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Abstract
The Fukushima nuclear accident of 2011 raised awareness of the importance of radioactive deposition processes, especially
for proposing aerosol measures against possible air pollution. However, identifying these types of processes is often difficult
due to complicated terrains. This paper presents an application study for identifying radioactive deposition processes by taking
advantage of visual interaction with topographic data. The idea is to visually investigate the correspondence of the spatial posi-
tions to the air dose rate along with relevant attributes. This is accomplished by composing scatterplots of pairwise attributes,
onto which we project terrain areas to interactively find specific patterns of such attributes. We applied our approach to the
analysis of air dose rate distribution data around the Fukushima nuclear plant after the accident. Our visualization technique
clearly distinguished contamination areas derived from different deposition processes and thus is useful for elucidation of the
deposition process.

Keywords Fukushima Daiichi nuclear power plant accident · Topographic analysis · Deposition processes · Continuous
scatterplots

1 Introduction

It has been more than 10 years since the Fukushima Dai-
ichi Nuclear Power Plant (FDNPP) accident, which was
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caused by the March 2011 East Japan earthquake and ensu-
ing tsunami. The disaster caused meltdowns in several units
of the FDNPP and the spread of radioactive materials over
the surrounding areas. Ever since, ongoing soil decontam-
ination work has sought to reduce the radioactive material
to a safe level. The associated restricted residential region,
which is located approximately 10 km away, has shrunk con-
siderably as a result. Additionally, entry into the 10-km zone
of the FDNPP remains restricted. This dedicated recovery
from the earthquake’s damage has allowed us to conduct a
more intensive post-analysis of the spatiotemporal behav-
ior of the ambient air dose rate. In particular, understanding
the process of radioactive deposition is important because
the air dose rate is not proportional to the distance from the
FDNPP but rather depends on the deposition process. This is
also useful not only for systematic future planning for envi-
ronmental restoration but also for effective measures against
air pollution caused by other particulate materials, such as
PM2.5. More extensive investigations into the process are
ongoing, with the Japanese government collecting data on
the spatiotemporal distribution of the air dose rate through
ground and airborne radiation monitoring [20,22].

To understand radioactive deposition processes, it is
important to classify them into several categories in terms
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Fig. 1 Interactive analysis of
relationships between the
geospatial domain and relevant
topographic attributes.
Meaningful correspondences
between the domain and range
are identified by painting
projected data samples in the
three scatterplots of the pairwise
attribute values (a) and those in
the map domain (b). The three
function values P , Q, and R
represent the air dose rate,
altitude from the ground, and
distance from the FDNPP,
respectively. a Three scatterplots
in the 2D ranges spanned by
P–Q, P–R, and Q–R, in
descending order. bMap
domain around the FDNPP. c
Interface for interactive analysis

of decomposition mechanisms and land-use patterns. With
this information, we can properly identify how to reduce the
radioactive level in the corresponding area through decon-
tamination work, including soil cleaning and disposal. Such
identification is usually carried out by simulating the spa-
tiotemporal behavior of wind just after the accident as
well as analyzing measured rainfall data for the area [19].
However, precisely identifying the type of radioactive depo-
sition process in a specific area is a time-consuming task
since it requires inferring a correct model of the deposi-
tion mechanism from the available data. This can be further
complicated when the target land surface has complex ter-
rain shapes, including steep mountains and valleys. The
current scientific knowledge about the deposition process
reveals several meaningful relationships between deposi-
tion types, land surface shapes, and the associated use
patterns in the area. This knowledge can be used to iden-
tify the types of deposition processes in the areas around
the FDNPP through visual analysis of the spatial distri-
butions of the air dose rate and relevant topographic fea-
tures.

In this paper, we present an application study for investi-
gating radioactive deposition processes by taking advantage
of visual interaction with the topographic features around
the FDNPP. The idea was to visually identify the corre-
spondence of the spatial positions to the specific air dose
rate together with relevant attributes, including the altitude
from the ground, distance from the FDNPP, and degree of
attenuation in the air dose rate over time. This was accom-

plished by composing scatterplots of pairwise attributes, onto
which we projected terrain areas and interacted with them
to find specific patterns in these attributes. We tested our
approach using the air dose rate distribution data around the
FDNPP after the Great East Japan Earthquake disaster of
2011.

Figure 1 presents a snapshot of our visualization sys-
tem for interactively identifying relationships between the
geospatial domain and the range spanned by the attribute val-
ues. Figure 1a shows three scatterplot-like charts obtained
by projecting the 3D range with respect to each pair of
attribute values. Here, P , Q, and R indicate the air dose
rate, altitude from the ground, and distance from the FDNPP,
respectively. By drawing specific patterns of the ranges on
the charts, we extracted local areas with specific types of
deposition processes in the original map domain, as shown
in Fig. 1b. Here, the colored areas in the three scatterplots
indicated by red, green, and blue arrows (Fig. 1a) corre-
spond to local map areas (Fig. 1b), where specific types
of deposition processes can be identified using the interface
(Fig. 1c).

The remainder of this paper is organized as follows. Sec-
tion 2 provides a survey on previous work related to our
study. Section 3 describes the visual analysis approach used
to interactively identify radioactive deposition types from
the distributions of the air dose rate and other relevant topo-
graphic features. Section 4 explains the details of the data
acquisition and characteristic relationships between the air
dose rate and other topographic features obtained through
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the statistical data analysis. Section 5 presents the results
of our visual analysis on the radioactive deposition pro-
cesses in the area around the FDNPP and discusses how the
results match up with the investigation conducted by domain
experts. Section 6 concludes the paper and refers to possible
future extensions.

2 Related work

We divided our survey into two topics: geospatial visualiza-
tion and multivariate data analysis.

2.1 Geospatial visualization

Pioneer studies on geospatial visualization successfully
advanced traditional map representations to explore multiple
attribute values and locate events of multiple types over the
regions of interest. Such visual analysis of geospatial multi-
variate data has been technically challenging, and extensive
investigation in this field is still needed. For example, Sopan
et al. [24] conducted health care data analyses in which they
visualized the associated geospatialmultivariate data. Turkay
et al. [29] developed an interactive scheme for evaluating
the degree of dependency between the attributes and geo-
graphical locations through graphical charts called attribute
signatures. In the context of geospatial visualization, ana-
lyzing spatiotemporal data is usually necessary. Andrienko
et al. [1] applied self-organizing maps to the analysis of spa-
tiotemporal data by projecting both the temporal and spatial
continuity. Maciejewski et al. [15] composed a set of tools
for finding hotspots in both space and time and then under-
standing proper reasoning for their emergence.

Techniques for visualizing trajectories on maps have also
been intensively studied to analyze diversity suggested by
multiple possible routes [14] and find trajectories that meet
the given filtration criteria [12]. Another important challenge
is analyzing a set of events, such as accidents and crimes, on
a map. Beecham et al. [3] presented a design framework
that visualizes small multiples viewed simultaneously from
various perspectives.Meulemans et al. [16] employed the 2D
grid alignment of such small multiples while allowing gaps
among them to reflect underlying spatial configurations.

Interaction with geospatial data is another factor that must
be carefully designed and evaluated, and a variety of interac-
tive lens techniques have been successfully incorporated in
this context [27]. Butkiewicz et al. [4] presented a probe-
based model for interactively investigating multiple local
regions in the context of geospatial visualization, which
facilitates the selection of regions of interest for further inves-
tigation and comparison.

2.2 Multivariate data analysis

One challenge in multivariate data analysis is finding pat-
terns that will help us categorize radioactive deposition
types by analyzing multivariate data on the map. The data
analyst must efficiently find the correlation between the
deposition and topography. Widely used techniques for
this include scatterplot matrices and parallel coordinate
plots. The data analyst considers a multitude of aspects,
and important dimensions are then chosen. Although this
study employed domain knowledge to pick the relevant
variables, previous research has done so with less a pri-
ori knowledge. One important lesson is that the process of
investigating dimensions should happen together with the
analysis of data values themselves [28]. Other challenges
include searching for important data subspaces by introduc-
ing similarity measures [25], supportive interactions with
visual analysis [33], glyph-based scatterplot matrices [32],
and simultaneous clustering of data samples and dimen-
sions [30].

One particular problem for analyzing geographical data
in a scatterplot is the interpolation [2]. m values distributed
over the earth’s surface form a field R2 → Rm . Point-
based measurements for deposition, however, are intrinsi-
cally discrete. Perhaps the most popular is a scatterplot of
sampled points. However, this is prone to sampling biases
and artifacts [2]—after all, a finite number of sampling
points can be barely interpreted as a 2D continuum. A
common solution is kernel density estimation (KDE). The
problem with KDE in geographical applications is that it
ignores the topology of the points in the field. Sophisti-
cated studies therefore tend to use kriging instead. Though
powerful, kriging requires time-consuming consideration
of the parameters based on domain expertise and experi-
ments.

Continuous scatterplots [2], which we employ, are a
parameter-free alternative to KDE and kriging for fields
over a continuous domain (such as geographical data). A
continuous scatterplot calculates the pixel intensities of the
scatterplot by approximating the area that maps to the pixel
from the terrain surface. The area is computed by interpo-
lating the sampled, and thus discrete, field. A continuous
scatterplot is therefore parameter-free once a reasonable tes-
sellation is agreed upon. Continuous scatterplots have also
inspired a few research directions, especially regarding topo-
logical analysis for visualization [13]. The singularity visible
in continuous scatterplots consists of singular fibers [18]
and singular points in the singularity theory (i.e., the Jacobi
set [9]).

As the singularity tends to be noisy, a level-of-detail con-
trol is needed [7,26]. For this, the persistent homology of
the Reeb graph can be used to extend the Reeb space [10].
The Reeb space is itself an extension of the Reeb graph,
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Fig. 2 1D scatterplots of the function y = f (x). a An ordinary 1D
(discrete) scatterplot. b A continuous scatterplot by projecting the con-
tinuous representation of the function

which is defined on a single function for multiple functions.
Joint contour nets [5,8] have been proposed as a quantized
approximation,while a newer algorithmwithout quantization
is now known [26]. This line of research has previously been
explored to create a mathematical visualization system [18],
establish brush and linking [6], accelerate computation [11],
etc.

3 Analyzingmultivariate geospatial data

We analyzed the mapping from a 2D map domain show-
ing the longitude and latitude of the air dose rate together
with a set of attribute values representing the underlying
topographic features. For example, we included the altitude
from the ground and distance from the FDNPP in the set of
attributes. Our challenge was to visualize a set of discrete
samples on the multivariate function f : R2 → Rm . We
incorporated scattered (i.e., integer) values or text labels in
addition to continuous ones to classify the map samples into
relevant categories. This further improved our understand-
ing of deposition processes by allowing us to filter the data
samples according to the expected conditions.

3.1 Visualizingmappings from 2Dmap domains

In this study, we employed continuous scatterplots as our
primary tool for the visual analysis of the distribution of mul-
tivariate data over the 2Dmapdomain. This tool allowed us to
project the distribution of the function in terms of geographi-
cal positions, such as the longitude and latitude onto the range
space spanned by the air dose rate and other attribute values.
Let us begin our explanation with a 1D function y = f (x)
as depicted in Fig. 2. By representing the function as a set
of discrete samples, we obtained an ordinary 1D scatterplot
as the projection of the discrete samples onto the function
value f (x) (Fig. 2a). However, by reproducing the continu-
ous form of the function through properly interpolating the
discrete samples over the domain, we revealed a more mean-
ingful distribution of the data samples as a 1D continuous
scatterplot via projection onto the function value (Fig. 2b).

 

x

y

contours of P

contours of Q

P

Q

⇒

PQ

R

Domain 2D range 3D range

Fig. 3 Pairs of attribute values were selected for investigating the map-
ping between the geospatial domain and range space

This representation naturally conveys the underlying density
map of the data samples and is thusmore informative because
it reveals the important patterns in the data distribution.

We regarded the continuous scatterplots as the projec-
tions of the inverse image of the function f (x), where the
mathematical term for the inverse image is a fiber [17].
This effectively allowed us to explore how the regions hav-
ing specific attribute values behave by tracking the inverse
image of the corresponding multivariate function values
on the map. Even though we did not necessarily have to
track the topological bifurcations of the fibers as has been
done in more sophisticated representations, such as joint
contour nets [5,8,26], we employed similar computational
techniques to obtain the continuous scatterplots. In prac-
tice, we employed the method used for visualizing a function
f : R3 → R2 in [18], but we reduced the dimensionality
of the data domain to R2. Moreover, the projected bivariate
function space was approximated as a triangulated surface to
utilize algorithms for computing joint contour nets [5].

The main technical problem was that we needed an inter-
face to understand the data distribution in the range space
spanned by three or more attribute values. Interacting with
data samples directly in 3D space usually requires special
efforts because we need to recognize its spatial informa-
tion through our 2D retinal images. Our approach alleviated
this problem by coupling two attribute values and projecting
the corresponding function onto a 2D range space individ-
ually. This means that we replaced the original 3D range
space with multiple 2D projections by taking advantage of
a scatterplot matrix metaphor (Fig. 3). This also helped us
better understand the specific patterns inherent in the radioac-
tive deposition processes through ongoing scientific research
because suchpatterns are often characterizedby themeaning-
ful relationship between the air dose rate and another attribute
value.

3.2 Interactive exploration

Our interaction primarily consisted of an interface for inves-
tigating the relationship between the geospatial domain
and multivariate range space. In practice, scientific model-
ing of the radioactive deposition process, further described
in Sect. 4, allowed us to identify specific patterns in the
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range space spanned by the air dose rate and other topo-
graphic attributes. Thus, painting the respective continuous
scatterplots effectively facilitated exploration of the corre-
spondence between meaningful patterns in the range space
and regions of interest in the map domain. The concept of
fiber surfaces [6] offers a more powerful interaction because
it explicitly incorporates the topological evolution of the
data samples in terms of the attribute values in the multi-
variate function. Nonetheless, we needed to investigate the
radioactive deposition processes by understanding the map-
ping R2 → R3, while the fiber surface interface targeted
R3 → R2. Thus, we focused on understanding the density
distribution of the geospatial data samples in terms of the
multiple attribute values, at the cost of missing the associ-
ated topological bifurcations in the range space. Figure 1
demonstrates a typical example of an interaction in which
we tried to identify map regions that have specific patterns
on the bivariate range spaces. Here, three pairs of arrows
(red, green, and blue) represent such correspondences from
the ranges to the map domain. A 32× 32 grid was employed
in each range window. Notice that the intensity at each grid is
proportional to the number of connected components in the
fiber at the corresponding function values, which means that
bright colors indicate more densely projected data samples.

We also equipped our interface with the capability to track
the correspondence from the data domain to the range by
allowing users to drag the target region on the map. The
orange arrows in Fig. 1 indicate such projections from a gray
map area onto the three ranges. This helped us considerably
when we already knew the specific radioactive deposition
types for some of the regions. Furthermore, these bidirec-
tional interactions compensated for the inability to analyze
the details of the respective spaces when employing a uni-
directional exploration only. This was especially helpful for
visualization expertswho did not have prior knowledge about
projected patterns in the scatterplots according to the types
of deposition processes and wanted to pursue such patterns
by themselves. Note that we were able to selectively adjust
the number of quantization levels in the ranges to a power of
two, and a 64×64 grid was employed as the highest available
resolution in our implementation.

4 Preparation for the analysis

In this section, we describe several preliminary setups for
our visual analysis for categorizing radioactive deposition
processes.

4.1 Data acquisition

In this study, the spatiotemporal distribution of the air dose
rate around the FDNPP was obtained by airborne radiation

monitoring,which has been conducted as a national project in
Japan. Shortly after the FDNPP accident, a series of airborne
radiation monitoring runs were organized by the project,
and a human-crewed helicopter with measurement equip-
ment was employed [19,20]. This successfully provided us
with a detailedmap of the surface distribution of radiocesium
in the surrounding area. This airborne monitoring recorded
ground surface gamma-ray radiation over awide area, includ-
ing mountainous regions that are difficult to approach from
the ground. The crewed helicopter was also equipped with
a global positioning system receiver, facilitating the preci-
sion of the helicopter’s positioning when measuring the air
dose rate. These measurements had a relatively fine spatial
resolution (e.g., 250 m). In the approximately 200 km radius
around the FDNPP, flight spacing was 600, 900, 1800, or
3000mdepending on the initial air dose rate. The flight speed
and flight altitude were 150 km/h and 300 m, respectively.
These measurement data also served as a basis for retriev-
ing the corresponding topographic features of the sampling
points, such as altitude, from the available digital elevation
model data. Additional geospatial data samples, including
segmented areas by land-use types (in 2009), were obtained
from the data repository provided by the National Spatial
Planning and Regional Policy Bureau, Ministry of Land,
Infrastructure, Transport, and Tourism of Japan.

4.2 Scientific explanation of deposition processes

From a scientific point of view, we inferred the type of
radioactive deposition process in each selected local area.
Sanada et al. [23] successfully categorized representative
local areas into dry and wet according to the type of
radioactive deposition process. Their work presented pro-
found understanding of the detailed deposition process in the
respective areas by properly inferring the associated depo-
sition models. They also took into account rainfall data,
including the amount of precipitation after the accident and
spatiotemporal behaviors of atmospheric radiocesium dispa-
ration, which were simulated based on the influence of wind
direction and speed.This long-termstatistical analysis helped
us find meaningful patterns in the distribution of the air dose
rate in terms of topographic features.

Sanada et al. [23] selected representative areas around
the FDNPP and conducted environmental analyses of their
radioactive deposition processes as exhibited in Fig. 4. The
map (Fig. 4a) shows the two selected areas, and accord-
ing to the legend (Fig. 4b), color is assigned in terms of
the air dose rate and altitude. Through their detailed inves-
tigation, they categorized the two areas into dry and wet
types (Fig. 4c). The dry deposition type corresponded to an
area in which the radioactive material fell on terrain sur-
faces via turbulent flow and gravity precipitation, and thus
the amount of the radioactive material was dependent on the
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Fig. 4 Two representative local areas selected for the analysis of the
radioactive deposition process [23]. a Areas A and B. b Color legend
in terms of the air dose rate (P) and altitude (Q). c Inferred deposition
types for the two areas. Air dose map measured on December 28, 2012.
(cf. Sect. 5.1)

altitude and complexity of terrain surface shapes,which often
made the corresponding distribution randomly scattered and
the hotspots relatively isolated (Fig. 5a). In contrast, the wet
deposition type occurred when the radioactive material was
absorbed into rainfall and fell on an area, and thus, it is more
likely to be uniformly distributed over the terrain surface
regardless of the altitude (Fig. 5b).

Sanada et al. [23] created the histogram profiles of the air
dose rate in terms of altitude. Analyzing these histogram pro-
files led us to the hypothesis that areas with a relatively high
air dose rate should be categorized as dry at high altitudes
or wet at low altitudes. This observation played a key role in
identifying the type of radioactive deposition process using
our system, which is detailed in the next section.

Evaluating the temporal change in the air dose rate is
another important factor to develop an effective measure
for protecting inhabitants from unwanted radiation exposure.
For that purpose, it was important to discriminate radiation
exposure caused by the FDNPP accident from that arising
from natural radionuclide and cosmic rays. Sanada et al. [21]
successfully established a method of calibrating the radi-
ation level using the gamma energy spectra, regardless of
the degree of background radiation levels. This method also
allowed us to investigate how the radiocesium contamination
spread deep into the soil, especially in wet deposition areas.
According to [21], residential and agricultural areas are more
likely to significantly suppress the associated air dose rate due
to the effects of decontamination work and human activities,
including agricultural work, construction work, and vehicle
traffic. However, the decrease in the air dose rate in forest
areas is expected to be constant and relatively small over
time since the radiocesium compounds are absorbed deep in
the soil [31]. We verified these expectations through visual
analysis of geospatial multivariate data samples.

(a) (b)

Fig. 5 Categorizing deposition processes into two types: a dry depo-
sition type and b wet deposition type. In the bottom row, red indicates
higher air dose rates, and blue indicates lower

5 Experimental results

In this section, we present the experimental results of our
application study for the analysis of radioactive deposition
processes around the FDNPP. We conducted our visual anal-
ysis with domain experts in the field (who are also authors of
this manuscript). We implemented our prototype system on
an Apple MacBook Pro laptop with Intel Core i7 with four
cores (2.3 GHz) and 32 GB of RAM. The source code was
written in C++ using the CGAL library for geometric com-
putation, OpenGL for graphics, and GLUI for the interface.
Our prototype system first approximated the geographical
surface as a set of connected triangles for the given sample
points over the area around the FDNPP. We then computed
a set of three continuous scatterplots by projecting the trian-
gles onto the 2D range space spanned by the corresponding
pair of attribute values.

5.1 Categorizing areas of dry and wet deposition
types

First, we projected terrain surfaces onto the 2D range spaces
spanned by two of the three attributes, i.e., the air dose rate
(P), altitude from the ground (Q), and distance from the
FDNPP (R) (Fig. 1). Our first challenge was to segment
areas of dry and wet deposition types by drawing the pat-
terns specific to each type over the set of 2D range windows.
According to [19,23], we observed common characteristics
of each deposition type in the range spaces.

In areas of dry deposition type, turbulent airflows can carry
radioactive materials, piling them high up in the mountains
(see Fig. 5a). Additionally, the amount of material deposited
was not significantly correlated with the distance from the
nuclear power plant because it can travel for a relatively long
distance through the air. The typical profiles of the data sam-
ples in the P–Q and P–R range spaces are illustrated in
Fig. 6a. Alternatively, in the wet deposition processes, the

123



Visual analysis of geospatial multivariate... 3045

(P)Dose rate

Altitude(Q)

(P)Dose rate

Distance(R)

(a)

(P)Dose rate

Altitude(Q)

(P)Dose rate

Distance(R)

(b)

Fig. 6 Typical profiles in the projection of geospatial multivariate data
in the range spaces in terms of the air dose rate, altitude from the ground,
and distance from the FDNPP. a Dry deposition type and b wet depo-
sition type

radioactive material falls the ground with rainfall, and thus
the distribution is almost constant in terms of the elevation
(see Fig. 5b). However, the possibility that the radioactive
material will encounter rainfall while traveling through the
air is roughly proportional to its closeness to the nuclear
power plant. This implies that the data samples will have
specific patterns in the range spaces as depicted in Fig. 6b
for the wet deposition process areas.

This consideration allowedus to identify the specificdepo-
sition types in different areas by referring to the range spaces
(Fig. 7). We employed geospatial samples from the air dose
map measured on December 28, 2012. We limited the air
dose rate range to 10−2 to 40.0 µSv/h and then plotted the
corresponding value in the logarithm scale. Each range win-
dow consisted of a 32×32 grid, andwe drew specific patterns
in the respective range windows to locate the typical areas
of dry and wet deposition processes on the map around the
FDNPP. We also interactively identified the corresponding
areas on the map, with the horizontal and vertical axes cor-
responding to latitude and longitude scales, respectively.

Figure 7a presents a case in which we found a potential
area of dry deposition type on the map, which is represented
by the colored pixels. Note that in this example, we first
painted the pixels in the respective range windows by refer-
ring to Fig. 6a, and then, we identified the areas overlapping
with the corresponding colored areas on the map. The result
obtained in the map domain allowed us to confirm that Area
A in Fig. 4a, which is enclosed by a rectangle in Fig. 7a, pri-
marily consists of dry deposition areas, as already classified
in Fig. 4c. In contrast, we located areas of wet deposition
type by coloring the pixels that corresponded to the profiles
in Fig. 6b. Area B of Fig. 4a, which is enclosed by a rectan-
gle in Fig. 7b, is a wet deposition area as expected. Thus, we

Fig. 7 Categorization of areas of dry andwet deposition types.Drawing
specific patterns in the range windows allowed us to explore areas of (a)
dry and (b) wet deposition processes within the map around the FDNPP

successfully categorized areas of specific deposition type by
first drawing the corresponding typical patterns on the ranges
based on the already acquired knowledge (Fig. 6), and then,
we looked for the corresponding areas on the map domain.

5.2 Analyzing temporal decreases in the air dose
rate

Our second challenge was to investigate the spatial distri-
bution of radioactive contamination around the FDNPP and
its temporal decreases according to the land-use type. We
attempted to achieve this goal by focusing on the forest areas
around the FDNPP, in which the radioactive material was
expected to absorb deep into the soil due to rainfall (wet
deposition processes). In this case study, we employed, as the
third attribute value R, the exponent of the exponential fitting
curve representing the attenuation in the air dose rate over
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Fig. 8 Analysis of the area within a 20 km radius of the FDNPP in terms of the air dose rate (P), altitude from the ground (Q), and the exponent of
the exponential fitting curve for the temporal attenuation in the air dose rate (R). a Entire area. b Forest area only. c Other areas, such as residential
and agricultural areas

Fig. 9 Analysis of the area within a 20 to 40 km radius from the FDNPP. a Forest area only. b Areas with an altitude around 500 m are shown in
red. c Areas with low altitudes (around the coastline) are shown in blue

time instead, along with the air dose rate P and altitude from
the ground Q. For this purpose, we approximated the expo-
nential function by regression from nine temporal snapshots
of the corresponding samples on the map obtained through
monitoring campaigns conducted from 2012 to 2020. The
main flight condition was almost the same for every moni-
toring campaign. The attenuation exponent R was calculated
at each mesh (250 × 250 m) using these data. Since we
conducted this analysis to predict the future decrease in the
radiation exposure caused by the FDNPP accident, we visu-
alized the air dose rate at the map samples on the most recent
measurement date, i.e., October 29, 2020.

In this experiment, we intended to conduct the following
tasks through visual analysis of the spatial distribution of
radioactive contamination.

(T1) Explain the attenuation in the air dose rate depending
on the altitude and land-use type.

(T2) Infer the behavior of the radioactive plumes dissipating
from the FDNPP after the accident.

We accomplished these tasks by partitioning the neighbor-
hood of the FDNPP into two areas, one within a radius of 20

km from the FDNPP (Fig. 8) and the other within a radius
of 20 to 40 km (Fig. 9). Note that in these two cases, we
employed a 64×64 grid as the resolution of the range spaces
onto which we projected a set of triangles constituting the
map area.

First, we focused on the area within the 20 km radius
around the FDNPP and explored how the attenuation in the
air dose rate differed for each sample according to its land-
use type. Figure 8a shows the three projected images of the
data samples contained in the area in terms of P–Q, P–R,
and Q–R ranges together with the visualization of the map
domain around the FDNPP. You can easily see that the dis-
tribution of the attenuation exponents R is relatively wide, as
indicated by the light red arrows. We suspected that this was
due to the human activities specific to areas of each land-use
type, including agricultural work, construction work, vehicle
traffic, and decontamination work, as described in Sect. 4.2.
Thus, we restricted the data sample to the forest areas to
exclude the residential and agricultural areas to examine the
associated attenuation exponent ranges. Figure 8b exhibits a
case in which the distribution of the attenuation exponents
in the forest area was concentrated in a narrow range, as rep-
resented by light red arrows. However, when projecting data
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samples of other land-use types (excluding the forest areas),
we found a wide range of small attenuation exponents, as
indicated by light red arrows in Fig. 8c. This observation led
us to conclude that human activities, including decontamina-
tion work, resulted in a remarkable decrease in the air dose
rate, especially in residential and agricultural areas. How-
ever, the radiocesium compounds were absorbed relatively
deep into the soil in the forest areas due to the wet deposition
process. This clearly justifies the difference in the distribution
of R raised in (T1).

The second case was the 20- to 40-km area around the
FDNPP (Fig. 9). Here, we limited our analysis to the for-
est areas only since the air dose rates are likely to reflect the
damage directly caused by the accident in this case. Figure 9a
presents the distribution of the three attribute values (P , Q,
and R) in the target area around the FDNPP. By comparing
the distributions of the air dose rate P between Fig. 8a and
Fig. 9a, as marked by light blue arrows, we learned that the
air dose rate was high within the 20 km radius around the
FDNPP but relatively low within the 20 to 40 km radius.
Moreover, the P–Q range window in Fig. 9b suggests that
the radioactive plumes were blocked by the AbukumaMoun-
tains around an altitude of 500 m, as painted in red. Notice
that the Abukuma Mountain range runs north to south along
the Pacific Ocean coast of Fukushima. This visual analysis
successfully allowed us to infer how the radioactive plumes
dissipated after the FDNPP accident (thus fulfilling T2). We
were also interested in determining the difference in the atten-
uation of the air dose rate between the forest areas in the low
plains and high mountains. The P–R range map in Fig. 9c
clearly reveals that the attenuation exponents in the forest
areas were also within a narrow range, as indicated by light
red arrows. Moreover, the Q–R range map demonstrates that
forest areas (indicated by orange arrows) in the mountains
(painted in red) and in the plains (painted in blue) shared the
same distribution of attenuation exponents. This allowed us
to respond to (T1) by concluding that the attenuation expo-
nents in the forest areas were almost constant regardless of
their altitude from the ground. In other words, the air dose
rate through wet deposition processes was not dependent on
the altitude because rain caused the radioactive materials to
fall suddenly (Fig. 6b).

5.3 Discussion

The hardware requirements for our approach were modest.
Our analysis was indeed conducted on an ordinary laptop,
the specifications of which can be found at the beginning
of Sect. 5. Our implementation strategy allowed the sys-
tem to compute an intermediate representation of the input
geospatial data through a preprocess, which usually took
approximately 200 seconds. In the meantime, it loaded input
geospatial data along with the associated land-use types,

then triangulated the map domain by referring to the sample
points, and finally projected the triangles onto three continu-
ous scatterplots. Once the system completed this preprocess,
it could provide data at an almost interactive rate in the actual
investigation of radioactive deposition processes and corre-
spondence between specific areas in the map domain and
their associated patterns projected on the scatterplots. The
highest resolution for the continuous scatterplot in our sys-
tem was 64 × 64 since it provided sufficiently fine details
of areas on the map domain. Other lower-resolution grids
were obtained by aggregating pixels in this original high-
est resolution in our level-of-detail representation and thus
were instantly computed. Further accelerating the preprocess
might require parallel computation, which we will explore in
a future work.

The proposed interaction scheme also offered non-experts
in this application domain an opportunity to explore the
meaningful patterns in the geospatial multivariate data. This
was achieved through bidirectional exploration between the
map domain and their projections onto the continuous scat-
terplots. As described earlier, the unidirectional interaction
helped us identify areas of specific deposition types on the
map domain by drawing typical patterns on the scatterplots
in terms of attribute values. This operation was beneficial
especially when we had prior knowledge about radioactive
deposition processes. At the same time, we were also able to
explore such important patterns byprojecting areas of interest
onto the scatterplots with the reverse interaction. This trial-
and-error scheme compensated for the inability to directly
discover meaningful areas from a scientific perspective.

Thiswork is also practically advantageous since it allowed
domain experts to interactively confirm their hypotheses on
the temporal change in the air dose rate regarding deposi-
tion types and land-use patterns. This advantage could also
allow us to predict possible countermeasures to alleviate the
associated soil pollution problems. A straightforward task
might be to identify radioactive deposition types in uninves-
tigated areas by referring to the scientific insights obtained
from our prior visual analysis.We could also design effective
decontamination work according to the radioactive depo-
sition types, temporal changes in the dose rate, and the
associated land-use types. For example, we expect that the
decontamination work greatly reduces the unwanted radi-
ation levels if the target area is of a dry deposition type.
Conversely, if the area is a wet deposition area, especially in
the forests, the radioactive material is likely to soak deep into
the soil. In this case, further research is needed to enhance
the effects of the decontamination work. This may help us
schedule the overall decontamination work in the contami-
nated area around FDNPP to maximize the decrease in the
dose rate with limited time and human resources.

We believe that the proposed approach may be applied
to the visual analysis of soil pollution caused by other par-
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ticulate matter, including hazardous chemicals emitted from
factories and garbage collection sites. In this case, we would
need to discover attribute values that influence the spatial
distribution of such particulatematter and their patterns asso-
ciated with soil pollution. One potential application is to
understand more complicated air pollution caused by sus-
pended particulate matter, including PM2.5 and Asian Dust.
Proper models may be required to understand the deposition
of such particulate matter on human respiratory tracts.

One potential advancement in the relevant fields would
be the ability to simultaneously incorporate four or more
attribute values in the analysis of the multivariate data. Solv-
ing this problem may require integration with visualization
techniques for multivariate data analysis, such as scatterplot
matrices and parallel coordinate plots. Being able to auto-
matically find a correlated set of attribute values based on
their geographical positions would greatly facilitate interest-
ing scientific discoveries in the multivariate data. A deeper
understanding of radioactive deposition processes and their
associated environmental influences is also needed. The
actual processes of radioactive deposition are sometimes
unexpectedly complicated due to the uncertain behavior of
wind and rain immediately after a nuclear accident. This
implies the need for a more sophisticated, level-of-detail
control over the analysis of dense samples in local areas.
Introducing more relevant attribute values into our visual
analysis could enhance our ability to devise more effective
decontamination plans.

6 Conclusion

In this paper, we presented an application study for ana-
lyzing radioactive deposition processes in the area around
the FDNPP accident site. We visually investigated the cor-
respondence between the spatial position and air dose rate
together with additional topographic attributes. We imple-
mented an interactive system for visualizing the continuous
scatterplots of themultivariate function defined over the area,
and we identified areas of specific deposition processes by
exploring meaningful patterns in the range spaces. This was
achieved by properly modeling radioactive deposition pro-
cesses and collecting knowledge through statistical analyses
of the relevant data obtained by airborne radiation monitor-
ing. We conducted several experiments to demonstrate that
our approach can provide useful insight into the analysis of
radioactive deposition processes and their impact on the tem-
poral change in the air dose rate.
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