The Visual Computer (2021) 37:2725-2739
https://doi.org/10.1007/s00371-021-02183-6

ORIGINAL ARTICLE

f')

Check for
updates

Be water my friend: mesh assimilation
Dennis R. Bukenberger' - Hendrik P. A. Lensch’

Accepted: 28 May 2021 / Published online: 2 July 2021
© The Author(s) 2021

Abstract

Inspired by the ability of water to assimilate any shape, if being poured into it, regardless if flat, round, sharp, or pointy, we
present a novel, high-quality meshing method. Our algorithm creates a triangulated mesh, which automatically refines where
necessary and accurately aligns to any target, given as mesh, point cloud, or volumetric function. Our core optimization iterates
over steps for mesh uniformity, point cloud projection, and mesh topology corrections, always guaranteeing mesh integrity
and e-close surface reconstructions. In contrast with similar approaches, our simple algorithm operates on an individual vertex
basis. This allows for automated and seamless transitions between the optimization phases for rough shape approximation
and fine detail reconstruction. Therefore, our proposed algorithm equals established techniques in terms of accuracy and
robustness but supersedes them in terms of simplicity and better feature reconstruction, all controlled by a single parameter,
the intended edge length. Due to the overall increased versatility of input scenarios and robustness of the assimilation, our

technique furthermore generalizes multiple established approaches such as ballooning or shrink wrapping.

Keywords Point cloud reconstruction - 3D scan - Remeshing - Shape assimilation - Meshing

1 Introduction

Without the need for mappings, parameterizations, or specifi-
cally trained machine learning models, our approach presents
a simple yet powerful extension in the field of geometric
surface reconstruction techniques. We demonstrate how our
algorithm can top similar state-of-the-art approaches, e.g.,
when reconstructing fine details and sharp feature edges, in
terms of mesh uniformity or versatility of supported input
data. Our method is based on the concept of water being
quite formless and able to assimilate any shape if being
poured into it. Starting from a small initial triangle mesh,
the object can grow, shrink, and locally refine to assimi-
late a target shape with controllable precision. Vertices of
the initial mesh extend rather autonomously along surface
normals until they reach the target hull space. The expand-
ing surface mesh is supplemented with suitably interpolated
vertices where it is stretched the most. In contrast with the
surface tension of water, the inter-vertex energy optimization
promotes mesh uniformity but without enforcing smooth-
ness priors, often found in other ballooning concepts. Once
the vertices are close enough to the target hull, they indi-
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vidually transition from mesh growth mode to a projection
scheme. Due to the bilateral weighting concept of the projec-
tion, vertices are effectively pulled into intersecting tangent
planes of the hull, thus allowing for accurate reconstructions
of small detail and sharp edges. The optimization of ver-
tices is an iteration process, but individual for each vertex
and can therefore be executed on the GPU as a massively
parallelized operation. Per design, the algorithm assimilates
to shape rather than a strict type of input data, which can
be given as mesh, point cloud, signed distance, or other vol-
umetric function. With its frugal input requirements and a
minimal set of parameters to be adjusted, our method simpli-
fies the rather complex nature of other established techniques;
it is situated somewhere between the exhaustively studied
fields of shape approximation [12], surface remeshing [1],
and point cloud reconstruction [5].

1.1 Contributions

Our approach fulfills all criteria which one would ask of a
state-of-the-art reconstruction technique:

Guarantee for closed, watertight manifold meshes, the abil-
ity to cope with varying input density, robustness to noise
and outliers as well as to missing data and control over
higher genus topology. Moreover, we can summarize our
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Fig. 1 Progress of our method: A low-poly initialization mesh grows within the target point cloud. The mesh first approximates the rough shape
and further progresses by assimilating and refining to reconstruct fine detail

main contributions: ¢ Mesh uniformity is achieved as our
mesh unravels with an inter-vertex energy, striving to equal-
ize distances between vertices. ¢ Adaptive resolution can be
realized by locally adapting the specified target edge length
to the provided sample density. ¢ Sharp features are recon-
structed, as the second vertex optimization step is designed
to minimize projected distances to surface tangents; thus, the
vertices snap on close-by edges and corners. This is where
most state-of-the-art methods still lack precision. e Arbi-
trary initialization meshes are possible, as demonstrated
with various examples. e Versatile input data are supported,
as our method is not bound to point clouds and can easily
handle meshes as well as volume data and signed distance
fields, currently explored in neural surface representations
[32,33].

1.2 Related work

For decades, shape reconstruction has been and is still an
actively researched topic.

While the ideas of ballooning or shrink-wrapping are not
exactly new [17], we are yet to see its full potential. In some
aspects, our method follows similar principles like the con-
cept of Competing Fronts [35], which is also a coarse-to-fine
point cloud reconstruction technique, using growing mesh
geometry. Butinstead of whole mesh fronts, which get frozen
at some point, our method operates on an individual vertex
basis so that the mesh remains flexible during the optimiza-
tion. This allows for smoothing out irregularities, without the
need for remeshing in every other iteration. Our hull projec-
tion scheme furthermore resolves the issue of reconstructing
creases and sharp feature edges, an open problem for Com-
peting Fronts. Unfortunately, a direct comparison was not
possible as there is no reference implementation or result
data available. Nevertheless, the concept gained some recent
attention with the concept of Cooperative Evolutions [31],
combining two mesh fronts enclosing on the point cloud from
the in- and outside in parallel. A first draft utilizing this idea
in a learning based approach was proposed with Point2Mesh
[20]. A thorough analysis of the actual distinctions of our
approach to other ballooning concepts is featured in our dis-
cussion in Sect. 3.2.
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Conceptually different approaches include the popular

Screened Poisson Surface Reconstruction (SPSR) [24-27],
which is probably one of the most commonly used point
cloud reconstruction methods. In direct comparison, how-
ever, SPSR tends to produce rather smoothed out results,
whereas ours generally appear sharper and capture finer
details, even at lower resolution. Due to the octree nature
of the SPSR approach, the resulting triangulation is quite
inhomogeneous, while ours approaches both a uniform distri-
bution and Delaunay-like connectivity. Scale Space Meshing
(SSM) [16] is an approach that really takes advantage of
modern high precision 3D scanners and is able to faithfully
reconstruct even very fine details. However, as our compar-
ison shows, sharp edges are not captured very well. The
marching cubes algorithm [30] is often used in a medical
context to reconstruct surfaces from volumetric data or to
remesh existing surfaces. Our algorithm is able to handle
both as it can be used on signed distance fields (SDF) as
well as on existing meshes with the advantage of produc-
ing more evenly distributed vertices and triangle faces. Both
Poisson and Marching Cubes are able to recover surfaces
but fall short in terms of triangle mesh homogeneity, a key
contribution of our approach. Similar deficiencies can be
attributed to «-shape- [18], Voronoi-based [2—4,7], or the
ball pivoting algorithm (BPA) [6]. For these algorithms, the
achievable mesh geometry-, and sometimes topology-, qual-
ity crucially depends on the density and uniformity of the
given input point set and sometimes requires prior outlier
filtering or noise smoothing steps. Our approach is quite
invariant to these artifacts, as it is able to cope with noise
and can either ignore or incorporate varying sample densities.
Impressing developments in quad-mesh reconstructions such
as Instant Field Aligned Meshes (IFAM) [23] or Online Sur-
face Reconstruction (OSR) [34] produce nice feature-aligned
mesh structures, but often struggle with low or varying sam-
ple density as demonstrated in comparison with our results.
Most recently, learning-based approaches also joined the
reconstruction game [32,33] but often require specifically
trained models on an explicit object class. This is no longer a
requirement with P2M, which reconstructs point clouds via
shrink wrapping and basically learns from the input itself. But
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their results also lack precision in corners and sharp object
features.

2 Methods

As illustrated in Fig. 1, the goal of our algorithm is to assim-
ilate to a target shape, starting from a simple initialization
mesh. Therefore, the basis mesh first approximates the rough
shape of the input; finer details are recovered as the optimiza-
tion continues. This assimilation process follows a simple
optimization scheme, iterating over the following five steps,
performed in one iteration cycle:

I. Subdivide the mesh where necessary
II. Equalize inter-vertex distances
ITI. Mesh expansion and hull projection
IV. Fix mesh irregularities
V. Add tunnels to increase genus (optional)

Termination criteria for the optimization can be specified,
either as a target edge length /; for the final mesh or an e-
closeness threshold to the target shape.

Each operation is self-contained, meaning the
surface remains a closed manifold and valid mesh at all
times. Related coarse-to-fine approaches [20,31,35] separate
the mesh development and final fitting phase in their proce-
dure or interleave the assimilation progress with remeshing
operations. However, the strength of our method lies in the
mixed design of the assimilation (IIL.): Simple mesh growth
seamlessly transitions into a projection scheme on an indi-
vidual vertex basis.

Terminology Our method is first introduced with the focus
on point cloud reconstruction; the adaptation to other input
scenarios is later addressed in Sect. 2.1. In the following,
we associate vertices v; with the growing mesh structure
and samples s with the input point cloud. Variables related to
samples are denoted with an over-set dot. Further, we observe
local 1-ring neighborhoods around vertices: For a vertex v;,
adjacent mesh neighbors are grouped in N; where k; = |N;|
gives the number of neighbors. The average edge length
around vertex v; is therefore givenas [; = % > jen; lvi—vjl.
Vertex normals n; are derived from the face normals in this 1-
ring neighborhood: The normalized portions of corner angles
in the triangle fan are used to weigh their normals’ contribu-
tion, respectively. Further, each vertex v; is associated with
a set S; of 10 closest point cloud samples. This is cheap to
initialize with a brute-forced search as the initial mesh only
has very few vertices. When starting from a larger base mesh,
a suitable data structure may speed up the first nearest neigh-
bor associations. However, once established, this structure
can be maintained cheaply using the mesh as a graph: To

Fig. 2 Mesh refinement: The 1-ring fan of a vertex is ﬁ—subdivided.
New vertex positions are interpolated as PN triangle centers [38] to
maintain local curvature
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Fig. 3 Point cloud samples s; are shown with their and
normals 72;. The example shows projections for vertices v (left) and
v; (right) as well as closest points on splat disks, respectively. Vertices
move along the projection direction, weighted by distance and the angle
between and sample normal, and are pulled into the inter-
section of tangent planes and thus allow for better edge preservation

update the existing sets or create new ones for added vertices
(1.), we then only query the sample sets in the vertices’ 1-ring
neighborhoods for potential new nearest neighbors. Further,
each sample is interpreted as a splat disk on the implicit hull,
represented by a normal 7 and a radius 7. We compute the
radius of a sample as half the median distance to its 10 clos-
est point cloud neighbors. While all our results are generated
using this simple approach, more advanced splat methods
[11,39] may be suitable as well.

I. Refinement The triangle mesh is constantly refined with
targeted +/3-subdivision operations [29]. A vertex qualifies
for refinement when its average length /; of incident edges
is larger than the specified target edge length I;. Or, if €-
closeness is specified as the optimization criteria, simply the
vertices with the largest /; get subsequently refined. There-
fore, faces around a vertex are replaced as shown in Fig. 2: For
each triangle in this 1-ring fan, a new vertex is created along
with three new triangles. The new vertices are the interpolated
center points of the fan triangles, interpreted as curved PN
triangles [38] using vertex normals. This allows us to main-
tain local curvature and the subdivided geometry smoothly
integrates with the surrounding mesh as the outer 1-ring loop
edges are not split. This operation increases the valence of
the 1-ring neighbor vertices by 1 and may create very obtuse
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or pointy triangles. Nevertheless, both issues are fixed within
the same cycle by upcoming steps II. and IV.

I1. Equalization In order to obtain the most regular mesh
structures with evenly distributed vertices, we employ a
simple geometric optimization: Every vertex v; strives to
individually equalize the distances to its direct 1-ring neigh-
bors v; € N;, eventually resembling a Delaunay-like trian-
gulation. Equation 1 formulates the update vectors, where
Uij = vj — v; and /; is the average length of edges incident
on v;.

- 1 Uij
e = k_,‘zvj_li —V; (])

1931
v;EN; Y

These geometric increments mainly smooth out dense clus-
ters created by step I. and can be applied with a weighted
update on vertex positions as v; = v; + A.¢;. Thus, A,
allows adjusting the progression speed for mesh homoge-
nization. We achieved the best results with a soft update,
using 1, = 0.1.

ITI. Assimilation The goal of this step is to pull vertices to
the surface and snap vertices on edges and corners. Once our
mesh is close enough to the point cloud hull, a suitable pro-
jection technique is applied. However, when starting from a
generic base mesh, e.g., a simple sphere inside of, or enclos-
ing, the point cloud, it first has to grow or shrink into a rough
approximation of the target shape, so that the projection may
take over later. Whereas this is how it is usually done, we
propose a mixed procedure, adaptive to each individual ver-
tex.

This step modifies the mesh’s geometry by moving ver-
tices with individual update vectors. These vectors @; may
embody surface projection (IIL.A) or mesh growth (IILB).
Equation 2 anticipates which one is to choose, dependent
on an individual vertex v; and its weights w;;, summed up
inw, =Y jes; w;j. Other variables are elaborated in the
following.

L3 s hijvi; MLA)if w; > €

51' =1 1
- 2 II1.B) else

@)

IIL.A) Projection For valid weights w;;, gathered from the
point cloud samples associated with vertex v;, the update
vector a; is the weighted sum of v;’s projection vectors 1'7,-‘,-
into the samples’ tangent planes (Fig. 3, green). Projected
points compute as v;; = v; + 1'7,-/- with vectors

3,1,- =1, -(5; —v;)nj where 7 is the normal of point cloud
sample ;. The bilateral weights w;; combine a distance and
an angular component. This gives us the advantage of only
pulling qualified vertices into edges and corners, while their
direct neighbors reside in flat regions nearby. As meaningful
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Fig.4 Mesh improvement operations: The concave (blue) and convex
(green) edges (standing out in contrast with their neighbors) are fixed
by rotation. A short (red) edge is collapsed to one vertex

distance measures, we use the closest points (Fig. 3, blue)
on the individual splat disks, respectively, as formulated in
Eq. 3, where 7, is the radius of sample 5. Further, the actual
distance weight is the result of a Gaussian, centeredon . = 0
with o = %’ The angular component computes as the dot-
product of vertex and sample normal, clipped to values > 0.
As formulated in Eq. 4, w;; is simply the product of both
components.

o Vi =S e e .
di‘ _ L‘l + 5 =51 ril if v | > 7; 3)
! Vi else
j
)
. 9d;; )
w;j = exp 5 -max (0, 7, - 1) 4)
i

Figure 3 visualizes the strength of our proposed concept. The
contribution of a force that pulls vertices into tangent planes
is scaled down with increasing distance from its originator.
However, the multiplication with the angular component is
what really makes the difference when it comes to recovering
more surface detail: Vertex v lies on a flat part of the mesh,
the contribution of samples just around the corner (sp, 5 ) is
decreased significantly or even canceled out completely. For
a vertex residing in a curved neighborhood or on an edge like
v1, the attraction of samples from both sides of the implicit
edge (sp, sc & s5p, sp) effectively pulls it evenly into the
intersection of their tangent planes. Even if the splat disks
themselves do not intersect, this is guaranteed because only
the projection directions contribute to the update vectors.

ITL.B) Growth If the weights summed up in w; are too small,
the vertex v; is not yet sufficiently close to the point cloud
hull. Therefore, the displacement vector v; is derived from
its normal 7;, scaled by %, This very robustly ties the geo-
metric increment of a vertex to the scale of its local mesh
neighborhood. Further, the normal is oriented with a value
o; = =1, which computes as the combined majority sign
of all dot-products between normal 7, and projection vectors
v ;j- This allows for mesh expansion as shown in Fig. 1, when
the mesh is within the target shape, but also for shrinkage as
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Fig.5 Adapting the topology.
Tunnels are invariant of the
surface orientation and
automatically apply for
ballooning (top) as well as
shrink wrapping (bottom)

shown in Fig. 6 (top), with the base mesh enclosing the target
shape. Further robustness is exemplified in Fig. 23 (top) with
an out-of-target initialization mesh, which first gets drawn
into the target and then starts to grow.

Again, vertices are displaced using a differential update
Vi := v; + Aqd;, where A, allows to adjust the mesh’s assim-
ilation speed. However, as the differential increment is by
design also linked to dimensions of the local mesh neighbor-
hood, a large A, could provoke single vertices to grow out
too fast. A moderate growth rate of 1, = 0.1 allows step II.
to level out length discrepancies before the next assimilation
update and thus promotes a more even and homogeneous
mesh expansion.

IV. Improvements To retain a high mesh quality, unfavor-
able edge constellations are detected and fixed [17] on the fly:
Concave or convex edges, which stand out in contrast with
their direct triangle opposites, are fixed with a simple rota-
tion. Figure 4 shows examples of these cases and how they
are resolved. Edges shorter than a certain length (e.g., %) are
collapsed, merging two vertices into one. This might occur
after the edge was rotated or if two neighboring vertices are
drawn onto the same implicit edge and get too close to each
other. As this step proactively prevents local foldovers, our
results do not feature manifold violation artifacts.

V. Object topology adaptation In the most basic scenario,
the mesh assimilation is initialized on a simple spheri-
cal mesh with a target of the same genus 0. However, to
support reconstructions of objects with higher genus, our
algorithm supports a common ballooning technique: Tunnels
are inserted between opposing mesh fronts to automatically
adapt the mesh’s topology. The approach of Cooperative
Evolutions [31] is to detect self-intersections after they have
occurred, delete the affected regions, stitch them together,
refine the topology, and smooth the geometry. Our solu-
tion is more similar to the pro-active approach of Competing
Fronts [35], using proximity tests on moving vertices to trig-
ger the insertion of tunnels before the mesh self-intersects.
Therefore, the 1-ring neighborhoods around close vertices or
triangles are removed and replaced by tunnels, connecting the
opposing edge rings. Tunnels are triangulated analogously
to Freestyle [36] using the Bresenham algorithm [9] and can
therefore be ensured to be watertight. Dedicated topology

PO W
LA A A 4 4

Fig.6 Top: Our algorithm assimilates the coarse icosphere to the target
shape; given as quad mesh [28]. Bottom: Swapped input and target
lead to a coarsening; with a larger target edge length, short edges are
incrementally collapsed. Progress is left to right

Fig. 7 Mesh construction from a signed distance field, visualized as a
color coded cross-section slice: outside, close to 0, inside. As there are
no splat disks (point cloud tangents), the hull projection step is omitted

refinement or geometry smoothing is not required as both are
automatically taken care of within the next iterations cycles.
However, as the initial mesh may be quite arbitrary, tunnels
can also resolve inter-mesh situations as shown in Fig. 19
(center) and Fig. 23 (bottom), when initialized with separated
geometry. As shown in Fig. 5, the operation is not bound
to surface orientation and may also form inverted tunnels,
resulting in the correct genus nevertheless.

This step is optional and may be omitted if the target genus
is known to be O or the initialization mesh already has the
correct genus.

2.1 Generalized input

To be able to mesh more than just point clouds by assim-
ilation, we actually only have to adapt step III. of the
optimization. This is demonstrated with meshed input, signed
distance fields, and volumetric data.

Remeshing of existing meshes, e.g., to ensure hole-free
reconstruction or uniform mesh quality, is quite trivial to
handle, as we can simply use actual surface triangles instead

@ Springer
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Fig.8 Tomography data [21]: A
neuron, given as 1325 binary
slices (not all shown) with

661 %595 pixels each,
reconstructed as surface mesh

of splat disks. Distances, directions, and weighting follow
straightforward. Two examples using a meshed input as
the target are shown in Fig. 6. On top, the sphere shrink
wraps around the target shape and refines for a smooth and
curved surface. For the bottom case, the target edge length
is increased, which leads to an incremental collapse of short
edges and the mesh assimilates the coarse icosphere again.

Signed distance fields are supported by our mesh construc-
tion method as well. Therefore, one only has to replace the
orientation o; in Eq. 2 with a signed-distance. It is sufficient
to sample the field once for each vertex position, acquiring
single scalar values, respectively, as the vertex normal is used
as movement direction. The update vectors g; are always in
mesh growth mode (IIL.B), since there is no trivial tangent
space given, as with splat disks. This basically comes down
to an analogous concept as Cooperative Evolutions [31] and,
therefore, has the same limitations: As there is no surface pro-
jection, vertices are not automatically drawn toward edges or
corners; thus, sharp features are not recovered very well. Nev-
ertheless, smooth and curved surfaces are still reconstructed
accurately: Update vectors (Eq. 2) are automatically scaled
down to 0 length as the (absolute) signed distance decreases,
and therefore, the mesh closely approaches the implicit target
hull. Figure 7 illustrates surface reconstructions of a target
shape, given as a signed distance field.

General volumetric 3D data, e.g., as acquired from com-
putational tomography, require a bit more effort but can be
reconstructed as well. Figure 8 shows the reconstruction of
a CT scanned neuron, given as sliced binary volume. Anal-
ogous to the signed distance field, there is again no trivial
tangent space for hull projection. Orientations are not so eas-
ily determined as with the SDF, but nevertheless can be easily
sampled and trilinearly interpolated from the volume at mesh
vertex positions, with binary values giving the sign. Update
vectors are scaled down to zero length, once the mesh vertex
is situated between both in- and outside labeled voxels, indi-
cating that the mesh reached a surface. By construction, the
resulting mesh is watertight. Segments of dendrites separated
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Fig. 9 Mesh construction on noisy input. Besides some kinks, strong
edges remain sharp even with increasing noise of randomly jittered
samples. The noise magnitude is given in percent of the bounding box
diagonal

snout

head ear

Fig. 10 Reconstruction on 3D scan data [37]. When aligned, the 10
individual partial scans (colored) create noisy overlap regions. Since
every mesh vertex is attracted by multiple sample tangents, the noise is
leveled out and the reconstruction is smooth nevertheless

by noise in the scan data are, however, not connected by our
approach.

3 Experiments and discussion

In this section, we experiment with the achievable mesh qual-
ity of our method, challenged with the five most common
point cloud artifacts, as described by Berger et al. [5]. A
numerical comparison follows in Sect. 3.1 as well as a qual-
itative discussion in Sect. 3.3.

Noise and outliers are prominent artifacts in 3D scan data
and can be robustly dealt with by our algorithm. Figure 9
shows results of the challenge designed for robust moving
least-squares fitting [ 19]. A point cloud, sampled reasonably
dense but randomly, is perturbed with increasing magni-
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Reconstruction

Defective Source Splat Discs

Fig. 11 Filling up holes: Results on defected, than sampled input. The
twistcube is missing portions on a curved side region, an edge and
a corner. 75% of Igea’s surface was removed by cutting out random
patches

tudes of random spherical jitter noise, scaled by the fandisk’s
bounding box diagonal. Without noise, ground truth-like
results are achieved. At 0.2% noise scale [19], flat areas are
still flat, curves smooth, edges sharp and only a few kinks
become noticeable on very obtuse edges. With noise even
further increased by factor 5, our reconstruction still robustly
captures all major features of the object. Figure 10 shows
details of the noisy overlap regions in a real 3D scan, along
with the smoothly reconstructed surface. When not extracted
in a prefiltering step, outliers do not cause any difficulties in
our approach either: Mesh vertices are associated with a fixed
number of nearest point cloud neighbors. Therefore, far-out
outliers are usually not part of any neighborhood, but if so
anyway, their influence is still minimal as their contribution
is weighted inversely by their distance.

Missing data in the input geometry is recovered by the recon-
struction. The first example in Figure 11 shows the fwistcube
with cutout geometry on a curved side area, an edge, and
on a corner. The reconstructed mesh smoothly interpolates
the missing regions, stays within the implicit hull, and does
not grow through the holes. The second example shows Igea,
where 75% of the source mesh was cut out and removed in
randomly shaped patches. Our algorithm still reconstructs a
closed mesh and recovers fine details.

Sample density is not a decisive factor for successful recon-
structions. While modern 3D scanners usually provide quite
dense point clouds and more information always allows for
more precise results, our algorithms splat disks also automat-
ically adapt to fewer and sparser samples. Figure 12 shows

Source 200 Samples 5000 Samples
Fig. 12 Sample density has little influence on the reconstruction as the

disk radii automatically adapt

Fig. 13 Adaptive meshing results: The bust was importance-sampled
based on local surface curvature. The reconstructed mesh adapts accord-
ingly. The sphere features a very steep density gradient with 10k samples
located on the upper and 1k on the lower hemisphere

the same object with different sampling but accurate results
with smooth curves and sharp edges in both cases.

One might argue that equidistantly distributed vertices—the
default outcome of our algorithm—are not always a favor-
able choice for meshed objects. Therefore, we can easily
switch to a sample-density adaptive mode, as exemplified
in Fig. 13. To simulate varying density, the ground truth
mesh was importance-sampled, based on surface curvature.
This leads to a higher sample density on the facial features
and fewer, sparsely distributed samples on the head or neck
region. Now we can locally scale the target edge length for
each vertex individually, based on the radius of the closest
splat disks. Figure 13 (right) shows a more challenging exam-
ple with a very steep density gradient: 10 times more samples
are placed on the upper than on the lower hemisphere. The
result adopts this change in density with coarser geometry
on the bottom and fine geometry on the top.

3.1 Comparisons

Besides validation against common point cloud challenges or
the qualitative discussion in the upcoming section, we pro-
vide a numerical comparison to a variety of state-of-the-art
reconstruction techniques, evaluated on over 2000 randomly
selected objects from the ThingilOK data set [40]. A com-
parison to the most closely related technique, Competing
Fronts [35], is not included, since there is no implementa-
tion available and the authors could not provide reference
results. Ground truth objects are scaled-down and centered
tofitina[—1:1] cube. Oriented point clouds are sampled uni-
formly from the source objects, where the number of samples
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Table 1 Results of multiple reconstruction techniques, compared to the ground truth of over 2000 objects from the Thingil0K data set [40], as mean and median
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WT

NAD

TVD

SAD

RMSE

HD

0.000000
0.001329
0.000000
0.517084
0.931677
0.998227
1.000000

0.151215
0.220108
0.197236
0.287676
0.092074
0.128020
0.040147

—0.014808
—0.447994
—0.379604
—0.001302
—0.003310

0.065322
0.028261
0.127780
0.025842
0.115445
0.010974
0.003979

—0.050309
—0.425178
—0.371409
—0.016991
—0.022540
—0.031528

0.000910

—0.093504
—0.470502
—0.413034
—0.133871
—0.031290
—0.043226

—0.015890

0.002693
0.004029
0.004036
0.006079
0.001747
0.002557
0.000773

0.002710
0.004422
0.004021
0.007759
0.001922
0.002623
0.001269

0.052247
0.090939
0.129359
0.101473
0.025658
0.033962

0.019009

0.057155
0.089543
0.139415
0.124078
0.029466
0.034983
0.040563

BPA

[6,13]

SSM

[14,16]
(23]

IFAM
OSR

[34]

[10]

SSDR
SPSR
Ours

0.000109
0.000570

[24,26]

The errors (best close to 0, except WT best close to 1), include the symmetric Hausdorff distance (HD) measured with 200k samples, the root-mean-squared-error (RMSE) measuring the closest
point distance of result faces to the ground truth, the surface area deviation (SAD) and total volume deviation (TVD) between reconstruction and ground truth, as well as the amount of watertight

(WT) results, all given in percent, except for the normal angle deviation (NAD) which is given in radians

computes as object surface area x 1000. Where possible, we
specified /; & 0.025, except for IFAM where we set the tar-
get vertex count to half the amount of the input point cloud
samples, to actually produce a decent result. Other param-
eters were left on auto- or the default settings, respectively.
Total failure cases (<5%), where the applications crashed
and produced no output, could not be taken into account.
Results of our numerical comparison are listed in Table 1
with means and medians of different error measures, respec-
tively. In the average HD, our method is only outranked by
two other approaches but supersedes (or is close to) the com-
petition in all other measures. This small drawback can be
attributed to a limitation of our method, namely very, very
thin geometry. Such a case is included in Fig. 20 with object
1489590: With geometry, becoming thinner than the target
edge length, the mesh growth comes to a halt, as there are
no further refinements. Portions of the point cloud remain
unexplored and thus result in rather high HD errors.

A heuristic, indicating how many point cloud samples are
actually in use for hull projections, could potentially improve
on this matter. The other models in Figs. 20 and 21 exem-
plify, why some procedures fall behind in our numerical
comparison: While flat or curved surfaces are often recon-
structed quite well, edges on feature lines or sharp geometry
are smoothed out. This especially shows on CAD-like mod-
els with sharp edges, e.g., for object 200080, our result is
the only one that accurately reconstructed the threads on the
Screw.

3.2 Other ballooning methods

Whereas the numerical comparisons are mostly focused
on established state-of-the-art meshing procedures, we also
want to point out clear conceptional distinctions between our
and related ballooning approaches.

e Competing Fronts (CF) [35] also use a deformable mesh
complex, iteratively approaching the target shape. However,
CF strictly grows from within the target as vertices only
move along positive normal directions and get frozen once
close enough to the point cloud. Our mesh remains flexi-
ble throughout the optimization as vertices move and align
individually. Further, our method generalizes ballooning and
shrink wrapping, as the mesh may grow from within the tar-
get, but also enclose on it from the outside. As shown in
Fig. 23, our mesh’s growth direction is robust enough to
even overcome a misaligned initialization. In order to main-
tain high-quality mesh structures, CF employs remeshing
operations [8] every 6-18 iteration cycles. In our iteration,
corrective operations are performed in every cycle but tar-
geted at the affected mesh regions. The increase in an object’s
genus is approached in a similar defensive manner, as both
methods replace opposing geometry with a triangulated tun-
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Fig. 14 Comparing results of the learning-based approach Point2Mesh
(P2M) [20] to ours

nel before the mesh self-intersects. See step V. of Sect. 2 for
more details. CF finalizes the optimization with a dedicated
projection step to guarantee e-close reconstruction results,
which, however, is invariant of the point cloud tangent space
and thus does not recover any sharp features. Our optimiza-
tion is designed to automatically transition from mesh growth
to a projection scheme on an individual vertex basis. Further,
in our projection, the vertices are explicitly drawn toward
intersections of tangent planes, thus faithfully reconstruct
sharp corners and edges

e Cooperative Evolutions (CE) [31] is based on two mesh
structures, approaching the target shape from the interior and
exterior simultaneously. Once both hulls are close enough,
individual vertices from both hulls have to be matched to
each other and the final geometry is extracted from the space
between both meshes. Objects of a higher genus are also pos-
sible: Self-intersections are identified; the affected geometry
is removed, again stitched together, smoothed, and refined.
The mesh evolution in CE is based on a signed distance field,
recomputed every iteration cycle, and mixed with a normal
distance field. In contrast, our mesh vertices are linked to the
individual, fixed-size sets of nearest samples, easily updated
with sets from their 1-ring neighbor vertices, respectively.
Mesh integrity in CE is, as in CF, maintained with dedicated
global remeshing [8]. Further, CE is invariant of the point
cloud orientations and thus solely relies on the distance fields.
As shown in our SDF experiments (Sect. 2.1), our method
can also easily operate on distance fields. However, this also
comes with the same drawbacks and limitations of CE, as our
method is then also no longer able to recover sharp edges.

e Point2Mesh (P2M) [20] is a state-of-the-art learning-
based approach, iteratively shrink wrapping a convex hull
mesh around a target point cloud. The individual vertex dis-
placements are the results of a learning self-prior network,

!,JE:L‘.;M‘&"' P A

Fig. 15 Error comparisons with related ballooning approaches, visual-
izing distance errors (top), normal deviations (bottom), and listing the
number of faces (#f)

which does not penalize manifold violations. Therefore, P2M
requires heavy manifold reconstructions [22] every few itera-
tion cycles to actually maintain a valid surface. Adapting the
genus within the optimization is not possible. However, P2M
may also start on a given mesh with the correct genus, i.e.,
a coarse alpha shape [18] or Poisson [26] mesh. This is also
natively supported by our method; moreover, our algorithm
may even start on separated geometry as shown in Figs. 19
and 23. Comparisons featured in Fig. 14 again exemplify the
strengths of our approach, i.e., generating a uniform mesh
structure and reconstructing sharp features and fine details.
This can be seen, especially on the edges of the G as well
as on the toes and epoccipitals on the triceratops’ frill. The
target edge lengths for our results were set to the average
edge length of the P2M meshes, respectively. On the same
hardware (GTX 1080 Ti) and starting from the same convex
hull mesh, P2M finished the given 6000 iterations for the
triceratops within 70 minutes, whereas ours performed 1500
iterations and terminated after 108 seconds.

Ballooning results Figure 15 provides a qualitative compar-
ison against results of CF, CE, and P2M. The visualization
shows distance errors and normal angle deviations between
reconstruction and input point cloud. Although the CF and
CE results have a higher mesh resolution than ours, they
still struggle to capture the rounded ridges and valleys of the
bunny. With the original point cloud (362k samples) and a
memory-limited size of 65.5k faces, the official P2M code
totally maxed out the 24 GB of memory on a Titan RTX card,
performed 30k iterations, ran for 237 h, but the result is still
riddled with artifacts. This is the best result we were able
to generate. Even without special attention to sharp features,
our method still provides the most accurate reconstruction of
round and organic shapes.

3.3 Discussion

With our method, we achieve the same e-closeness to the
target shape as Competing Fronts [35], which is a guaran-
teed result of our projection scheme (Fig. 16). Figures 17
and 20 visualize magnified deviation errors form the sam-
pled ground truth meshes. An effect that becomes visible
here is the mesh’s tendency to exaggerate curved regions.
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Fig. 16 Comparison on mesh uniformity with a zoom-in on one of the nobs of object 101634 from Fig. 20

S I+1%0
= %@ 0%
& I—l%o

4.5017 4.9807 4.7738 10.9946 3.4003 2.7820 HD

0.1928 0.2498 0.2202 0.3515 0.2449 0.3660 RMSE
0.0561 0.1815 —0.4322 —7.8373 —1.4329 —0.8017 SAD
0.2853 —1.2988 —0.2010 —3.2690 —0.2009 0.0260 TVD

Fig. 17 Errors analogous to Table 1 but multiplied by 100 for better
readability. Hull projections on tangent planes cause vertices to exag-
gerate on concave (vertex inside) and convex (vertex outside) curved
regions. This effect is not as prominent on the horse as it is reconstructed
from an SDF without hull projections

2MLS + BPA
[19,6]

3D Scan [15]

SSM [16]

Ours PSR [24]

Fig. 18 Reconstructions of the Tanagra 3D scan with PSR, MSL &
BPA, SSM, and ours. The reconstructed mesh is significantly smoother
in appearance along the folds of the toga while the inscription (on the
back of the statue) is much better readable. Image Source [16]

This is caused by the tangent projection, which, on concave
regions, intersect inside and for convex regions intersects
outside of the mesh. By design, mesh vertices are drawn
toward intersections of tangent planes, thus resulting in ver-
tices slightly in or outside of the actual hull. However, this is
a small trade-off in our bilateral sample-weighting scheme,
which generally allows for a robust and accurate reconstruc-
tion of smooth regions and sharp edge features, respectively,
even under the presence of noise. The listed numerical values
in Fig. 17 and Table 1 for HD and RMSE play in the same
order of magnitude as compared state-of-the-art methods.

@ Springer

Fig. 19 Reconstructions of the Bunny [37] from three different ini-
tialization meshes: Starting from a coarse octree-voxelization, separate
geometric objects, and the default icosphere, respectively

Figure 18 compares reconstructions of the Tanagra high pre-
cision 3D scan [15]. While the PSR [24] result is again quite
smoothed out, the MLS [19] filtered BPA [6] result fea-
tures better details. Nevertheless, our mesh equals or even
supersedes the sharpness and fine-detail quality of the SSM
[16] result. The zoom-ins shown in Fig. 16 demonstrate
the achievable mesh quality. Whereas other methods’ mesh
structure either directly depends on the input points (BPA,
SSM), smooth out details for the sake of regularity (IFAM,
OSR), or triangulate octree-cells (SSDR, SPSR), our results
natively approximate Delaunay-like triangulations.

Section 2.1 introduced the ability to adapt our method with
little effort to various other input scenarios, giving exam-
ples for high-quality point cloud reconstruction, remeshing,
volume- and CT-scan meshing, or surface reconstruction
from signed distance fields which are currently popular in
neural surface representations. Further examples for the ver-
satility of our algorithm are shown in Fig. 6, where Spot is
given as a quad-meshed target, enclosed by a coarse initial
mesh, which automatically assimilates its shape by shrink
wrapping. Swapping target and init mesh leads to the inverse
operation: The only parameter to be adapted is a larger tar-
get edge length, automatically coarsening the mesh as small
edges incrementally collapse.

Examples in Figure 19 show reconstructions of the Bunny
given as point cloud but starting from different initialization
meshes. The initial mesh on the left is a coarse voxeliza-
tion of the point cloud volume. As this initial hull already
fills out most parts of the target shape, it is quite easy for
our algorithm to project vertices into the point cloud while
equalizing their distances. In the second case, the algorithm
starts from separate objects which individually grow and con-
nect via inter-mesh tunnels as they approach each other. The
rightmost example is the default mesh, which automatically
grows into the desired shape from within the target point
cloud. However, while the same initialization meshes lead
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Fig. 20 Randomly selected objects (IDs on the right) from the
Thingil0K [40] data set serve as ground truth. All objects are scaled
down to fitin a [—1:1] cube and are uniformly sampled. The number of
samples computes as surface area x 1000. 89914 is a thin hollow shell

25

79851

101582 89914

101634

258879 200080 135363 119247

1489590

and therefore not as simple as it may appear. 1489590 is a failure case,
discussed in Sect. 3.1, of our approach where the geometry is too thin

for the mesh to grow
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Fig.21 Same results as from Fig. 20 with visualized surface normal errors. Many methods perform well on curved and flat regions, but sharp edges

as on the CAD-like objects are often not recovered very well

to identical results, the algorithm will not produce canon-
ical results from different init meshes. As shown with the
Igea example in Fig. 23 (top), the init. mesh does not nec-
essarily have to be placed fully within the target shape. The
normal-based orientation for mesh growth direction is robust

@ Springer

enough, to cope with miss-aligned starting conditions so that
the initial mesh will get sucked in and then starts to grow.

Performance comparisons to other related work might yet
not be very meaningful, as they are often single-core CPU
implementations and ours a mixture of Python and Cuda
code. All vertex-based operations in our pipeline are easily
parallelized and thus executed on the GPU. Single-threaded
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Fig.22 Objects of higher genus are reconstructed, using intra-mesh tunnels. Black arrows indicate normal growth process. Proximity checks trigger
tunneling operations on close (but not directly adjacent) geometry, shown in blue. The iteration continues normally afterward
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Fig. 23 Top: mesh growth orientation is robust enough to overcome miss-aligned initialization meshes. The Hilbert curve: assimilated from one
(mid row) starting position and from eight (bottom) individual positions, connected via inter-mesh tunnels

operations on the mesh data structure only interleave the fast
optimization steps. Therefore, our algorithm is able to suc-
cessfully finish hundreds of iterations within seconds. Full
reconstructions of larger results, however, play in the same
order of magnitude as competing techniques, ranging from
seconds to a few minutes. A speedup can be gained, e.g.,
from tailored input like coarse voxelizations, as shown in
Fig. 19 (left), or well-placed initial geometry, as shown in
Fig. 23 (bottom), where separate initial meshes grow in par-
allel until fused to one data structure via inter-mesh tunnels.

4 Conclusion

In this work, we present a mesh construction/remeshing
algorithm that is easy to implement but still checks all
the important boxes of the state of the art in this well-
researched field: e-close surface reconstructions of point
clouds and other (re)meshing tasks, e.g., volumetric func-

tions or CT-scans, robustness to noise or outliers, and support
for higher genus object topology with a guaranteed closed,
watertight manifold surface. Moreover, we can note several
improvements over similar approaches: Instead of global
subdivisions, our targeted mesh refinements avoid unnec-
essary increases in mesh resolution or repeated remeshing
steps. The mesh resolution may adapt to the given sam-
ple density or distribute vertices uniformly. With a minimal
parameter space (target edge length or closeness threshold) to
be specified, the process robustly completes fully automated,
without the need for different reconstruction modes, finaliz-
ing projection, or smoothing passes. This can be attributed
to our concept of a seamless transition between mesh growth
and surface assimilation on an individual vertex basis. Our
bilateral weighing scheme for surface projections allows for
perfectly captured sharp object features as well as smooth
areas. This is substantiated with a bulk error-benchmark on a
large dataset comparing state-of-the-art reconstruction meth-
ods as well as various qualitative comparisons, including
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other ballooning concepts. Furthermore, we demonstrate the
flexibility of our approach to cope with arbitrary input and
initialization situations. As our method is still able to adapt
to any given target shape, it exemplifies a powerful advance-
ment and generalization of related ballooning and shrink
wrapping approaches.
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