
The Visual Computer (2022) 38:1283–1300
https://doi.org/10.1007/s00371-021-02219-x

ORIG INAL ART ICLE

A GAN-based approach toward architectural line drawing colorization
prototyping

Qian Sun1 · Yan Chen1 ·Wenyuan Tao1 · Han Jiang1 ·Mu Zhang1 · Kan Chen2 ·Marius Erdt2,3

Accepted: 6 June 2021 / Published online: 23 July 2021
© The Author(s) 2021

Abstract
Line drawing with colorization is a popular art format and tool for architectural illustration. The goal of this research is
toward generating a high-quality and natural-looking colorization based on an architectural line drawing. This paper presents
a new Generative Adversarial Network (GAN)-based method, named ArchGANs, including ArchColGAN and ArchShdGAN.
ArchColGAN is a GAN-based line-feature-aware network for stylized colorization generation. ArchShdGAN is a lighting
effects generation network, from which the building depiction in 3D can benefit. In particular, ArchColGAN is able to
maintain the important line features and the correlation property of building parts as well as reduce the uneven colorization
caused by sparse lines. Moreover, we proposed a color enhancement method to further improve ArchColGAN. Besides the
single line drawing images, we also extend ourmethod to handle line drawing image sequences and achieve rotation animation.
Experiments and studies demonstrate the effectiveness and usefulness of our proposed method for colorization prototyping.

Keywords Architectural illustration · GAN · Colorization · Line drawing

1 Introduction

As a saying from Paul Rudolph in [35]: “the architec-
tural drawing is the most eloquent tool a professional has
to communicate design ideas.” For architects, architectural
illustration acts as an essential medium to clarify, communi-
cate, or document designs. As shown in Fig. 1, line drawing
with colorization is a popular and important technique for
architectural illustration. From the engineeringperspective of
the architect, it is expressive and can show the essential build-
ing information, for example, lighting effects, color,material,
layout, and structure. Moreover, from the art perspective
of the architect, architectural illustration using line drawing
with colorization is a significant art format to portray artis-
tic concepts in architecture and convey an architect’s ideas.

Supplementary Information The online version contains
supplementary material available at https://doi.org/10.1007/s00371-
021-02219-x.

B Kan Chen
kchen1@e.ntu.edu.sg

1 Tianjin University, Tianjin, China

2 Fraunhofer Singapore, Singapore, Singapore

3 Nanyang Technological University, Singapore, Singapore

From the application perspective of the architect, such for-
mat is also beneficial in many applications for demonstrating
the specific architecture design essence, for example, urban
planning, marketing, competition, and design proposal.

For the purpose of exchanging ideas among design-
ers and trying out various schemes of color, colorization
prototyping is frequently needed, particularly in the early
architectural design stage. For example, colorization is often
done according to a line drawing, and watercolor is the
common tool for colorization. This paper aims toward real-
izing watercolor alike colorization prototyping. Tedious
efforts or high art skills are often required in the typical
semi-manual/manual colorization methods [10]. Computer
graphics (CG) methods, e.g., physics-based simulation [11]
and non-photorealistic rendering (NPR) [2], often need to
craft a specific technique or require an expensive computa-
tional cost, in order to generate the desired result. Current
learning-based methods for colorization, e.g., style-transfer
with examples [14], are mainly used for transferring general
visual features, such as texture and color. These methods are
hence more preferable for capturing the overall viewing per-
ceptual similarities and appearances.

However, it is not easy for those methods to well pre-
serve the essential underlying line features,which can convey
the basic and key building structure and layout information

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00371-021-02219-x&domain=pdf
https://doi.org/10.1007/s00371-021-02219-x
https://doi.org/10.1007/s00371-021-02219-x


1284 Qian Sun et al.

Fig. 1 Line drawing with watercolor colorization in real architectural illustration examples

for architectural illustration as well as exhibit representative
drawing styles, e.g., in Fig. 1, the line features are important,
because not only they can depict the important architectural
parts and main shapes, but also line crossings often appear at
the corners and such crossing is a typical style in a perspective
drawing to be used as a coordinate reference.

Furthermore, the existing methods are mostly aiming at
dealing with the type of input lines and results, which are
in the 2D manga-character fashion [21]. But, unlike this
type of lines, there are often larger blank areas and rela-
tively sparser lines in the architectural line drawings.They are
commonly used to represent building parts such as walls and
roofs. When coloring the big empty areas, this limit of line
informationmight cause fragmentation and ambiguity. In the
existing methods, this can easily result in unnaturalness and
unevenness in the big blank areas in the colorization results.
Moreover, different from other art formats (such as portrait
painting), one common property of architectural illustration
is the strong correlation between building components, for
example, one column of windows should be the same color
in principle. Nevertheless, this property is not directly con-
sidered in the existing methods.

For designers, it is an advantage to have lighting effects
added to an architectural illustration. This can help to portray
a 3D building with various colors under various lighting con-
ditions, but the existing 2D methods usually do not support
3D depiction for buildings.

Animating a static colored building (or moving its cor-
responding camera) can enhance the viewer’s perceptual
experience, e.g. offering the viewers a street walk-through
around the building. It also provides additional options for
designers to present the building, i.e., in architectural illus-
tration, designers often want to illustrate the building in
different viewing directions for the purpose of realizing a
more comprehensive presentation. Animation in architec-
tural illustration format such as line drawing with watercolor
is also useful since it can present the essence and condensed
information of a design idea as mentioned previously, it also
provides a better perceptual and multi-view experience. Ani-
mation comprises a sequence of images, and these images
may correspond to different camera views. In this case,
the frame color coherency needs to be considered, e.g., the

color of a wall should not change in different views, oth-
erwise, the viewers can easily get confused. However, the
change of views usually introduces more ambiguities and
thus can increase the severity of the previously mentioned
flaws, such as the unwanted blank areas and unclear features.
Moreover, since there is some randomness when performing
colorization each time, the same building parts can be colored
differently in the frames. Unfortunately, the existingmethods
do not directly address this.

In this research, given a line drawing image as the
input, a GAN-based method toward stylized watercolor
alike colorization prototyping for architectural illustration
is proposed. We also extend it to handle line drawing
image sequences to generated building animation effects
as an application of our method. We focus on the rotation
animation effect, since the other common transformation
operations, such as translation and scaling, are relatively
straightforward to realize. The proposed method is well
suited toward prototyping colorization effectively. It has the
following main features.

(1) Toward achieving a stylized colorization based on a line
drawing image of a building, a unified framework Arch-
GANs is proposed, which considers the line features and
lighting effects.We explicitly realize the colorization and
lighting effect using two generative adversarial networks
(GANs), ArchColGAN and ArchShdGAN, respectively.

(2) ArchColGAN is proposed to generate the colorization.
Based on a training dataset, it is able to learn and predict
colors for the line drawing image input. In particular,
by using its line-feature-aware network structure, Arch-
ColGAN can preserve the line features in the resulting
colored architectural illustration. The proposed approach
can handle the line drawing images that contain sparse
lines and generate the representative effect of line cross-
ing at the corners.

(3) ArchShdGAN is proposed to generate the lighting effects.
We utilized a simple and effective approach to represent
and formulate the lighting effects to facilitate the gener-
ation.

(4) We propose a color enhancementmethodwhich is a com-
plementary network to enhance the ArchColGAN results

123



A GAN-based approach toward architectural... 1285

in the attention fashion. We also propose a rotation ani-
mation effect generation network for the input of line
drawing image sequences,which can ensure color consis-
tency in the animated colorization. These methods are all
GAN based and can be seamlessly integrated into Arch-
GANs framework.

(5) We conducted many experiments and studies to evaluate
ArchGANs and the extensions. The results demonstrate
that our method is effective, and compared to the conven-
tional methods, it has improvements in overall quality.

Comparing to the earlier version [38], this extended ver-
sion has the following new contributions.

(1) Wepropose a complementary color enhancementmethod
by applying the attention idea in order to further reduce
the unwanted blank areas and better preserve the line
features if needed.

(2) We expand the input to handle line drawing image
sequences and add a new effect: animation, which can
be a helpful application. We propose incorporating Long
Short TermMemory (LSTM) [18] networks to handle the
frame color consistency.

(3) We add new results and studies to demonstrate the effec-
tiveness and usefulness of our method.

2 Related work

The related work in stylized colorization based on Computer
Graphics (CG) methods, Convolutional Neural Networks
(CNNs), and Generative Adversarial Networks (GANs) is
reviewed in this section, respectively.

2.1 Computer graphics-basedmethods

In this subsection, we mainly review the CG-based methods
that are relevant to the watercolor alike colorization and line
drawing.

There are many existing commercial solutions that have
interactive colorization functionalities, for example, Corel©-
Painter [10]. However, many similar solutions usually need
a lot of manual work which can be tedious.

Visually realistic colorization results can be achieved
using physical simulation-based methods, such as for the
effects of oil painting and watercolor. Curtis et al. [11] per-
formed a fluid simulation to model the water and pigment
moving processes. Chu and Tai [8] as well as Van Laer-
hoven and Van Reeth [40] utilized the GPU computation
for accelerating and generating realistic effects of water-
color. Nevertheless, the computational costs of such physical
simulation-based methods are usually high.

Procedural colorization is another common approach. The
typical approach is first processing and analyzing the input
image to retrieve the information needed, and then applying
various image filtering techniques to realize the brush stroke
simulation. For example, a Sobel filter is used to simulate
the darkening effects of the stroke edges [28], virtual painting
knife [34] and content-dependent painterly rendering [19] are
proposed for oil painting, and color scribbles with optimiza-
tion are used for grayscale image colorization [13]. Please
refer to [17] for a survey. Instead of simulating the physi-
cal process for watercolor, procedural colorization focuses
on mimicking the watercolor effect appearance. In order to
model the effect of watercolor, Bousseau et al. [2] combined
a group of image filters and applied them to the results from
3D rendering. Luft andDeussen [31] proposed amethod suit-
able for rendering plants with a watercolor effect. Luft et al.
[32] applied a similar method to render CAD models with
watercolor effect. These methods are basically aiming at ren-
dering 3D models with non-photorealistic effects, however,
designing a procedural to produce a particular effect is not
always easy.

In general, CG-based methods can achieve realistic
results, however, there are still some challenges that may be
faced as mentioned above. On the other hand, our proposed
method is data driven and GAN based, thus, some manual
and procedural design efforts, as well as the run-time com-
putational costs, can be reduced.

Line drawing is one of the non-photorealistic rendering
effects, too. One of its applications is the tone shading (cel
shading) used in games (e.g., [5]). Based on a 3D model,
the common method for rendering its line drawing images
is based on mathematically defining feature lines as points
on the surface, which satisfy certain geometry constraints.
Relief edges [27], ridge or valley lines [23,33], suggestive
contours [12], photic extremum Lines [43], shadow abstrac-
tion [42], and silhouettes are some examples of the feature
line definitions. In our training, we apply the splatting lines
method [44] to generate line drawings of 3D buildings.

2.2 Convolutional neural networks-basedmethods

With the great advances in CNN, CNN has become to be
the popular tool for many applications to solve synthesizing
problems [37]. Gatys et al. [14] are pioneered in this, and they
proposed the automatic art-to-image style transfer method.
Then, a series of works extended this work. To enhance the
image quality, Liao et al. [29] proposed using image analogy.
Johnson et al. [22] introduced perceptual losses and Chen et
al. [7] proposed Stylebank, for the purpose of improving the
efficiency. A video style transfer extension was proposed by
Chen et al. [6]. These approaches can handle style transfer
tasks formany artistic styles, e.g., oil painting andwatercolor.
However, they often put the emphasis on transferring colors

123



1286 Qian Sun et al.

and textures in a particular artistic style, at the same time try-
ing to preserve the original image content, but not necessarily
preserve the line features. Thus, these approaches cannot be
directly used for architectural colorization, which includes a
sense of the engineering ingredient and has imperative line
features to be preserved.

2.3 Generative adversarial networks-basedmethods

Various GAN [15] methods have been proposed for image-
to-image translation. The pix2pix approach by Isola et al.
[21] trains with the image pairs to achieve convincing results
for photo-to-map, photo-to-sketch, and photo-to-label trans-
lations. Zhu et al. [46] proposed an extension formulti-modal
translation, namely BicycleGAN. Furthermore, many GAN
methods have also been proposed to handle unpaired image
translation, such as UNIT [30], CycleGAN [45], Disco-GAN
[26], and MNUIT [20]. A number of methods were pro-
posed to handle colorization for 2D manga style characters,
e.g., CariGANs [4] and Tag2Pix [25]. However, different
from 2D manga, architectural line drawing contains large
empty regions (walls) that need to be evenly colored, as well
as essential line features and sparse lines that need to be
preserved. Convincing results can be achieved using those
GAN-based methods, however, their main focus is basically
still color or texture change, such as a horse to zebra. That is,
the challenges raised by the properties of architectural line
drawings are still not explicitly handled, which include the
uneven colorization due to sparse lines as well as the lack of
support for lighting effects and maintaining line features.

GAN can be also used for the task of video/frame predic-
tion/generation, such as [9,36,39], recurrent neural networks
such as LSTM can be also used for this task [3]. However,
our work is different from these, because we focus on frame–
frame architectural colorization consistency in the case of
having different camera locations while realizing the even
colorization and maintaining the line features.

3 Ourmethod

3.1 Main structure and training dataset

3.1.1 Main structure

With the aim of effective colorization prototyping, the
focus of this paper is toward automatically generating a
natural-looking stylized colorizationwith user-specified light
direction, froma given architectural line drawing as the input.
We propose a new generative adversarial network (GAN)
framework ArchGANs for tackling the following issues: the
inadequately preserved line features and building part corre-
lation, the undesired uneven colorization due to sparse lines,

as well as the lack of plausible depiction of 3D lighting
effects. The user can select the desired color and lighting
direction from a set of pre-defined color schemes and light-
ing directions. Each color schemewith one lighting direction
is trained as one model.

For many content generation tasks, the GAN-based meth-
ods [15]) have been proved to have good performance. As
such, we adopt the GAN framework for our colorization gen-
eration. However, the learning-based colorization methods
often require many example image pairs, for example, the
pair of a line drawing and its colorization images.On theother
hand, manually creating a number of such building image
pairs under various conditions of lighting can be inefficient
and tedious. Therefore, we propose decoupling the whole
generation process into two branches of GAN networks with
the similar architecture: stylized colorization (ArchColGAN)
and lighting effect generation (ArchShdGAN) (Fig. 2). Our
method can bemore flexible thanks to this modular structure.

In the context of architectural illustration, ArchGANs
learns a mapping φ : X → Y from line drawing domain X to
stylized colorization with lighting effects domain Y . Using
this mapping, the input architectural line drawing x ∈ X can
be colored in the style with lighting effects as y ∈ Y . First,
we trainArchColGAN to learn the translation from line draw-
ing domain X to the domain of stylized colorization without
lighting effect enhancement YC . That is, based on the input
x , in order to generate a stylized colorization without light-
ing effect enhancement yC ∈ YC , ArchColGAN learns the
mapping: φC : X → YC .

In the results of ArchColGAN, few artifacts may hap-
pen, we hence propose a color enhancement network to
further reduce the blank areas and enhance the line features.
Moreover, we also propose a rotation animation generation
network to extendArchColGAN to handle line drawing image
sequences while addressing the color consistency in frames.
These two extension methods can be seamlessly integrated
intoArchColGAN, however, they require extra steps and com-
putations, they are essentially the complementary operations
to meet the additional demands of the users. Their results
can be combined with ArchShdGAN, too. Note that when we
mention ArchColGAN, we refer to the ArchColGAN without
enhancement.

ArchShdGAN learns amappingφS : YC → YS . Thismap-
ping is used for the lighting effect of yS ∈ YS generation. YS
is the lighting information domain for stylized colorization
Y . The final result y can be obtained by integrating the output
yS with yC .

3.1.2 Training dataset

Likewise, coloring each line drawing to create its correspond-
ing stylized colorization pair is also inefficient and tedious.
Furthermore, such image pairs with desired styles are rarely

123



A GAN-based approach toward architectural... 1287

Fig. 2 Pipeline of the proposed ArchGANs

available. So constructing the training dataset is actually not
easy. We have had the following observation based on our
architectural illustration collection which contains a large
number of images. The shapes of buildings usually can be
constructed and represented with a group of representative
and simpler elementary building parts, e.g., we can represent
the building tower or body using a cylinder or box and repre-
sent the building roof using a hemisphere or cone or pyramid
or prism accordingly.

Moreover, common and correlated patterns for building
colors largely exist in many buildings. For example, the con-
crete color (gray) is commonly used to color the walls, brick
color (red) is often used to color the roofs. In a conceptual
manner, in order to train our network, the building can be
constructed in a similar way as in “LEGO.” As such, by com-
posing those elementary building parts, we can construct an
architectural illustration dataset that are created from simpler
but representative building shapes, and the learning can be
conducted based on this. In this way, we can efficiently con-
struct the training dataset, while still maintaining the general
representability.

In our implementation, the training datasets are created
using 10 simpler but representative building shapes con-
structed from the simpler elementary building parts and the
10 color schemes that are the upmost representative based
on the artist’s opinion. We asked the artists to watercolor
those elementary building parts (such as boxes) using these
representative color schemes. We use a common 3D soft-
ware (in our implementation, Autodesk 3ds Max) to render
the building shapes from 100 directions and produce 1000
line drawings sdata(X) = {x1, x2, . . .} ⊂ X as well as
respective 10000 colored images without lighting effects
sdata(YC ) = {yC1 , yC2 , . . .} ⊂ YC as the training dataset for

ArchColGAN. Following the sameway,we can also construct
the training dataset for rotation animation generation, the
image sequences corresponding to sequential 100 viewing
directions are generated by continuously rotating the cam-
era.

In the same way, 200 colored images from sdata(YC )

are selected, and their corresponding colored images with
lighting effects with respect to different light positions can
be automatically generated. We use 8 light directions and
note that the light positions are above the buildings in our
implementation. This process is realized using Autodesk 3ds
Max via scripting. We adopt the standard point light and
Phong model for the lighting model. By doing so, we can
create sdata(Y ) = {y1, y2, . . .} ⊂ Y as the training set for
ArchShdGAN. For training ArchShdGAN, we use only the
essential lighting effect information from sdata(Y ), which
is actually sdata(YC

S ) and sdata(YS), this formulation is
introduced in Sect. 3.3 in detail.

In addition, in order to achieve desired effects, users can
choose to adjust the colorization and lighting effects and then
retrain the model.

3.2 Color translation

3.2.1 ArchColGAN

As shown in Fig. 3, the proposedArchColGAN follows GAN
architecture, including one generator network (G,) and two
discriminator networks (D). The discriminators are local and
global discriminators (LD and GD). The main features are
as follows.

123



1288 Qian Sun et al.

Fig. 3 Generator network ofArchColGAN c of c7× 7 refers to the convolution, d in d3× 3 refers to the deconvolution, s refers to the size of step,
r refers to the dilation factor. These are the same in other Figs.

(1) The generator G is designed to achieve these two tasks:
stylized colorization as well as inpainting. For an input
line drawing image, we randomly cut a hole in it and
apply the G to produce a stylized inpainted and col-
ored output image. In this way, the capability of handling
the building feature details, e.g., the corner features, and
the capability of learning the building part correlation
of the trained model can be strengthened. Conceptually
speaking, we use the local feature synthesis operation
(inpainting) to model the building part correlation (con-
necting), at the same time, we can also emphasize and
thus better preserve the local features. The hole is set to
match the essential feature size (e.g., the corner size). For
the purpose of general coverage, its location is normally
distributed in the image.

(2) Wepropose utilizingU-Net in the generatorG. This facil-
itates the capture of important features, for the purpose of
tackling the line feature maintaining problem. The fea-
ture reuse and upsampling can be also empowered with
the concatenation function.

(3) Buildings may possess rich and vivid colors and complex
shapes. There are also differences between the testing
and training datasets. Furthermore, the training dataset
may not have pixel-to-pixel matches and is not always
fully paired (e.g., theremight bemissing corner features).
Because of this, the generatormodelmay encounter some
difficulties. For the purpose of increasing the adaptive-

ness with respect to those variations, we design G by
integrating cycle consistency (CycleGAN [45]) to the U-
Net, in order to make G more robust and versatile while
preventing the mode collapse. With Lcyc(G, F) as the
cycle consistency loss, G : X → YC is trained with its
inverse mapping model F : YC → X .

(4) In G, we propose utilizing a dilated convolution, its
expanded receptive field can be helpful to reduce the
unwanted colorization unevenness caused by sparse line.
Instead of using ResNet [16] as in the conventional meth-
ods, we propose employing a DenseNet to be used as the
transformer in the U-Net. By doing so, color and line fea-
ture generation canbe enhanced. Furthermore, the feature
reuse is increased and the number of parameters can be
reduced.

(5) The discriminator D has global and local discriminators
(GD and LD). GD is responsible for the overall output
image from G, while LD aims to handle the region in
the output image corresponding to the inpainted part. In
this way, the global consistency and local features can
be both preserved. Furthermore, rather than focusing on
only the overall plausible colorization, adding LD can
engage G to generate a better local colorization, thus the
undesired uneven colorization can be reduced.

123



A GAN-based approach toward architectural... 1289

3.2.2 Loss

G∗, GD∗, and LD∗ denote the weights of network respec-
tive. To this end, we want to solve this problem of mini-
mization/maximization: G tends to minimize the objective
L(G,GD, LD) against the adversary LD and GD tries to
maximize it, as follows:

(G∗,GD∗, LD∗) = argmin
G

max
GD,LD

L(G,GD, LD),

L(G,GD, LD) = Ladv(G,GD, LD) + λLcyc(G, F).

We define the cycle consistency loss as:

Lcyc(G, F) = Ex∼sdata(X)[‖F(G(x)) − x‖1]+
EyC∼sdata(YC )[‖G(F(yC )) − yC‖1].

We define the adversarial loss as:

Ladv(G,GD, LD) =

Ey∼sdata(YC )

[
log

(
GD(yC ) + LD(yCpatch)

)]+

Ex∼sdata(X)

[
log

(
1 − GD

(
G(x)

) − LD
(
G(xpatch)

))]
.

3.2.3 Implementation

The input to G is a line drawing image (256 × 256 pixel
resolution) with a hole (40×40 pixel resolution). The center
position of the hole is normally distributed within the image,
with a 5 pixels padding margin to the image boundary.

Please refer to Fig. 3. U-Net in G begins with two Flat-
ten layers. One Flatten layer contains a convolution (Conv)
kernel of 7×7 with 1 as the step size, an instance normaliza-
tion function (Norm), and a rectified linear unit (Relu) with
a fixed size of the output feature map.

Then, three downsampling convolution blocks (encoding
blocks) are followed. Each encoding block has a downsam-
pling (Conv-Norm-Relu) and a flatten layer to compress and
encode the image compressing and encoding. The impor-
tant and useful image features can be abstracted for the later
transformer. A 3 × 3 kernel with step size 2 is used in this
downsampling, the number of feature channels is doubled
after each step.

Afterward, the dilated convolution is applied. Without
increasing the learnable weights, this step can help to expand
the convolution kernel, thus, it enables to use more areas as
the input at each layer. Specifically, for a 2D layer ofC chan-

nel h × w mapping and a next layer of C ′ channel h′ × w′,
the dilated convolution operator of each pixel is defined as:

yu,v = σ

⎛
⎜⎝b +

c
′
h∑

i=−c
′
h

c
′
w∑

j=−c′
w

Wc
′
h+i,c′

w+ j xu+ηi,v+η j

⎞
⎟⎠ ,

k
′
h = ch − 1

2
, c

′
w = cw − 1

2
,

where cw and ch (odd numbers) are the kernel width and
height.η is the dilation factor. xu,v ∈ RC and yu,v ∈ RC ′ refer
to the input and output pixel components of the layer. σ(·) is
a nonlinear component-wise transfer function. Wi, j are C ′-
by-C kernel matrices. b ∈ RC ′ is the vector of layer bias.
Letting η = 1 will make the equation becoming the standard
convolution. We use η = 2, 4, 8, in our implementation.

Consequently, we employ the DenseNet, which has two
dense network blocks (DBBlock). After one block, a 1 × 1
Conv compression is applied with a 0.5 compression factor.
Each block contains 5 layers, each layer has a Norm, a Relu,
and a 3 × 3 Conv with a growth rate of 32. Beforehand,
a bottleneck layer is applied. It involves a Norm function,
a Relu, and a 1 × 1 Conv layer. In order to reduce the
amount of input feature maps, thus reducing the compu-
tational cost, in our implementation, we let each 1 × 1
Conv generate 4k feature maps. In other words, we call the
structure having 5 layers of Norm-Relu-Conv(1× 1)-Norm-
Relu-Conv(3 × 3) as the dense network block and use 2
structures of DBBlock-Conv(1 × 1) as the transformer of
the generator.

Subsequently, three upsampling convolutionblocks (decod-
ing blocks) are applied to reconstruct and output the stylized
colorization. Each block has an upsampling layer followed
by a flatten layer. The upsampling layer is a deconvolution
layer with a kernel of 3 × 3 and a step size of two (Deconv-
Norm-Relu).We use the same flatten layer as in the encoding
block. The number of feature channels is halved after each
upsampling step. Finally, the final Conv layer with 3 × 3
kernel size is applied. Note that the output features of each
encoding block and the output features of its corresponding
decoding block are concatenated as the input for the next
respective decoding block.

Then, the cycle consistency is applied, please refer to
Fig. 4. The whole generated image (256 × 256 pixels) is
the input for GD. GD has 4 downsampling layers (Conv
4× 4, step size 2) and one Conv layer (Conv 4× 4, step size
1). GD outputs a 16 × 16 matrix to compute differences to
the real data. LD are similar to GD. For LD, the input is
a 60 × 60 patch that is resized from the 40 × 40 patch at
the inpainted hole position, and a 2 × 2 matrix is the out-
put.

123



1290 Qian Sun et al.

Fig. 4 Discriminator network of ArchColGAN

3.3 Lighting effect

3.3.1 ArchShdGAN

Our proposed ArchShdGAN is also based on the Cycle-
GAN [45] architecture. Different to CycleGAN, which
mostly emphasizes on image-to-image translation, the goal
of ArchShdGAN is to handle effect-to-effect translation for
building lighting effects. Our approach is based on the obser-
vation that the lighting effect perceived by the viewer can be
plausibly depicted and represented using the Value channel
of the HSV color space representation, which includes Hue,
Saturation, and Value channels. We therefore proposed for-
mulating this effect-to-effect translation for the lighting effect
as the Value-to-Value translation. That is, YS ≈ YV , where
YV refers to the Value channel.

The coloredbuilding image (yC ) is converted fromRGBto
HSV format. ItsValue attribute is then fetched and used as the
input for ArchShdGAN, that is, yCS ≈ yCV . As shown in Fig. 5,
the generator of ArchShdGAN includes the following steps.
We first apply one Flatten layer and two layers of downsam-
pling convolution encoding. Subsequently, we use ResNet

Fig. 5 Generator and discriminator networks of ArchShdGAN. Note
that r means ResNet [16] here

[16] as the transformer. After this, we apply upsampling with
two convolution layers and then one Flatten layer, in order to
generate the Value attribute. This Value attribute generated
from the generator is used as the input to the discrimina-
tor, which includes four downsampling convolution layers.
Then, we compute and evaluate the loss, as well as incor-
porate it with the discriminator to realize the Value attribute
adversarial generation.

3.3.2 Loss

We denote the weights of generator and discriminator of
ArchShdGAN as G∗

S and D∗
S , respectively. The loss func-

tion is denoted as LS . Similarly, we would like to solve the
minimization/maximization problem of GS trying to mini-
mize the objective LS(GS, DS) against an adversary DS that
tries to maximize it, as follows:

(G∗
S, D

∗
S) = argmin

GS
max
DS

LS(GS, DS)

LS(GS, DS) = LSadv
(GS, DS) + LScyc(GS, FS).

We define the adversarial loss LSadv
as:

LSadv
(GS, DS) = EyS∼sdata(YS)[log(DS(yS))]+

EyCS ∼sdata(YC
S )[log(1 − DS(GS(y

C
S )))].

We define the bidirectional cycle consistency loss LScyc as:

LScyc(GS, FS) = EyCS ∼sdata(YC
S )[‖FS(GS(y

C
S )) − yCS ‖1]+

EyS∼sdata(YS)[‖GS(FS(yS)) − yS‖1].

3.3.3 Concatenation

The final step is concatenating yS output with the yC Hue
and Saturation attributes and then converting it back into the
RGB format, which is the final result y with the stylized
colorization and lighting effect (Fig. 6).

4 Colorization enhancement

On top of ArchColGAN, in order to further enhance the col-
orization results, we propose incorporating the attention idea
to reduce the unwanted blank areas and better preserve the
features. This step acts as one complementary operation, if
the user is satisfiedwith theArchColGAN result, this step can
be skipped. The basic idea and realization of adding attention
are as follows:

(1) In the architecture illustration, the build itself attracts
most of the viewer’s attention, as such we focus on syn-

123



A GAN-based approach toward architectural... 1291

Fig. 6 Adding lighting effects. Note that the illumination changes are highlighted in the first row as an example

123



1292 Qian Sun et al.

Fig. 7 Structure for the colorization enhancement

thesizing andmaintaining the informationof the building.
So, instead of applying a simple random cut within the
whole image region as in ArchColGAN (1), we restrict
the cut in the building region of the image.

(2) We pay more attention to the unwanted blank areas to
reduce them, after the G of ArchColGAN we add an
additional round of generation using the sameG (Fig. 7).
Analogously, this is similar to the real-world coloring,
that is, performing a secondary makeup after the main
coloring. This second round G is conducted based on the
result of the first round G. Moreover, in the generated
local cut region from the first round G, we first apply
a high-pass filter to exaggerate the blank area, to attract
the networks’ attention to inpaint this. Secondly, if this
cut contains a line segment, we add it back to the cut,
as such during the following G, the line feature can be
more emphasized and better preserved with coherency
with surrounding coloring.

(3) Furthermore, on top ofArchColGAN, we follow the atten-
tion map and define a mask with 0s at the blank areas
the 1s at the rest. We concatenate and input them to the
downsampling convolution layer. In the later steps of the
network, the image andmaskwill be convoluted together,
respectively. Using the mask, we can determine the local
image (non-1s). In this case, the local image can have a
soft boundary, which means a better connection with the
global image to improve the global coherency. By apply-
ing the masking, we can derive LD based on GD, we
therefore can also combine their computation to reduce
the network complexity.

All the other parts are the same as ArchColGAN.

5 Rotation animation effect

We consider the rotation animation effect as a sequence of
images generated by rotating the building. Recurrent neural
networks such as LSTM [18] have been proved to achieve
state-of-the-art results on dealing with such time series data
while preserving the frame coherency. As such, we adopt the
LSTMinto ourArchColGAN framework to realize this effect.

Given a line drawing image sequence, in order to improve
the frame coherency, we design our pipeline as follows.

Similar to the colorization enhancement, the main idea is
that in an additional generation round, we utilize the predic-
tion power of the LSTM to incorporate information inherited
(or memorized) from the previous frames to enhance the cur-
rent frame in terms of the coherencywith its previous frames.
It bears the same concept as the cut inpainting in our previ-
ous approaches. Here, it can be thought of as inpainting in
time-space (predicting one frame).

In the first round, we useG fromArchColGAN to generate
the colored images for the current frame and its previous 3
consecutive images.

In the second round, we input these 4 images with cut
holes as in the colorization enhancement, into the generator
again. We follow the same generator network structure of
ArchColGAN as shown in Fig. 8. We adjust this the second
round G to have additional downsampling and upsampling
layers, so the feature map becomes 16× 16× 1024 after the
downsampling (encoding). We also replace the transformer
DenseNet with the LSTMnet. The previous 3 colored frames
are encoded and only used in this LSTM to generate (or pre-
dict) the feature map of the current frame. On the other hand,
the colored current frame is encoded and used for concate-
nation in decoding this feature map generated using LSTM.
Explaining this in detail, the 3 encoded 16× 16× 1024 fea-
turemaps of the 3 previous frames are transformed to 256×1
vectors to input into LSTM.

In our implementation, we engage the standard LSTM
by calling the BasicLSTMCell method from Tensorflow [1]
with 256 as the num_units, and using it as the cell of the
dynamic_rnn method. Its output is convoluted to 16 × 16 ×
1024 and used as the feature map of the current frame. As
mentioned, it will then go through the decoding which is
based on concatenating the encoded current frame. All the
other parts are the same as ArchColGAN.

6 Result and discussion

We implement our method using the TensorFlow [1] frame-
work. We use a Desktop PC with Intel Core i7-7700K CPU
and two Nvidia GeForce GTX1070 GPUs for the implemen-
tation and experiments. The training rate of the method is
2e−4, and the number of epochs is 1000. Using this system
setup, themodel training times are as follows:ArchColGANs:
8 hours,ArchShdGANs: 3 hours, color enhancement: 8 hours,
animation enhancement: 8 hours. The model running time is
2 to 5 seconds for generating one 256×256 image/frame for
all the models.

We applied ArchGANs on a number of representa-
tive building line drawings, using some user-defined color
schemes. As shown in Figs. 6, 9, 10, and in the supple-

123



A GAN-based approach toward architectural... 1293

Fig. 8 Structure for the animation enhancement

mentary material of more ArchGANs results, ArchGANs
can generate stylized colorization that are in general visu-
ally plausible as well as can maintain line features, reduce
unwanted uneven colorization, and augment the colorization
with lighting effects. Note that, for the examples in these
figures, ArchColGAN with and without color enhancement
has the same performance. However, there are few cases that
ArchColGAN may not perform well. In these rare cases, our
newly proposed color enhancement can help to improve the
results as shown in Sect. 6.2.

6.1 Evaluating ArchGANs

As shown in Fig. 9, to evaluate our proposed method, we
compare our results using ArchGANs with the results gen-
erated using the representative state-of-the-art GAN-based
methods including VGG [15], pix2pix [21], DualGAN [41],
andCycleGAN[45].We also compare our results usingArch-
GANs with the ground truth colorization which is produced
by a professional artist. We use the same color scheme as the
ground truth.

Particularly, we evaluate ArchGANs from 3 important
aspects: lines, colors, and lighting effects with a subjective
user study. We evaluate the lines from three perspectives:
maintaining the line structure, stylizing, and repairing the
lines. We evaluate the colors from three perspectives: evenly
coloring of large walls, color consistency of windows, and
distinction between the main building and the background.

6.1.1 Line evaluation

As shown in the column two of Fig.9, the VGG network in
general cannot preservewell the line structure in their results.
Mainly, this is due to that its performance largely relied on
the comprehensiveness of the training dataset.

But in most circumstances, we have to face the situation
that there can be relatively large differences between the
training and test datasets. Hence, using VGG would result
in results that are often unexpected. VGG usually performs

better for the task of transferring colors and textures, but it
does not perform very well for preserving the structure of
lines. Moreover, it usually tends to preserve high-level gen-
eral information and thus can be more suitable for artistic
stylized effects. Unlike VGG, other methods can generate
satisfying outputs in terms of maintaining the structure of
lines.

In the first row of Fig. 9, the triumphal arch model is
used to demonstrate the stylized line drawing transformation.
The input line drawings are expected to be transformed into
stylized line drawings with crossing features at the corners.
Such corner crossings are frequently used for perspective
references and can be commonly found in many architec-
tural illustration images. In the results of CycleGAN and
our method (as shown in the figure), the corner crossings
are much clearer. This indicates that both two methods can
achieve the better-stylized transformation of the lines. How-
ever, in the results of other methods, the corner crossing
features can be hardly seen (less stylized line drawings). This
is because CycleGAN and our method in general perform
better when dealing with such local features.

6.1.2 Color evaluation

The outputs at the first, second, and third rows of Fig. 9
show the capability for dealing with colorization for large-
area walls.

For the larger wall area of building, e.g., in the first row,
for the pillar faces of the triumphal arch, and in the second
row, for the external walls of the house, there are larger blank
areas in the center of the walls in the colorization results of
pix2pix, DualGAN, and CycleGAN methods. And, there is
an unwanted red color for the wall areas (third row) in the
results of pix2pix and CycleGAN. This kind of colorization
unevenness is unnatural, and the overall perception experi-
encesmay be degraded. Different from them, ourmethod can
produce more even colorization results for large-area walls
and reduce the unwanted blank area.

123



1294 Qian Sun et al.

Fig. 9 Comparing ArchGANs with different methods. From left to right: the line drawing input images, VGG, pix2pix, DualGAN, CycleGAN,
ArchGANs, and watercoloring by an artist. Note that some artifacts and features are highlighted

Table 1 Mean opinion scores of the user feedback for evaluating ArchGANs and the animation extension of ArchColGANs

VGG pix2pix DualGAN CycleGAN
1.214 2.170 2.523 2.995

ArchGANs
without LD

ArchGANs
without DC

ArchGANs
without Lighting ArchGANs

2.840 3.254 3.869 4.261

ArchColGANs Animation
3.621

ArchColGANs Animation
with enhancement

4.062

In the fourth and sixth rows of Fig. 9, we can observe
the capability to deal with window color consistency. Higher

color consistency (blue) can be observed in our results, com-
paring with the others.

123



A GAN-based approach toward architectural... 1295

As shown in the fifth and sixth rows of Fig. 9, in the results
of other methods, the empty region between building pillars
has leaked color, this is in general unwanted for colorization.

6.1.3 Lighting effect evaluation

As shown in Fig. 6, in our results, the direction of the light
source and the 3D effect of the building can be plausibly rep-
resented. Our ArchShdGAN module is helpful in generating
such lighting effects.

6.1.4 Ablation study

We also conducted an ablation study, in order to further
evaluate the effectiveness of ArchGANs. The results in the
following cases are compared in this ablation study: Arch-
GANs without LD, ArchGANs without dilated convolution
(DC),ArchGANswithout Shading, andArchGANs, using dif-
ferent color schemes (Fig. 10a) and building models (Fig.
10b).

The following benefits of ArchGANs modules can be
observed based on this study: our model with GD and LD
can help to deal with local feature details, e.g., the features
in the bottom of the building in Fig. 10b row one, adding the
dilated convolution can be helpful in reducing the uneven col-
orization in the large walls, and adding the lighting effects
can enhance the building depiction in 3D.

6.1.5 User study

In order to evaluate our method, we conducted a user study
based on the mean opinion score (MOS). We invited 17 par-
ticipants with art backgrounds to give their opinion scores
regarding various colorization results. They are invited to
evaluate based on the perceptual experience and visual
quality. For reference, we also provide 20 ground truth col-
orization by artists to the participants. The opinion scores
are ranging from 1 to 5: 1 (Very bad), 2 (Bad), 3 (Average),
4 (Good), 5 (Very good). The results are generated using 8
methods: VGG, pix2pix, DualGAN, CycleGAN, ArchGANs
without LD, ArchGANs without dilated convolution (DC),
ArchGANs without Lighting, and ArchGANs. We generated
62 different colorization results for each case. Each partici-
pant evaluated 496 images, and we have 8432 scores in total.
Table 1 left shows the MOS of the results using those meth-
ods.

From the user study, we learned that the state-of-the-art
CycleGAN (MOS 2.995) performs better than ArchGANs
without LD (MOS 2.840), but, after incorporating LD,
dilated convolution, and Shading, the results can be greatly
improved (MOS 4.261), and the viewer can have a better
visual experience. In terms of the components, compared to
adding Shading effect (MOS from 3.869 to 4.261), adding

dilated convolution (MOS from 3.254 to 4.261) and LD
(MOS from 2.840 to 4.261) are relatively more important
components for improving results. This shows that compared
with the lighting effect, users usually are more sensitive to
the color effect, e.g., the evenness of the colorization.

6.2 Evaluating color and animation enhancement

We evaluate the newly extended enhancement methods by
comparing the enhancement results with the results using
only ArchColGANs.

6.2.1 Color enhancement

In our experiments, we found that in most cases, ArchCol-
GAN can already produce satisfactory results. In some rare
cases when the color enhancement is needed, as shown in
Fig. 11, our new complementary color enhancement method
can improve the results of ArchColGAN by reducing the
unwanted blank areas and maintaining the line features.
Adding an additional generation round can be helpful, how-
ever, it requires some additional computational costs.

6.2.2 Animation enhancement

Please refer to the supplementary video, we compare the
proposed animation enhancement by solely applying Arch-
ColGANs at each image. Some frames of the video are
shown in Fig. 12. It can be seen that the additional anima-
tion enhancement can improve the frame color consistency.
The ambiguities and randomness in the frame-by-frame col-
orization can cause and magnify the color inconsistency in
animation. However, in our proposed animation enhance-
ment, considering the previous frames can be helpful in
reducing such color inconsistency, thus a better animation
effect can be produced.

Additionally, we also present a straightforward zooming
effect using our method. The zooming starts from 256 ×
256 resolution and zooms out (smaller) then in (bigger) until
256× 256. This is done using a post-processing scaling. We
currently focus on 256× 256 images, we will discuss this in
the limitation section.

As a qualitative evaluation, we also conduct a user study,
as shown in the right of Table 1. Similar to the previous one,
we ask for the user opinions regarding additional 9 anima-
tion clips generated using ArchColGAN with and without
animation enhancement. From the evaluation results, we get
to learn that adding the animation enhancement can improve
theMOS from3.621 to 4.062. This indicates the effectiveness
and usefulness of the proposed animation enhancement.

123



1296 Qian Sun et al.

Fig. 10 Ablation study for ArchGANs. (a) Different color schemes. (b) Different building models. Note that the main differences are highlighted
in the first row as an example

123



A GAN-based approach toward architectural... 1297

Fig. 11 Color enhancement for ArchColGAN

Fig. 12 Animation enhancement for ArchColGAN

6.3 Limitations

The main limitations are as follows:

(1) The construction of the training dataset involves some
manual and human efforts to achieve visually plausi-
ble results, although we have attempted to reduce such
efforts, such as proposing the “LEGO”manner approach.
Currently, we invite expert opinions in designing the
shape and color schemes and ensuring the quality of the

training dataset, which is considered by us as the qual-
ity of the ground truth. However, this can be prone to
human errors and subjective. As a result, the richness and
diversity of the results can be affected and limited by the
dataset generation. In the future, we plan to explore fully
automatic data synthesis and data augmentation meth-
ods to generate amore comprehensive dataset and further
reduce the manual efforts, such as using texture synthesis
methods.We also plan to apply image quality assessment
methods to quantitatively access the dataset quality.

123



1298 Qian Sun et al.

(2) The training is computationally expensive. Due to our
current computational power constraint, our model is
trained and tested with a low resolution of 256 × 256.
We plan to investigate methods to expedite the training
process and consider progressive growing [24] to pro-
gressively add details to our current 256 × 256 image to
generate a high resolution image.

(3) We currently focus on only the lighting effects, more
effects like shadow and reflection can be added by con-
sidering the idea of screen space ambient occlusion and
the material property of the building parts.

(4) Our animation enhancementworksmainly on the gradual
changes (continuous frames), not the large changes. To
handle the large changes, the animation techniques such
as inbetweening can be considered.

7 Conclusion and future work

In this research, a novel GAN-approach, ArchGANs has been
proposed for effective prototyping stylized architectural line
drawing colorization. It consists of two main parts, ArchCol-
GAN and ArchShdGAN.

ArchColGAN is designed to conduct both stylized col-
orization and inpainting tasks. We realize the stylized col-
orization by utilizing U-Net and incorporating two-stage
discriminators (local and global), dilated convolution, and
cycle consistency. ArchShdGAN can add lighting effects.
Different from the existing methods, ArchGANs has better
support for lighting effects, even colorization, and handling
line features. Furthermore, we also proposed an extension
for complementary color enhancement and adding rotation
animation effect in ArchColGAN. The effectiveness of Arch-
GANs has been demonstrated in our results and evaluation.

As future work, besides those mentioned in the limitation
section, we also want to apply our method to handle other
scenarios, e.g., industrial, car, andCADdesign. Another pos-
sible future work is to extend ArchGANs to deal with other
objects, e.g., sky, streets, and vegetation.

Acknowledgements We gratefully thank the reviewers for their con-
structive comments.

Funding Open Access funding enabled and organized by Projekt
DEAL. This research is supported by NSFC Grants (61702363,
51978441), China and the National Research Foundation, Singapore
under its International Research Centres in Singapore Funding Ini-
tiative. Any opinions, findings and conclusions or recommendations
expressed in this material are those of the author(s) and do not reflect
the views of National Research Foundation, Singapore.

Declarations

Conflict of interest The authors declare that they have no conflict of
interest.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean,
J., Devin, M., Ghemawat, S., Irving, G., Isard, M., Kudlur, M.,
Levenberg, J., Monga, R., Moore, S., Murray, DG., Steiner, B.,
Tucker, P., Vasudevan, V., Warden, P., Wicke, M., Yu, Y., Zheng,
X.:TensorFlow: A system for large-scale machine learning. In:
OSDI’16: Proceedings of the 12th USENIX symposium on oper-
ating systems design and implementation, pp 265–283(2016)

2. Bousseau, A., Kaplan, M., Thollot, J., Sillion, FX.: Interactive
watercolor rendering with temporal coherence and abstraction. In:
NPAR’06: Proceedings of the 2006 international symposium on
non-photorealistic animation and rendering, pp 141–149(2006)

3. Byeon W, Wang Q, Kumar Srivastava R, Koumoutsakos P (2018)
ContextVP: Fully context-aware video prediction. In: ECCV’18:
Proceedings of the European conference on computer vision, pp
753–769

4. Cao, K., Liao, J., Yuan, L.: CariGANs: unpaired photo-to-
caricature translation. ACM Trans. Graph. 37(6), 1–14 (2018)

5. Capcom (2008) Street fighter iv
6. Chen, D., Liao, J., Yuan, L., Yu, N., Hua, G.: Coherent online video

style transfer. In: ICCV’19: Proceedings of the IEEE international
conference on computer vision, pp 1105–1114 (2017a)

7. Chen, D., Yuan, L., Liao, J., Yu, N., Hua, G.: Stylebank: An explicit
representation for neural image style transfer. In: CVPR’17: Pro-
ceedings of the 2017 IEEE conference on computer vision and
pattern recognition, pp 1897–1906 (2017b)

8. Chu,N.S.H., Tai, C.L.:MoXi: real-time ink dispersion in absorbent
paper. ACM Trans. Graph. 24(3), 504–511 (2005)

9. Clark,A.,Donahue, J., Simonyan,K.:Adversarial video generation
on complex datasets. (2019).arXiv preprint p arXiv:1907.06571

10. Corel (2011) Painter 12. www.corel.com
11. Curtis, CJ., Anderson, SE., Seims, JE., Fleischer, KW., Salesin,

DH.: Computer-generated watercolor. In: SIGGRAPH’97: pro-
ceedings of the 1997 annual conference on computer graphics and
interactive techniques, pp 421–430(1997)

12. DeCarlo, D., Finkelstein, A., Rusinkiewicz, S., Santella, A.: Sug-
gestive contours for conveying shape. ACM Trans. Graph. 22(3),
848–855 (2003)

13. Fang, L.,Wang, J., Lu, G., Zhang, D., Fu, J.: Hand-drawn grayscale
image colorful colorization based on natural image. The Vis. Com-
put. 35(3), 1667–1681 (2013)

14. Gatys, LA., Ecker, AS., Bethge,M.:Image style transfer using con-
volutional neural networks. In: CVPR’16: proceedings of the 2016
IEEE conference on computer vision and pattern recognition, pp
2414–2423 (2016)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1907.06571


A GAN-based approach toward architectural... 1299

15. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-
Farley, D., Ozair, S., Courville, A., Bengio, Y.:Generative adversar-
ial networks. In: NIPS’14: Proceedings of the 2014 international
conference on neural information processing systems, pp 2672–
2680 (2014)

16. He, K., Zhang, X., Ren, S., Sun, J.:Deep residual learning for image
recognition. In: CVPR’16: Proceedings of the IEEE conference on
computer vision and pattern recognition, pp 770–778 (2016)

17. Hertzmann, A.: Tutorial: a survey of stroke-based rendering. IEEE
Comput. Graph. Appl. 23(4), 70–81 (2003)

18. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural
Comput. 9(8), 1735–1780 (1997)

19. Huang, H., Fu, T.N., Li, C.F.: Painterly rendering with content-
dependent natural paint strokes. The Vis. Comput. 27(9), 861–871
(2011)

20. Huang, X., Liu, MY., Belongie, S., Kautz, J.:Multimodal unsuper-
vised image-to-image translation. In: ECCV’18: Proceedings of the
2018 european conference on computer vision, pp 172–189 (2018)

21. Isola, P., Zhu, JY., Zhou, T., Efros,AA.: Image-to-image translation
with conditional adversarial networks. In: Proceedings of the IEEE
conference on computer vision and pattern recognition, pp 1125–
1134(2017)

22. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time
style transfer and super-resolution. In: ECCV’16: Proceedings of
the European conference on computer vision, pp 694–711(2016)

23. Judd, T., Durand, F., Adelson, EH.:Apparent ridges for line draw-
ing. ACM Transactions on Graphics 26(3):19–es (2007)

24. Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of
GANs for improved quality, stability, and variation.(2017) arXiv
preprint p arXiv:1710.10196

25. Kim,H., Jhoo, HY., Park, E., Yoo, S.:Tag2Pix: Line art colorization
using text tag with secat and changing loss. In: ICCV’19: Proceed-
ings of the ieee international conference on computer vision, pp
9056–9065 (2019)

26. Kim, T., Cha, M., Kim, H., Lee, JK., Kim, J.: Learning to dis-
cover cross-domain relations with generative adversarial networks.
In: ICML’17: Proceedings of the 2017 international conference on
machine learning, pp 1857–1865(2017)

27. Kolomenkin, M., Shimshoni, I., Tal, A.: On edge detection on sur-
faces. In: CVPR’09: Proceedings of the 2009 IEEE conference on
computer vision and pattern recognition, pp 2767–2774(2009)

28. Lei, SIE., Chang, CF.:Real-time rendering of watercolor effects
for virtual environments. In: PCM’04: Proceedings of the 2004
Pacific Rim conference on Advances in multimedia information
processing, pp 474–481 (2004)

29. Liao, J., Yao, Y., Yuan, L., Hua, G., Kang, SB.: Visual attribute
transfer through deep image analogy. (2017). arXiv preprint p
arXiv:1705.01088

30. Liu,MY.,Breuel, T.,Kautz, J.:Unsupervised image-to-image trans-
lation networks. In:NIPS’17: Proceedings of the 2017 international
conference on neural information processing systems, pp 700–708
(2017)

31. Luft, T., Deussen, O.:Real-time watercolor illustrations of plants
using a blurred depth test. In: NPAR’06: Proceedings of the 2006
international symposium on non-photorealistic animation and ren-
dering, pp 11–20 (2006)

32. Luft, T., Kobs, F., Zinser, W., Deussen, O.: Watercolor illustra-
tions of cad data. In: Computational Aesthetics’08: Proceedings of
the 2008 Eurographics conference on computational aesthetics in
graphics, visualization and imaging, pp 57–63(2008)

33. Ohtake, Y., Belyaev, A., Seidel, H.P.: Ridge-valley lines on meshes
via implicit surface fitting. ACM Trans. Graph. 23(3), 609–612
(2004)

34. Okaichi, N., Johan, H., Imagire, T., Nishita, T.: A virtual painting
knife. The Vis. Comput. 24(7), 753–763 (2008)

35. Schaller, T.W.: The art of architectural drawing: imagination and
technique. Wiley (1997)

36. Shahroudy, A., Ng, T.T., Gong, Y., Wang, G.: Deep multimodal
feature analysis for action recognition in rgb+d videos. IEEETrans.
Pattern Anal. Mach. Intell. 40(5), 1045–1058 (2017)

37. Simonyan, K., Zisserman, A.:Very deep convolutional networks
for large-scale image recognition. (2014) .arXiv preprint p
arXiv:1409.1556

38. Tao, W., Jiang, H., Sun, Q., Zhang, M., Chen, K., Erdt,
M.:ArchGANs: stylized colorization prototyping for architectural
line drawing. In: CW’20: Proceedings of the 2020 international
conference on cyberworlds, pp 33–40 (2020)

39. Tulyakov, S., Liu, MY., Yang, X., Kautz, J.:MoCoGAN: Decom-
posing motion and content for video generation. In: CVPR’18:
Proceedings of the 2018 IEEE conference on computer vision and
pattern recognition, pp 1526–1535 (2018)

40. Van Laerhoven, T., Van Reeth, F.: Real-time simulation of watery
paint: natural phenomena and special effects. Comput. Animat.
Virtual Worlds 16(3–4), 429–439 (2005)

41. Yi, Z., Zhang, H., Tan, P., Gong, M.:DualGAN: Unsupervised dual
learning for image-to-image translation. In: ICCV’17: Proceed-
ings of the 2017 IEEE conference on computer vision and pattern
recognition, pp 2849–2857 (2017)

42. Zang, Y., Huang, H., Li, C.F.: Artistic preprocessing for painterly
rendering and image stylization. The Vis. Comput. 30(9), 969–979
(2013)

43. Zhang, L., He, Y., Seah, H.S.: Real-time computation of photic
extremum lines (PELs). The Vis. Comput. 26(6–8), 399–407
(2010)

44. Zhang, L., Sun, Q., He, Y.:Splatting Lines: An efficient method for
illustrating 3d surfaces and volumes. In: I3D’14: Proceedings of
the 2014ACMSIGGRAPH symposium on interactive 3D graphics
and games, pp 135–142 (2014)

45. Zhu, JY., Park, T., Isola, P., Efros, AA.:Unpaired image-to-
image translation using cycle-consistent adversarial networks. In:
ICCV’17: Proceedings of the 2017 IEEE conference on computer
vision and pattern recognition, pp 2223–2232 (2017a)

46. Zhu, JY., Zhang, R., Pathak, D., Darrell, T., Efros, AA., Wang,
O., Shechtman, E.:Towardmultimodal image-to-image translation.
In: NIPS’17: Proceedings of the 2017 international conference on
neural information processing systems, pp 465–476 (2017b)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Qian Sun received the Ph.D.
degree in Computer Science from
Nanyang Technological University
, Singapore. She is currently an
Asso ciate Professor in the Col-
lege of Intelligence and Comput-
ing, Tianjin University, China. Her
current research interests include
human-computer interaction and
computer graphics.

123

http://arxiv.org/abs/1710.10196
http://arxiv.org/abs/1705.01088
http://arxiv.org/abs/1409.1556


1300 Qian Sun et al.

Yan Chen is a graduate stu-
dent from Tianjin University. She
received an M.Eng. in Software
Engineering from Tianjin Univer-
sity. Her research interests include
computer vision and computer
graphics.

Wenyuan Tao received the B.S.
degree in Information Science and
Technology from the Department
of Information and Control, Xi’an
Jiaotong University, China, in
1992 and the M.S. degree in Engi-
neering in Control Theory and
Application from Beijing Univer-
sity of Technology, Beijing, China,
in 1998. He received the Ph.D.
degree in School of Management,
Tianjin University, in 2002. In
2015, he was the research fellow
at the Drexel University, USA.
He is currently the Full Profes-

sor, Vice Dean of College of Intelligence and Computing, and Dean
of School of Computer Software in Tianjin University, China. His
research interest includes virtual reality, technology of digital media
content, and Internet of things.

Han Jiang is a software devel-
opment engineer at JD Logistics.
She received a master’s degree
from the College of Intelligence
and Computing at Tianjin Univer-
sity. Her research interests include
deep learning, computer graphics,
and software development.

Mu Zhang received a Ph.D.
degree in Urban & Rural Plan-
ning from Tianjin University. Her
research interests include cinema
tic architecture and animation
design.

Kan Chen is a research fel-
low at Fraunhofer Singapore. He
received a B.Comp. (Honors) in
Computer Science from National
University of Singapore and an
M.Eng. and a Ph.D. in Computer
Engineering from Nanyang Tech-
nological University. His research
interests include computer graph-
ics, computer vision, and human-
computer interaction.

Marius Erdt is Deputy Director of
Fraunhofer Singapore where he is
also Head of AI Image Analysis
and Data Visualisation. He is also
an Adjunct Assistant Professor at
the School of Computer Science
and Engineering at Nanyang Tech-
nological University in Singapore.
His research interests are in visual
and medical computing, image
analysis, and artificial intelligence.

123


	A GAN-based approach toward architectural line drawing colorization prototyping
	Abstract
	1 Introduction
	2 Related work
	2.1 Computer graphics-based methods
	2.2 Convolutional neural networks-based methods
	2.3 Generative adversarial networks-based methods

	3 Our method
	3.1 Main structure and training dataset
	3.1.1 Main structure
	3.1.2 Training dataset

	3.2 Color translation
	3.2.1 ArchColGAN
	3.2.2 Loss
	3.2.3 Implementation

	3.3 Lighting effect
	3.3.1 ArchShdGAN
	3.3.2 Loss
	3.3.3 Concatenation


	4 Colorization enhancement
	5 Rotation animation effect
	6 Result and discussion
	6.1 Evaluating ArchGANs
	6.1.1 Line evaluation
	6.1.2 Color evaluation
	6.1.3 Lighting effect evaluation
	6.1.4 Ablation study
	6.1.5 User study

	6.2 Evaluating color and animation enhancement
	6.2.1 Color enhancement
	6.2.2 Animation enhancement

	6.3 Limitations

	7 Conclusion and future work
	Acknowledgements
	References




