4 from) {
float dp = (curve != 0) ? dotProduct(from, to) : 1;
return to − from ∗ dp;

}

To demonstrate the results, we implemented three games
(Figs. 6, 7 and 8). The “Lego” and the “Museum” do not use
dynamic simulation, so they concentrated all non-Euclidean
calculations in the vertex and fragment shaders leaving other
parts of the game engine unaffected. The “Fight in space”
controlled the spaceships’ positionswith dynamic simulation
taking into account the geometry-dependent gravitational
field of the planets. The spaceships’ rotations are determined
with path animation calculating the Frenet frames.

8 Conclusion

This paper proposed a minimally invasive approach to mod-
ify a game fromEuclidean to elliptic or hyperbolic geometry.
We investigated the adaptation of the geometric calculations,
object definitions, transformation matrices and the physical
simulation.

The implementation that can easily be plugged into Uni-
tyEngine3D [4] games is available at

Fig. 6 “Fight in space” game in hyperbolic (left) Euclidean (middle),
and elliptic (right) spaces when looking forward (upper row) and back-
ward (lower row). Note that in elliptic spaces objects at distance close
to π have similar perceived size as objects being at distance close to
zero. When turning back, we can see the same objects in reverse order.
As the space is curved, in the upper images we can see the bottom of
the spaceship in elliptic geometry, while its top is visible in hyperbolic
space

Fig. 7 “Lego game” in Euclidean, elliptic and hyperbolic spaces. Video
is attached as supplementary material

Fig. 8 “Museum” top view and rendering in hyperbolic, Euclidean and
elliptic spaces. Elliptic geometry is the most unnatural as approaching
objects first become smaller than they grow back.

https://github.com/mmagdics/noneuclideanunity.
In future work, we plan to extend the engine to other

Thurston geometries using their projective interpretation
[18].

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s00371-021-02303-
2.

123

https://github.com/mmagdics/noneuclideanunity
https://doi.org/10.1007/s00371-021-02303-2
https://doi.org/10.1007/s00371-021-02303-2


4394 L. Szirmay-Kalos, M. Magdics

Acknowledgements This project has been supported by OTKA K-
124124.

Funding Open access funding provided by Budapest University of
Technology and Economics.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Amenta, N., Levy, S., Munzner, T., Phillips, M.: Geomview: a sys-
tem for geometric visualization. In: Proceedings of the Eleventh
Annual Symposium on Computational Geometry, SCG ’95, pp.
412–413, 1995. https://doi.org/10.1145/220279.220327

2. Berger, P., Laier, A., Velho, L.: An image-space algorithm for
immersive views in 3-manifolds and orbifolds. Vis. Comput. 31,
93–104 (2015). https://doi.org/10.1007/s00371-013-0913-2

3. Blinn, J.: Jim Blinn’s Corner: Notation, Notation. Morgan Kauf-
mann Publishers Inc., Burlington (2002)

4. Bond, J.G.: Introduction to Game Design, Prototyping, and Devel-
opment. Addison-Wesley, Boston (2014)

5. Brinkmann, P., Gunn, C., Weissmann, S.: Jreality—interactive
audiovisual applications across virtual environments. In: Proceed-
ings of the 2010 IEEE Symposium on 3D User Interfaces, 3DUI
’10, pp. 123–124 (2010)

6. Coulon, R., Matsumoto, E.A., Segerman, H., Trettel, S. J.:
Ray-marching Thurston geometries. https://arxiv.org/abs/2010.
15801(2020)

7. Ghadami, R., Rahebi, J., Yayli, Y.: Linear interpolation in
Minkowski space. Int. J. Pure Appl. Math. 77, 01 (2012)

8. Gröller, E.: Nonlinear ray tracing: visualizing strange worlds.
Vis. Comput. 11(5), 263–274 (1995). https://doi.org/10.1007/
BF01901044

9. Guimaraes, F., Mello, V., Velho, L.: Geometry independent game
encapsulation for non-Euclidean geometries. In: Proceedings of
SIBGRAPI (2015)

10. Gunn, C.: Advances in metric-neutral visualization. In: GraVisMa,
pp. 17–26 (2010)

11. Hart, V., Hawksley, A., Matsumoto, E. A., Segerman, H.: Non-
euclidean virtual reality I: Explorations of H3 (2017). https://arxiv.
org/abs/1702.04004

12. Kopczyński, E., Celińska, D., Čtrnáct, M.: Hyperrogue: playing
with hyperbolic geometry. In: Swart, D., Séquin, C. H., Fenyvesi,
K. (eds.) Proceedings of bridges 2017: mathematics, art, music,
architecture, education, culture, pp. 9–16 (2017)

13. Kopczyński, E., Celinska-Kopczyńska, D.: Real-time visualiza-
tion in non-isotropic geometries (2020). https://arxiv.org/abs/2002.
09533

14. Lamping, J., Rao, R.: The hyperbolic browser: a focus+context
technique for visualizing large hierarchies. J. Vis. Lang. Comput.
7(1), 33–55 (1996). https://doi.org/10.1006/jvlc.1996.0003

15. Loustau, B.: Hyperbolic geometry (2020). https://arxiv.org/abs/
2003.11180

16. Martelli, B.: An introduction to geometric topology (2016). https://
arxiv.org/abs/1610.02592

17. McCaleb, R.A., North, C.: Smooth, efficient, and interruptible
zooming and panning. IEEE Trans. Vis. Comput. Gr. 25(2), 1421–
1434 (2019). https://doi.org/10.1109/TVCG.2018.2800013

18. Molnár, E.: The projective interpretation of the eight 3-dimensional
homogeneous geometries.BeiträgeAlgebraGeom.38(2), 261–288
(1997)

19. Novello, T., da Silva, V., Velho, L.: Global illumination of non-
Euclidean spaces. Comput. Gr. 93, 61–70 (2020). https://doi.org/
10.1016/j.cag.2020.09.014

20. Novello, T., da Silva, V., Velho, L.: Visualization of nil, sol, and
SL2(R) geometries. Comput. Gr. 91, 219–231 (2020). https://doi.
org/10.1016/j.cag.2020.07.016

21. Osudin, D., Child, C., He, Y.-H.: Rendering non-Euclidean space
in real-time using spherical and hyperbolic trigonometry. Comput.
Sci. - ICCS 2019, 543–550 (2019). https://doi.org/10.1007/978-3-
030-22750-0_49

22. Phillips, M., Gunn, C.: Visualizing hyperbolic space: unusual uses
of 4x4 matrices. In: Proceedings of the 1992 Symposium on Inter-
active 3D Graphics, I3D ’92, pp. 209–214 (1992). https://doi.org/
10.1145/147156.147206

23. Salvai, M.: On the dynamics of a rigid body in the hyperbolic
space. J. Geom. Phys. 36(1), 126–139 (2000). https://doi.org/10.
1016/S0393-0440(00)00017-6

24. Shoemake, K.: Animating rotation with quaternion curves. Com-
put. Gr. 16(3), 157–166 (1985)

25. Szirmay-Kalos, L., Magdics, M.: Gaming in Elliptic geometry. In:
Theisel H., Wimmer M. (eds), Eurographics 2021 - Short Papers
(2021). https://doi.org/10.2312/egs.20211010.

26. Thielhelm, H., Vais, A., Wolter, F.-E.: Geodesic bifurcation on
smooth surfaces. Vis. Comput. 31(2), 187–204 (2015). https://doi.
org/10.1007/s00371-014-1041-3

27. Velho, L., Silva, V., Novello, T.: Immersive visualization of the
classical non-Euclidean spaces using real-time ray tracing in VR.
In: Proceedings of Graphics Interface 2020, GI 2020, pp. 423–430
(2020). https://doi.org/10.20380/GI2020.42

28. Weeks, J.: Real-time rendering in curved spaces. IEEE Comput.
Gr. Appl. 22(6), 90–99 (2002)

29. Weeks, J.: Body coherence in curved-space virtual reality games.
Comput. Gr. 97, 28–41 (2021). https://doi.org/10.1016/j.cag.2021.
04.002

30. Weiskopf, D., Borchers, M., Ertl, T., Falk, M., Fechtig, O., Frank,
R., Grave, F., King, A., Kraus, U., Muller, T., Nollert, H., Mendez,
I.R., Ruder, H., Schafhitzel, T., Schar, S., Zahn, C., Zatloukal, M.:
Explanatory and illustrative visualization of special and general
relativity. IEEE Trans. Vis. Comput. Gr. 12(4), 522–534 (2006).
https://doi.org/10.1109/TVCG.2006.69

31. Weiskopf, D.: Visualization of four-dimensional spacetimes. PhD
thesis, University of Tübingen, Germany (2001)

32. Zitterbarth, J.: Some remarks on the motion of a rigid body in
a space of constant curvature without external forces. Demonstra-
tioMath. 24(3–4), 465–494 (1991). https://doi.org/10.1515/dema-
1991-3-407

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/220279.220327
https://doi.org/10.1007/s00371-013-0913-2
https://arxiv.org/abs/2010.15801
https://arxiv.org/abs/2010.15801
https://doi.org/10.1007/BF01901044
https://doi.org/10.1007/BF01901044
https://arxiv.org/abs/1702.04004
https://arxiv.org/abs/1702.04004
https://arxiv.org/abs/2002.09533
https://arxiv.org/abs/2002.09533
https://doi.org/10.1006/jvlc.1996.0003
https://arxiv.org/abs/2003.11180
https://arxiv.org/abs/2003.11180
https://arxiv.org/abs/1610.02592
https://arxiv.org/abs/1610.02592
https://doi.org/10.1109/TVCG.2018.2800013
https://doi.org/10.1016/j.cag.2020.09.014
https://doi.org/10.1016/j.cag.2020.09.014
https://doi.org/10.1016/j.cag.2020.07.016
https://doi.org/10.1016/j.cag.2020.07.016
https://doi.org/10.1007/978-3-030-22750-0_49
https://doi.org/10.1007/978-3-030-22750-0_49
https://doi.org/10.1145/147156.147206
https://doi.org/10.1145/147156.147206
https://doi.org/10.1016/S0393-0440(00)00017-6
https://doi.org/10.1016/S0393-0440(00)00017-6
https://doi.org/10.2312/egs.20211010.
https://doi.org/10.1007/s00371-014-1041-3
https://doi.org/10.1007/s00371-014-1041-3
https://doi.org/10.20380/GI2020.42
https://doi.org/10.1016/j.cag.2021.04.002
https://doi.org/10.1016/j.cag.2021.04.002
https://doi.org/10.1109/TVCG.2006.69
https://doi.org/10.1515/dema-1991-3-407
https://doi.org/10.1515/dema-1991-3-407


Adapting game engines to curved spaces 4395

László Szirmay-Kalos was gradu-
ated from the Budapest University
of Technology in 1987, received
PhD and Doctor of Science degree
from the Hungarian Academy of
Science in 1991 and in 2001,
respectively. He is currently a full
professor of computer graphics at
Budapest University of Technol-
ogy. His research interests include
rendering, Monte Carlo methods
and medical imaging. He is the
fellow of Eurographics. His web-
page is. https://www.iit.bme.hu/
users/dr-szirmay-kalos-l\%C3\%

A1szl\%C3\%B3?language=en

Milán Magdics was graduated
from the Eötvös Lóránd Science
University and received PhD from
the Budapest University of Tech-
nology in 2014 in medical imag-
ing. He is now involved in Monte
Carlo methods, medical imaging
and computational physics and
works as an associate professor.
He is member of Eurographics.
His web page is. https://www.iit.
bme.hu/users/dr-magdics-mil\%
C3\%A1n?lang{uage=en}

123

https://www.iit.bme.hu/users/dr-szirmay-kalos-l\%C3\%A1szl\%C3\%B3?language=en
https://www.iit.bme.hu/users/dr-szirmay-kalos-l\%C3\%A1szl\%C3\%B3?language=en
https://www.iit.bme.hu/users/dr-szirmay-kalos-l\%C3\%A1szl\%C3\%B3?language=en
https://www.iit.bme.hu/users/dr-magdics-mil\%C3\%A1n?lang{uage=en}
https://www.iit.bme.hu/users/dr-magdics-mil\%C3\%A1n?lang{uage=en}
https://www.iit.bme.hu/users/dr-magdics-mil\%C3\%A1n?lang{uage=en}

	Adapting Game Engines to Curved Spaces
	Abstract
	1 Introduction
	2 Previous work
	3 The embedding space model of geometries
	3.1 Euclidean geometry
	3.2 Elliptic geometry
	3.3 Hyperbolic geometry
	3.4 Projective geometry
	3.5 Common ground

	4 Transformations and isometries
	4.1 Translation
	4.2 Rotation
	4.3 The view matrix
	4.4 The perspective transformation matrix

	5 Porting objects from Euclidean to non-Euclidean geometry
	5.1 Porting vectors

	6 Physical simulation
	6.1 Illumination
	6.2 Animation

	7 Game adaptation and results
	8 Conclusion
	Acknowledgements
	References




